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A Deterministic Time-lagged Ensemble Forecast using a Probabilistic Threshold (DEFPT) method
is suggested for improving summer 6–15 day categorical precipitation prediction in China from
the Beijing Climate Center Atmospheric General CirculationModel version 2.1 (BCC_AGCM2.1). It
is based on a time-lagged ensemble system that consists of 13 ensemble members separated
sequentially at 6 hour intervals lagging the last three days. The DEFPT is not intended to predict
the probability of rainfall, but rather to forecast rainfall (yes/no) occurrence for different
categories of precipitation at anymodel grid box. A given categorical precipitation is forecasted to
occur at one gridbox only when the ensemble probability for that categorical precipitation
exceeds a certain threshold. This method is useful for providing an estimate of whether
precipitation events will occur to decision-makers based on probabilistic forecasts during days 6–
15. A large number of hindcast experiments for 1996–2005 summers reveal that this threshold can
be best (and empirically) set as 5/13 and 4/13 respectively for the 6–15 day prediction of 1+ mm
(i.e., above 1mmper day) and 5+mmrainfall events, using the Relative Operating Characteristic
(ROC) curve, the Equitable Threat Score (ETS), the Hanssen and Kuipers (HK) score, and
frequency bias (BIA) to achieve best prediction performance. With this set of thresholds, the
DEFPT shows skill improvement over the corresponding single deterministic forecast using one
initial value and the Time-Lagged Average Forecast (LAF) ensemble method. Similar improve-
ments by the DEFPT are also found for the prediction of several other categories of precipitation
between 1+ mm and 10+ mm per day. Application of DEFPT to larger ensemble size and
BCC_AGCM version 2.2 with a higher horizontal resolution also demonstrates the effectiveness of
the DEFPT for 6–15 day categorical precipitation forecasts.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Precipitation is one of the most difficult variables to
accurately predict when compared with the other weather
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fields routinely forecasted by operational numerical predic-
tion models. Improving the accuracy of precipitation
forecasts is one of the primary goals for weather prediction
centers and is a major challenge facing the numerical
weather prediction and climate research community
(Ebert, 2001; Mullen and Buizza, 2001; Romatschke and
Houze, 2011).

Over the last two decades, ensemble forecasting has been a
popular technique for weather forecasting, seasonal prediction,
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Fig. 1. The locations of 2466 rain gauge stations over China.
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and even climate change studies in various operational centers
(Sivillo et al., 1997; Krishnamurti et al., 2000; Martin et al.,
2010; Vich et al., 2011). Based upon various ensemble
systems using various modes, including breeding growing
modes, singular-vector modes, and time-lagged modes,
many previous studies (e.g., Du et al., 1997; Eckel and
Walters, 1998; Buizza et al., 1999; Ebert, 2001; Mullen and
Buizza, 2001; Hamill et al., 2004; Walser et al., 2004;
Whitaker et al., 2006; Hohenegger and Schär, 2007; Lu
et al., 2007; Tippett et al., 2007; McLay, 2008; Vitart and
Molteni, 2009; Yuan et al., 2009) demonstrated the effec-
tiveness of those ensemble methods for improving the
ensemble mean and probability of precipitation prediction.
However, these works are mainly focused on the usage of
ensemble predictions for daily precipitation within a week and
pentad or weