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An overwhelming number of applications depend on reliable precipitation estimations. However, over complex
terrain in regions such as the Andes or the southwestern Amazon, the spatial coverage of rain gauges is scarce.
Two reanalysis datasets, a satellite algorithm and a scheme that combines surface observations with satellite es-
timationswere selected for studying rainfall in the following areas of Bolivia: the central Andes, Altiplano, south-
western Amazonia, and Chaco. These Bolivian regions can be divided into three main basins: the Altiplano, La
Plata, and Amazon. The selected reanalyses were theModern-Era Retrospective Analysis for Research and Appli-
cations, which has a horizontal resolution (~50 km) conducive for studying rainfall in relatively small precipita-
tion systems, and the Climate Forecast System Reanalysis and Reforecast, which features an improved horizontal
resolution (~38 km). The third dataset was the seventh version of the Tropical Rainfall Measurement Mission
3B42 algorithm, which is conducive for studying rainfall at an ~25 km horizontal resolution. The fourth dataset
utilizes a new technique known as the Combined Scheme, which successfully removes satellite bias. All four of
these datasets were aggregated to a coarser resolution. Additionally, the daily totals were calculated to match
the cumulative daily values of the ground observations. This research aimed to describe and compare precipita-
tions in the two reanalysis datasets, the satellite-algorithm dataset, and the Combined Scheme with ground ob-
servations. Two seasons were selected for studying the precipitation estimates: the rainy season (December–
February) and the dry season (June–August). The average, bias, standard deviation, correlation coefficient, and
root mean square error were calculated. Moreover, a contingency table was generated to calculate the accuracy,
bias frequency, probability of detection, false alarm ratio, and equitable threat score.
All four datasets correctly depicted the spatial rainfall pattern. However, CFSR andMERRA overestimated precip-
itation along the Andes' eastern-facing slopes and exhibited a dry bias over the eastern Amazon; TRMM3B42 and
the Combined Scheme depicted amore realistic rainfall distribution over both the Amazon and the Andes. When
separating the precipitation into classes, MERRA and CFSR overestimated light to moderate precipitation
(1–20 mm/day) and underestimated very heavy precipitation (N50 mm/day). TRMM3B42 and CoSch depicted
behaviors similar to the surface observations; however, CoSch underestimated the precipitation in very intense
systems (N50 mm/day).
The statistical variables indicated that CoSch's correlation coefficient was highest for every season and basin. Ad-
ditionally, the bias and RMSE values suggested that CoSch closely represented the surface observations.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Precipitation knowledge is relevant to many applications: it affects
our ability to determine and understand the hydrological balance, it
helps improvewatermanagement in both agriculture andpower gener-
ation, and it is needed for studies on drought relief and flood awareness.
Overall, precipitation knowledge is important for critical social and cli-
matological issues.
fiumsa.edu.bo (L.A. Blacutt).

. This is an open access article under
A large amount of global precipitation occurs in the tropics, where it
is susceptible to variations related to climatic events, such as El Nino–
SouthernOscillation. Describingprecipitation is complicated, as it is var-
iable at a small scale and is highly non-normally distributed (Huffman
et al., 2007).

The Bolivian region features several characteristics that influence the
temporal and spatial characteristics of precipitation. Geomorphologically,
the area is dominated by the Andes Mountains, where the highest eleva-
tion is around 6000 m asl. Between 14°S and 22°S, the Andes are divided
into two meridional mountain ranges by a high-altitude basin
(~4000 m asl) known as the Altiplano. During the summer (December–
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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January), moisture from the Amazon is transported to the northwestern
region of the continent by the low-level jet (LLJ), which is blocked by
the Andes and channeled to the eastern rim of the Andes near Santa
Cruz de La Sierra. From there, the moisture moves toward northern
Argentina or southeastern Brazil (Nogués-Paegle and Mo, 1997; Herdies
et al., 2002). Additionally, the 200-hPa Bolivian High, which is an upper
tropospheric anticyclone formed by intense summertime convection
and latent heating over the northern Amazonduring the summer, is pres-
ent (Lenters and Cook, 1997, 1999).

Globally, two types of data sources are available for precipitation:
surface observations and indirect measurements (e.g., satellite or
radar). Surface observations from rain gauges are the only direct mea-
surements; however, they are affected by systematic errors, i.e., losses
due to wetting, evaporation, and aerodynamic effects (Nespor and
Sevruk, 1999; Porcù et al., 2014). Over South America, the spatial distri-
bution of rain gauges is denser along themain river courses and toward
the edge of the continent (de Gonçalves et al., 2006); this distribution
may lead to possible biases in regional rainfall estimates (Clarke et al.,
2011). Notably, data scarcity is accompanied by another problem, data
access reliability, which creates the same scenario, i.e., limited knowl-
edge of the spatial and temporal characteristics of precipitation.

Indirect measurements offer large spatial coverage, but they must be
calibrated to obtain meaningful values. Over the past four decades, tre-
mendous effort has been made to monitor and understand precipitating
systems from space at first, techniques were developed to estimate pre-
cipitation from convection based on infrared channels; then, microwave
channels provided an opportunity to estimate precipitation from cloud
processes; it became possible to estimate precipitation proxies with the
advent of high-frequency polarized channels over terrestrial regions
(Arkin andMeisner, 1987; Spencer et al., 1989). Nevertheless, mountain-
ous snow-covered regions presented another challenge.Microwave algo-
rithms failed to estimate precipitation from shallow orographic systems
and warm-rain processes (Huffman et al., 1995; Dinku et al., 2010).

The precipitation estimationmethods radically changed after the in-
clusion of a precipitation radar which is an active sensor onboard the
Tropical Rainfall Measuring Mission (TRMM), a joint project of the
Japan Aerospace Exploration Agency (JAXA) and the U.S. National Aero-
nautics and Space Administration (NASA) that was launched in 1997
(Kummerow et al., 1998). TRMM improved knowledge of several as-
pects of the spatio-temporal precipitation distribution, intensity, and
vertical structure (Ouma et al., 2012; Liu et al., 2012). However, the ab-
solute accuracy of satellite precipitation data is questionable (Tian and
Peters-Lidard, 2010). Recently, JAXA andNASA launched theGlobal Pre-
cipitation Measurement (GPM), which is expected to improve knowl-
edge of precipitation systems (Tapiador et al., 2012; Hou et al., 2013;
Smith et al., 2004). Several TRMM rainfall products use algorithms
that combine measurements from various sensors.

The TRMMMulti-satellite Precipitation Analysis (TMPA, TRMM3B42
hereafter (Huffman et al., 2007)) is a real-time 3-hourly precipitation
estimation algorithm. TRMM3B42 was shown by the International Pre-
cipitation Working Group (IPWG) to be an accurate high resolution
satellite-based rainfall estimate for operational use to date by in situ
continental-scale validation and intercomparison of operational and
semi-operational satellite rainfall estimates over Australia, the US and
Northwestern Europe (Ebert et al., 2007). The algorithm encounters dif-
ficulties over mountainous regions, for example, TRMM has a dry bias
over the Colombian highlands (Dinku et al., 2010) and over the Titicaca
Lake basin in the Andean Altiplano (Heidinger et al., 2012). However,
meaningful information can be extracted from these data to study the
diurnal cycle (Johnson et al., 2010). In fact, TRMM3B42 generates the
best precipitation estimates for northwestern China as compared with
two other products: the Climate Prediction Center's Morphing tech-
nique (CMORPH) and a precipitation-estimationmethod using artificial
neural networks (Yang and Luo, 2014).

TRMM3B42 overestimates the total rainfall in Ethiopia, while it un-
derestimates the total rainfall in Colombia (Dinku et al., 2010).
Additionally, TRMM3B42 is incapable of detecting light rainfall amounts
and underestimates rainfall in the dry season (Ward et al., 2011). How-
ever, during the warm season, TRMM3B42 overestimates intense pre-
cipitation (Behrangi et al., 2011).

To characterize precipitation, observational datasets and satellite es-
timations can be combined to generate a so-called “reanalysis”. Reanal-
ysis data generally represent state-of-the-art gridded atmospheric
states during specific periods. The data are generated by a model kept
constant in time with a constant data assimilation system. The second
version of the Climate Forecast System Reanalysis and Reforecast
(CFSR hereafter (Saha et al., 2010)) is the most recent model version
from the National Center for Environmental Prediction at the National
Center for Atmospheric Research (NCEP–NCAR). CFSR is a reanalysis
dataset that exhibits improved horizontal (~38 km) and vertical resolu-
tions (64 sigma-pressure hybrid levels), making it possible to perform
analyses for precipitating features coming from smaller than of sub-
synoptic systems. An analysis of daily precipitation was performed for
all seasons over South America: a wet bias was found over the Andes
Mountains (Silva et al., 2011). Also, a dry biaswas found for the Amazon
compared with a ground-based dataset (Quadro et al., 2007). Addition-
ally, an artifact was found in the Andes near the Altiplano region
(Eichler and Londoño, 2013).

The second reanalysis dataset used here is the Modern-Era Retro-
spective Analysis for Research and Application (MERRA), which aimed
to improve the hydrological cycle because various aspects of the hydro-
logical cycle were not adequately depicted by previous-generation
datasets (Rienecker et al., 2011). Over South America, differences in
the parameters that characterize the shape, scale, and tails of the fre-
quency distributions were found (Carvalho et al., 2012). Over the
South Atlantic Convergence Zone, precipitation from MERRA was
found to closely represent the annual cycle (Quadro et al., 2007) and
to underestimate precipitation compared with ground-based data
(Quadro et al., 2012).

An alternative approach was recently developed to positively com-
bine the strengths of two precipitation data sources: surface observa-
tions and satellite estimations. Surface observations lack spatial and
temporal coverage, while satellite estimates exhibit great spatial and
temporal coverage but lack absolute accuracy. A scheme to extract
their respective advantages can be obtained by appropriately combin-
ing rain gauge and satellite estimations (Rozante et al., 2010; Zhao
et al., 2012). In particular, Vila et al. (2009) improved satellite estima-
tions by combining additive and ratio biases, which successfully re-
moved the satellite bias for South America.

Despite all the work accomplished to study precipitation over the
South American continent, the knowledge about the capabilities and
limitations of precipitation products over Bolivia is still poor. The pur-
pose of this study is to assess the capabilities and limitation of four pre-
cipitation estimation products to describe rainfall over Bolivia for two
different seasons. In this work, the methodology used by Vila et al.
(2009) was applied to generate an improved gridded dataset for the
Bolivian region, i.e., the Central Andes, Altiplano, and southwestern
Amazonia. The results were compared with two reanalyses and a satel-
lite precipitation estimate against surface observations. First, a spatial
inspection was performed; then, the statistical analysis parameters
were calculated and compared by extracting estimates that correspond
to the nearest rain gauge points. This paper is organized as follows:
Section 2 describes the relevant datasets; Section 3 describes the results
and discusses the capabilities and limitations of each dataset; and
Section 4 presents the conclusions.

2. Data and methodology

This study evaluates two reanalyses, i.e., MERRA (Rienecker et al.,
2011) and CFSR (Saha et al., 2010), the satellite product TRMM3B42
(Huffman et al., 2007), and a combined product (CoSch) (Vila et al.,
2009). These products have different spatial and temporal resolutions



Table 1
Contingency table.

Gauges Total

Yes No

Estimated Yes Hits False alarms Estimated yes
No Misses Correct negatives Estimated no

Total Observed yes Observed no Total
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and periods. In this study, the satellite and reanalysis data were aggre-
gated into 24-h totals (12Z–12Z) for a comparison with the cumulative
daily precipitation gauges over the period of 1999–2009. Additionally,
the datasets were interpolated to the lowest horizontal resolution (1/
2° × 2/3°). Two seasonswere selected to compare and study the precip-
itation estimates: the rainy season (December–February) and the dry
season (June–August). A comparison was performed for the three
main Bolivian basins: the Altiplano, La Plata, and Amazon. First, selected
pixels were extracted from each dataset corresponding to the nearest
surface station, which was an aggregate of 205 surface stations. There-
fore, a point-by-point comparison could be performed.

For each basin and season, the comparison includes a climatological
description and a statistical description. The climatological description
is presented by showing the average daily values for each month and
a spatial analysis. The statistical analysis includes quantitative statistics
and categorical statistics. For the quantitative statistics, the following
parameters were calculated: bias, root mean squared error, and a corre-
lation coefficient; the expressions for these statistics can be found in
Wilks (2006).

For the categorical statistics, simple contingency tables were gener-
ated by assuming dichotomous verification of the occurrence of an
event using a rain gauge; specifically, the event occurs or does not
occur, as shown in Table 1 (Ebert et al., 2007). The parameters calculat-
ed with the contingency table are as follows: accuracy, frequency bias
score, probability of detection (POD), false alarm ratio (FAR), and equi-
table threat score (ETS, Gilbert skill score). The probability of detection
provides the fraction of rain occurrences that were correctly detected
(a perfect score is 1), whereas the false alarm ratio (FAR) measures
the fraction of rain detections that were actually false alarms (a perfect
score is 0). The equitable threat score (ETS) provides a fraction of the ob-
served and/or detected rain that was correctly estimated after adjusting
for the number of hits that could be expected purely due to random
chance (a perfect score is 1). The ETS is commonly used as an overall
skill measure, in which the POD and FAR provide complementary infor-
mation on biases, misses, and false alarms. The equations to calculate
Fig. 1. Geographical location of Bolivia and the ch
the aforementioned indexes and complementary explanations can be
found on the International Precipitation Working Group web page
(IPWG, http://www.isac.cnr.it/~ipwg/validation.html). Similar analysis
was performed for Southern South America (Salio et al., 2014).

2.1. Bolivian rain-gauge network

Daily rain gauge data used in our investigations were obtained from
the Bolivian Weather Service (Servicio Nacional de Meteorología e
Hidrología; SENAMHI in Spanish). The SENAMHI maintains a dataset
of more than 300 surface stations (see Fig. 1), 36 of which report regu-
larly to the Global Telecommunications System (GTS). For this study,
the number of stations that cover the period of 01 Jan 1999–31 Dec
2009 was reduced to 205. No additional quality checks were performed
on these data. The observations were interpreted as 24-h accumulated
rainfall at 8 am local time (12Z) on the day of interest.

2.2. Modern-era retrospective analysis for research and applications

MERRA aimed to improve the hydrological cycle in earlier genera-
tions of reanalysis. Recently, a new version of MERRA was released
(Rienecker et al., 2011) that is based on version 5.2.0 of the Goddard
Earth Observing System (GEOS) atmospheric model and data assimila-
tion system Details on the assimilation system are provided in
Rienecker et al. (2008). Precipitation assimilation systems include in-
stantaneous rain rate estimates from the Special Sensor Microwave Im-
ager (SSM/I) and the TRMM Microwave Imager (TMI); details are
provided in Treadon et al. (2002). The current MERRA reanalysis has
an improved spatial resolution of 1/2° latitude and 2/3° longitude, and
it is available on an hourly timescale from 1979 to the present.

2.3. Climate forecast system reanalysis

NCEP has recently developed a new generation of reanalysis products
as part of the Climate Forecast System Reanalysis and Reforecast (CFSR)
project (Saha et al., 2010). Compared with the earlier NCEP reanalysis,
three major changes were implemented: 1) the data have higher hori-
zontal and vertical resolutions (an atmospheric horizontal spectral reso-
lution of T382 ≈ 38 km and a vertical resolution of 64 sigma-pressure
hybrid levels) and a temporal resolution of 6 h; 2) the guess forecast is
generated from a coupled atmospheric–ocean–sea ice–land system; and
3) historical satellite radiancemeasurements are assimilated. The surface
model presents four soil layers, and the atmospheric model assimilates
the CO2, aerosols and other trace gas variations from 1979 to the present.
aracteristic regions used to describe rainfall.

http://www.isac.cnr.it/~ipwg/validation.html
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Two datasets are used to generate precipitation fields in CFSR: the pentad
Climate Prediction Center (CPC)Merged Analysis of Precipitation (CMAP)
and a daily rain-gauge analysis. The precipitation field is generated by
blending the two datasets with the CFSR background on 6-hourly global
data assimilation of precipitation system. Theblending function is latitude
dependent, which favors a satellite-based CMAP analysis in the tropics
(Xie et al., 2007).
Fig. 2. Average annual precipitation cycle for the 1
2.4. Version 7 of the TRMM 3B42 algorithm

The seventh research version of the Tropical Rainfall MeasuringMis-
sion (hereafter TRMM3B42) relies primarily on passive microwave
(PMW) precipitation estimates from the SSM/I, the Special Sensor Mi-
crowave Imager and Sounder (SSMIS), the TMI, the Advanced Micro-
wave Sounding Unit (AMSU), the Microwave Humidity Sounder
999–2009 period for each dataset and basin.
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(MHS) and theAdvancedMicrowave ScanningRadiometer for the Earth
Observing System (AMSR‐E). The PMW data were first calibrated using
the combined TMI and TRMM precipitation radar product (PR) and
were then used to calibrate geosynchronous IR inputs (Huffman et al.,
2007). The TRMM dataset covers a latitude range from 50°S to 50°N
from 1998 to the present, and it is available at a 3‐hourly temporal res-
olution in a 0.25‐degree grid.
2.5. The combined scheme

The Combined Scheme (CoSch) was developed to include surface
observations in satellite precipitation estimations; in this work, stations
located along the border of Bolivia were also used. A short summary de-
scribing the technique of combining satellite and rain-gauge datasets is
presented. Daily data represent a significant difficulty as comparedwith
monthly data: the precipitation variability is larger over short periods
than over long periods (monthly): therefore, CoSch calculated two
types of bias: an additive bias and a ratio bias. The additive bias is calcu-
lated as follows:

rrþ ¼ rrsat þ rriobs−rrisat
� �

ð1Þ

where rrsat represents multi-satellite-based retrieval and rrobs
i –rrsat

i rep-
resents the result of gridding (represented by the bar) the additive bias
in the observed rainfall and satellite retrieval (TRMM3B42 in this case)
at each station (denoted by the superscript i).
Fig. 3. Spatial rainfall distribution f
The ratio or multiplicative bias is calculated as follows:

rr� ¼ rrsat � rriobs
rrisat

 !
ð2Þ

where the same conventions as in Eq. (1) were used.
The station-based biases are gridded using an inverse-distance-

weighted algorithm (with controls) to fit the multi-satellite estimate
resolution. All regions with a distance greater than five grid points
from the closest station were masked (the grid size was set to 0.25° to
match the satellite estimates). Despite precipitation estimation being
height dependent and there are other factors such as slope, and slope
orientation that may affect CoSch performance (Dinku et al., 2008), no
topographic considerations were made to calculate these two biases.

Thebias-corrected rainfall for the remaining terrestrial areaswas de-
fined as a weighted average of the additive and multiplicative bias-
correction schemes as follows:

rrcorri ¼ α � rrþi þ β � rr�i ð3Þ

where rrcorri is the final result of CoSch. Here, rr+ and rr⁎ are defined in
Eqs. (1) and (2) (the subscript i denotes a particular grid point), and α
andβ areweighting factors. Theseweighting factors represent the num-
ber of times a particular scheme is selected in a 3° × 3° box centered in
the grid, in which i is divided by the total grid points in that particular
box. α + β = 1 for every non-masked grid point. This approach ac-
counts for large-scale variations (the schemeworks better over a larger
area than a single grid point) and produces spatially continuous rainfall
fields.
or DJF 1999–2009 in mm/day.



122 L.A. Blacutt et al. / Atmospheric Research 163 (2015) 117–131
3. Results and discussion

3.1. Bolivia climatology

This section describes the precipitation climatology over Bolivia as
obtained from the rain-gauge network and four datasets. The average
daily precipitation rate corresponding to each month was calculated
over 1999–2009 to describe the annualmean cycle. Next, the spatial dis-
tribution of the precipitation based on each product was presented and
compared. Finally, the probability density functions were calculated for
six precipitation classes: 0–1 mm/day, 1–3 mm/day, 3–10 mm/day,
10–20 mm/day, 20–50mm/day, and N50mm/day. Two types of proba-
bility density functions are presented: first, a population-based function
that simply counts the number of occurrences for each class; and sec-
ond, a volumetric analysis to calculate the total amount of precipitation
in each class.

The annual precipitation cycle is monomodal, with a rainy season
occurring in December–February and a dry season occurring in June–
August (Fig. 2). There is a clear contrast between the La Plata and Alti-
plano basins as compared with the Amazon basin, during dry season
rainfall is very scarce. During the onset months (September–Novem-
ber), a rapid monthly accumulation can also be observed over La Plata
and Amazon basins.

CFSR andMERRA overestimated the precipitation over the Altiplano
and La Plata basins each month. Over the Amazon basin, CFSR
overestimated the precipitation during the rainy season, whereas
MERRA better represented the annual cycle of precipitation.
TRMM3B42 and CoSch performed well for all three basins, although
TRMM3B42 exhibited a wet bias over the Altiplano basin during the
dry season.
Fig. 4. Spatial rainfall distribution f
The Altiplano basin receives little precipitation throughout the year,
as shown by TRMM3B42 and CoSch. However, while CFSR and MERRA
represented the annual cycle qualitatively well, MERRA overestimated
the precipitation every month, and CFSR overestimated the precipita-
tion during the rainy season. The steep orographic gradients make this
region complex for both reanalysis datasets.

Over the La Plata basin, all four precipitation estimates followed an
annual cycle. CFSR and MERRA exhibited a wet bias in all months, and
the overestimationwas exacerbated during the onset months (Septem-
ber–November); however, TRMM3B42 and CoSch closely followed the
rain gauges.

The Amazon basin was probably the best-represented region. CFSR
had a tendency to overestimate precipitation during the rainy season
months; however, all four estimates converged to similar values during
the dry season.

The average daily precipitation was calculated for the rainy and dry
seasons (Figs. 3 and 4, respectively) to study the spatially distributed
precipitation described inMERRA, CFSR, TRMM3B42 and CoSch. In gen-
eral, the geomorphological characteristics establish the spatial charac-
teristics of precipitation: the lowlands on the eastern side of the Andes
receive more precipitation than the highlands. The presence of the
Andes generates orographic ascent on the eastern-facing slopes; on
thewestern side, themoisture is prevented from reaching the Altiplano.
Thus, a large contrast exists between the regions (Vuille and Keimig,
2004; Roche et al., 1990). Orographic precipitation is present over the
eastern Cordillera (Cordillera Real, close to the Amazon) due to the
moisture transport from the low-level jet (Vera et al., 2006). The north-
west–southeast orientation of the Andes changes abruptly from the
north–south orientation at 64°W–17°S; this feature modifies the mois-
ture distribution:moisture is channeled to southeastern South America;
or JJA 1999–2009 in mm/day.
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however, this phenomenon generates a “moisture supply shadow” that
blocks the moisture influx and produces a very arid region called the
Chaco, which is located along the border of Bolivia and Paraguay (see
Fig. 1). Chaco region together with southern Altiplano constitute the
driest regions over Bolivia.
Fig. 5. Probability density funct
In general, all four products correctly depicted broadly the spatial
distribution of precipitation a very wet rainy season and a very dry sea-
son (Fig. 3). Precipitation along the northeastern-facing slopes of the
Andes is greater than that over the rest of Bolivia. Two dry regions are
evident: the Altiplano and Chaco regions. However, some differences
ion by population for DJF.
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arise when comparing each product. During the rainy season (Fig. 3),
MERRA broadly represented the difference between the wet north–
northeastern (Amazon) and the dry southeastern (Chaco) regions; fur-
thermore, the highest amounts of precipitation occurred on the Andes'
eastern-facing slopes and near Titicaca Lake. Over the Altiplano, a
north–south precipitation gradient occurred. However, the difference
Fig. 6. Probability density function by populatio
between the Altiplano and Amazon precipitations was not well repre-
sented; furthermore, the spatial extent of dryness near the Chaco region
was exaggerated. The east–west gradient over the Altiplano is only rep-
resented over the southern Altiplano. A possible cause of these inaccu-
racies is that MERRA's precipitation estimates do not benefit from the
assimilation of surface rain-gauge data; instead, the onset, intensity,
n for JJA. The vertical scale is logarithmic.
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and cessation of any rainfall event is mainly controlled by themodel pa-
rameterizations (Rienecker et al., 2011; Reichle et al., 2011).

The general pattern depicted by CFSR was representative of the actual
conditions. The Amazon region received more precipitation than the Alti-
plano and Chaco regions. CFSR had a tendency to overestimate precipita-
tion over the Andes' eastern-facing slopes. Moreover, a double
Fig. 7. Probability density fun
precipitation maximum is depicted between 16°S–18°S and 64°W–

66°W. Over the Altiplano, CFSR exhibited a diverse precipitation pattern
with no clear east–west or north–south gradient. Similar amounts of pre-
cipitation occurred in the southwestern Altiplano and eastern Amazonia.
Over the southern rim of the Andes, CFSR also depicted increased precipi-
tation; similar results have already been found (Silva et al., 2011). The
ction by volume for DJF.
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doublemaximum and the overestimationmight be related to the fact that
CFSR relies upon surfaceobservations andmodel-derived analyses that de-
pend on satellite measurements. Over this particular region, there are few
surface stations; therefore, the overestimationmight be related to the sat-
ellite algorithm for estimating precipitation and to the CFSR's model pa-
rameterizations. This double maximum deserves further research.
Fig. 8. Probability density function by volume
The spatial patterns depicted by TRMM3B42 and CoSch resemble the
known precipitation regime in the rainy season. The regions over the
eastern lowlands received more precipitation than the highlands. Over
the highlands, a north–south precipitation gradient occurred. Addition-
ally, the Cordillera Real received more precipitation than the western
Cordillera, i.e., an east–west precipitation gradient was present. The
for JJA. The vertical scale is logarithmic.



Table 2
Categorical statistics DJF.

Altiplano basin La Plata basin Amazon basin

MERRA CFSR TRMM 3B42 CoSch MERRA CFSR TRMM 3B42 CoSch MERRA CFSR TRMM 3B42 CoSch

Accuracy 0.36 0.41 0.41 0.42 0.35 0.42 0.49 0.47 0.40 0.47 0.53 0.52
Bias frequency 2.82 2.65 2.62 2.65 2.90 2.61 2.23 2.52 2.49 2.21 1.91 2.19
POD 1.00 0.98 0.97 1.00 1.00 0.96 0.87 0.99 1.00 0.95 0.87 0.99
FAR 0.65 0.63 0.63 0.62 0.66 0.63 0.61 0.61 0.60 0.57 0.54 0.55
ETS 0.0018 0.0281 0.0300 0.0388 0.0007 0.0378 0.0676 0.0727 0.0004 0.0432 0.0837 0.0878

The bold values are the maximum/minimum corresponding to each statistical category when comparing the four datasets for each basin.
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Chaco region received little precipitation. The maximum precipitation
occurred in the Chapare region, which is located at 65.5°W–17.5°W
(Roche et al., 1990).

Although CoSch broadly depicted the same features as TRMM3B42,
differences were apparent over the Altiplano region: the northeast–
southwest precipitation gradient was displaced to the southeast,
i.e., the western-facing rim of the Cordillera Real received more precip-
itation than estimated by TRMM3B42. Similarly, over the southern Alti-
plano, CoSch indicated more precipitation than TRMM3B42.
TRMM3B42 might be affected by warm rain processes, on the eastern
facing slopes some of the systems can generate precipitating systems
that may not be detected (Dinku et al., 2008). The precipitation maxi-
mum over the Chapare region was intensified and more clearly
depicted, and the presence of three stations allowed us to confirm that
the values are real and not artifacts of the algorithm; however, the spa-
tial extent of themaximum is exaggerated probably due to the interpo-
lation process, i.e., it renders homogeneity in the surface observation
data over a relatively large region without accounting for the
topography.

During the dry season (Fig. 4), MERRA exhibited a generally dry spa-
tial pattern,with the exception of the northernAndes near Titicaca Lake.
When comparing the results of the other three products, the largest pre-
cipitation rate was found for MERRA over this particular region. CFSR
overestimated the precipitation along the Andes, but the Altiplano as a
whole is dry (with the exception of the region near Titicaca Lake), and
the Amazon and La Plata basins receive little precipitation.

TRMM3B42 and CoSch depicted Bolivia as two regions: the north-
eastern region and the southwestern region. The northeastern region
received relatively more precipitation than the southwestern region.
Over the northeastern region, the presence of a northeast–southwest
precipitation gradient was exhibited; and a maximum occurred over
the Chapare region.

Although differences exist among these products, the absolute dif-
ferences are small due to the low precipitation amount in the dry
season.
3.1.1. Probability density functions
Two types of probability density functions were calculated for the

rainy and dry seasons for each basin (the Altiplano, La Plata, and Ama-
zon basins) by constructing six precipitation classes (see Figs. 5 and
6). The first analysis was based on the population function, the second
Table 3
Categorical statistics JJA.

Altiplano basin La Plata basin

MERRA CFSR TRMM 3B42 CoSch MERRA CFSR

Accuracy 0.22 0.40 0.18 0.18 0.30 0.64
Bias frequency 11.21 8.69 11.65 11.66 11.63 5.84
POD 0.99 0.94 0.99 1.00 0.95 0.70
FAR 0.91 0.89 0.92 0.91 0.92 0.88
ETS 0.0127 0.0335 0.0091 0.0101 0.0173 0.054

The bold values are the maximum/minimum corresponding to each statistical category when
analysis was based on the cumulative rainfall for each class (Li et al.,
2013).

When calculating the probability density function based on the pop-
ulation (see Fig. 5), the population was dominated by small systems
(0–1 mm/day) in the rainy season (DJF). Nevertheless, in general, all
four estimates follow the rain gauge behavior; all of the datasets
underestimated the number of these systems (whichwill have little im-
pact when calculating the amount of rainfall from these systems). CFSR
andMERRA tended to overestimate the number of systems correspond-
ing to 1–3, 3–10, and 10–20mm/day; over the Altiplano, the previously
discussed overestimation included the 20–50 mm/day class.
TRMM3B42 and CoSch overestimated the 1–3 and 3–10 mm/day clas-
ses; however, they closely represented the 10–20 and 20–50 mm/day
classes, which accounted for significant amounts of rainfall which was
also found over Poyang Lake (Li et al., 2013).

Over the La Plata and Amazon basins, the behavior was very similar:
the 0–1 mm/day class was underestimated by all estimates, while the
1–3, 3–10, and 10–20 mm/day classes were overestimated by all prod-
ucts. The 20–50 mm/day class was well represented by all of the
datasets. This particular class contributed significantly to the precipita-
tion, as seen in Fig. 7.

During the dry season (JJA, see Fig. 6), due to a lack of moisture and
limited convective energy, the number and intensity of the systemswas
drastically reduced. The population was completely dominated by the
0–1 mm/day class in all three of the basins; this was the only class
that was underestimated by all of the products in all three of the basins.
Similar to DJF, over the La Plata and Amazon basins, all of the products
overestimated the 1–3, 3–10, and 10–20 mm/day classes. Furthermore,
for both basins, the 20–50 mm/day class was well represented by all of
the datasets.

When calculating the amount of rainfall in each class, the results
changed (see Figs. 7 and 8). During the rainy season, the 3–10, 10–20,
and 20–50mm/day classes contributed significantly to the total rainfall.
The Amazon and La Plata basins received large amounts of rainfall in the
10–20, 20–50, and N50 mm/day classes, whereas in the Altiplano, the
major contributors were systems corresponding to 3–10, 10–20, and
20–50mm/day classes. The impact of the N50mm/day class was differ-
ent between the Altiplano and the La Plata and Amazon basins. Over the
La Plata and Amazon basins, the contribution of this class was signifi-
cant; in the Altiplano, this class played a limited role, and its contribu-
tion was even smaller than that of the 1–3 mm/day class. All of the
datasets overestimated the 3–10 and 10–20 mm/day classes.
Amazon basin

TRMM 3B42 CoSch MERRA CFSR TRMM 3B42 CoSch

0.64 0.63 0.34 0.63 0.59 0.58
5.89 6.65 24.49 13.78 15.12 16.14
0.71 0.97 0.88 0.75 0.61 0.94
0.88 0.85 0.96 0.95 0.96 0.94

8 0.0568 0.0860 0.0084 0.0272 0.0124 0.0312

comparing the four datasets for each basin.



Fig. 9. Taylor diagram for rainy season (DJF) for the three basins.
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Additionally, the 20–50mm/day class in the Amazon and La Plata basins
was underestimated by MERRA and CFSR. Over the Altiplano, both
datasets overestimated the precipitation. Similar results were found
for TRMM3B42 in the Poyang Lake basin (Li et al., 2013).

In the dry season (JJA, see Fig. 8), each basin behaved differently. Al-
though all of the products overestimated the rainfall for each class over
Fig. 10. Taylor diagram for dry sea
the Altiplano, MERRA exhibited the largest overestimation. CFSR,
TRMM3B42, and CoSch behaved reasonably well regarding the 3–10,
10–20, and 20–50 mm/day classes, which were coincidently the classes
that contributed the most to the total rainfall.

Over the La Plata basin, MERRA and CFSR overestimated the
0–1 mm/day to 10–20 mm/day classes, and it underestimated the
son (JJA) for the three basins.



Table 4
Quantitative analysis DJF.

Altiplano basin La Plata basin Amazon basin

OBS MERRA CFSR TRMM 3B42 CoSch OBS MERRA CFSR TRMM 3B42 CoSch OBS MERRA CFSR TRMM 3B42 CoSch

Average 2.94 8.10 7.13 2.79 3.25 4.76 5.74 6.42 4.25 4.55 5.90 5.45 6.50 5.46 5.85
Stdev 6.03 7.32 8.62 4.09 4.76 11.49 7.69 10.14 9.27 7.55 13.73 6.96 10.09 10.22 9.55
Bias −5.16 −4.19 0.15 −0.31 −0.99 −1.66 0.51 0.21 0.45 −0.60 0.44 0.05
RMSE 5.73 5.04 1.97 2.30 4.06 4.54 3.00 3.22 3.85 4.60 3.86 4.14

The bold values are the maximum/minimum corresponding to each statistical category when comparing the four datasets for each basin.
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20–50 mm/day class. Heavy rainfall in the N50 mm/day systems was
completely missed by CFSR and MERRA. TRMM3B42 and CoSch per-
formed reasonably well in all of the precipitation classes, with the ex-
ception of the 0–1 mm/day class, which both datasets overestimated.

The precipitation behavior of the Amazon basin was mixed. The
major contributors to the total rainfall were the 3–10 mm/day to
N50 mm/day classes. MERRA and CFSR overestimated the 0–1 mm/
day to 3–10 mm/day classes and underestimated the 10–20 mm/day
to N50mm/day classes. In fact,MERRA completelymissed heavy rainfall
systems, which contributed a non-negligible amount to the total rain-
fall. Although TRMM3B42 and CoSch performed relatively well com-
pared with MERRA and CFSR, both underestimated the precipitation
in the 20–50 mm/day and N50 mm/day classes.

In summary, it appears that the overestimation and underestimation
are related to the same precipitation classes that represent much of the
rain over the three basins, which include the 3–10, 10–20, and
20–50 mm/day classes.

During DJF over the La Plata and Amazon basins, MERRA and CFSR
overestimated the 3–10 and 10–20 mm/day classes regarding both
the population and volume (over the Altiplano basin, the CFSR overesti-
mation included the 20–50 mm/day class). However, MERRA and CFSR
underestimated the heavy rainfall class (N50 mm/day) regarding both
the population and volume. TRMM3B42 and CoSch compensated for
the total rainfall by slightly overestimating the 0–1 mm/day class and
underestimating the 3–10 mm/day class.

During JJA, the behavior was similar, i.e., the systems that bring the
largest amount of rain are key to understanding the datasets' overesti-
mations/underestimations, such as those in the Altiplano basin. The
MERRA overestimation (cf. Fig. 2 and Figs. 6 and 8) and CFSR underesti-
mationmight be related to errors in the 20–50mm/day class. Very little
precipitation occurs in the austral winter; thus, heavy precipitation sys-
tems are scarce; however, these systems cause significant amounts of
rainfall thatMERRAwas not able to capture (see Figs. 6 and 8).MERRA's
overestimation might be partially explained by its assimilation system,
which presents difficulties related to tropical continental precipitation
because of the reduced number of ground observations. The retrievals
over land can also be complicated by cloudy conditions, and land–atmo-
sphere interactions are challenging to parameterize (Bosilovich et al.,
2008).

3.2. Statistical analysis

Two types of statistical analyses were performed. First, a categorical
analysis that included calculations of accuracy, bias frequency,
Table 5
Quantitative analysis JJA.

Altiplano basin La Plata basin

OBS MERRA CFSR TRMM 3B42 CoSch OBS MERRA CF

Average 0.20 1.20 0.45 0.33 0.25 0.17 0.42
Stdev 1.24 2.24 1.30 0.93 0.94 1.93 1.65
Bias −1.01 −0.25 −0.13 −0.05 −0.25 −
RMSE 0.85 0.32 0.23 0.17 0.29

The bold values are the maximum/minimum corresponding to each statistical category when
probability of detection (POD), false alarm ratio (FAR), and an equitable
threat score (ETS) for each basin and season (DJF and JJA) were made.
Next, a quantitative analysis was performed by calculating the following
parameters: the average (inmm/day), standard deviation (inmm/day),
correlation coefficient, and root mean square error (RMSE, in mm/day).

3.2.1. Categorical analysis
During DJF over the three basins, the accuracy values were rather

similar for the four products (see Table 2). Basically, the same behavior
was depicted for the bias frequency, POD, and FAR indexes. The POD
values were very high meaning that all databases were able to detect
precipitation, however, the FAR values were also relatively high,
which means that the products exhibit the tendency to detect spurious
events. Despite that the accuracy values were similar, MERRA scores
lowest for the three basins. CoSch systematically scores below
TRMM3B42 for La Plata and Amazon basins. Differences arise when
looking at the ETS: MERRA scores very low, TRMM3B42 and CFSR
score similarly, and CoSch scores slightly above the other three.

During the dry season (JJA, see Table 3), despite the similarities in
the accuracy, bias frequency, POD, and FAR values, a separate analysis
was conducted. For the Altiplano basin, it can be noted that the CFSR ac-
curacy outperformed the other three products; furthermore, the dataset
had the lowest bias frequency. Although the POD and FAR values were
rather similar, the ETS presented a difference, and CRSR outperformed
the other products. For the La Plata and Amazon basins, the behavior
was similar, particularly for the POD and FAR values. However, MERRA
scored lowon accuracy and scored very high on bias frequency. Notably,
CoSch's accuracy values were lower than those for TRMM3B42 and
CFSR. Moreover, CoSch's bias frequency score was larger than that for
TRMM3B42 and CFSR. In contrast to all of the aforementioned values,
CoSch and CFSR presented the highest ETS values, with the exception
of the Altiplano, where MERRA and CFSR scored the highest.

3.2.2. Quantitative analysis
A quantitative analysis was performed by calculating the average,

bias, standard deviation, correlation coefficient, and RMSE parameters.
Taylor diagramswere plotted (Taylor, 2001) for each season to compare
the correlation coefficients and the standard deviations (see Figs. 9 and
10). For the other parameters, a table for each seasonwas prepared (see
Tables 4 and 5). Each table lists the average, standard deviation, bias,
and RMSE values. Caution should be exercised when analyzing the
bias because the values can be positive or negative; when the total
sum is calculated, the negative and positive biases could cancel out. To
Amazon basin

SR TRMM 3B42 CoSch OBS MERRA CFSR TRMM 3B42 CoSch

0.38 0.15 0.16 0.68 0.55 0.57 0.66 0.65
1.34 1.37 1.45 4.46 1.82 2.07 3.16 2.98
0.21 0.02 0.00 0.13 0.11 0.02 0.02
0.27 0.10 0.12 0.39 0.41 0.47 0.46

comparing the four datasets for each basin.
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consider the differences, the RMSE must be calculated and both param-
eters should be analyzed together.

3.2.2.1. Taylor diagram analyses. Two Taylor diagram sets were generat-
ed. Fig. 9 corresponds to the austral summer, and Fig. 10 corresponds to
the austral winter. For the rainy season (DJF, Fig. 9), the correlation
values from MERRA, CFSR, and TRMM3B42 scored low, as also found
by Li et al. (2013). However, the correlation coefficients for CoSch
were the highest for each basin (r N 0.6). The highest value was found
in the Altiplano (r = 0.81), and the lowest value was found in the La
Plata basin (r = 0.62). In the dry season (JJA, Fig. 10), the correlation
values for MERRA, CFSR, and TRMM3B42 scored low. However, CoSch's
correlation coefficients were the highest for each basin. Similarly to the
rainy season, CoSch's correlation coefficients were rather high (r N 0.6);
the highest valuewas found for the Altiplano (r=0.83), and the lowest
value was found for the La Plata basin (r = 0.67).

The average, bias, and RMSE valueswere analyzed. CFSR andMERRA
depicted a wet bias over the Altiplano and La Plata basins in both sea-
sons (see Tables 4 and 5). However, the bias values for TRMM3B42
and CoSch scored low. Overall, the RMSE values were larger during
DJF than during JJA, probably due to the large and variable amounts of
precipitation that fall during the austral summer in the three basins.
Over the Altiplano and La Plata basins, the RMSE exhibited a similar be-
havior: MERRA and CRSR presented the largest values and TRMM and
CoSch presented the smallest values in both seasons. In contrast, the
RMSE values over the Amazon basin were rather similar. The Altiplano
basin presents a major challenge for CFSR and MERRA reanalysis data.

4. Conclusions

A precipitation comparison of two reanalysis datasets (the CFSR and
MERRA), a satellite estimation algorithm (TRMM3B42), and a combined
product (TRMM3B42+ observations) was performed for the rainy and
dry seasons during 1999–2009 over three major basins in Bolivia: the
Altiplano, La Plata, and the Amazon.

All of the datasetswere able to depict the annual precipitation cycles.
CFSR and MERRA overestimated the precipitation, particularly over the
Altiplano basin. All of the datasets depicted broadly similar spatial dis-
tributions; i.e., the Altiplano and the Andes received less precipitation
comparedwith theAmazon region, and the Chaco region had the lowest
amount of precipitation. However, differences were also apparent.
MERRA broadly represented the difference in the rainfall amounts be-
tween the Bolivian Amazon basin and the Altiplano, while it
overestimated the precipitation over the Andes' northeastern-facing
slopes. CFSR overestimated the precipitation over the Andes'
northeastern-facing slopes during DJF, where a double precipitation
maximum occurred (16°S to 18°S) (Silva et al., 2011; Eichler and
Londoño, 2013); this finding deserves further research.

TRMM3B42 underestimated the precipitation in two regions: the
western-facing rim of the Cordillera Real and the southern Altiplano.
Furthermore, CoSch exaggerated the spatial extent of the precipitation
maximum over the Chapare because of the interpolation process (Vila
et al., 2009). At the same time, TRMM3B42 and CoSch exhibit
underestimated heavy rainfall (N50 mm/day) on both rainy and dry
seasons. These results are in reasonable agreement with studies con-
ducted in the region but for a different period (Andrade, 2014).

The precipitation classes that contributed the most to the total rain-
fall were a key to understanding each dataset's overestimations/under-
estimations, as also shown by Li et al. (2013). The 3–10 and 10–20mm/
day classes partially explained the MERRA overestimations in the Alti-
plano basin and underestimations in the Amazon basin. The same pre-
cipitation rates explained CFSR's overestimation in all three of the
basins.

When comparing the bias, RMSE, and correlation coefficients, CoSch
outperformed CFSR,MERRA, and TRMM3B42. Despite the generally low
ETS score, it was possible to distinguish between all four products:
CoSch outperformed all of the other products, followed by
TRMM3B42, CFSR, and MERRA.

Overall, the outcome of combining TRMM3B42 with the surface ob-
servations is positive, and the spatial and statistical satellite representa-
tions were improved. Thus, we are confident that the gridded dataset
can be used for future applications. To improve the knowledge of the
biases and errors in the different products, the topographic dependence,
such the height, slope, and slope orientation, must be explored in rela-
tion to the wind direction and daily rainfall.
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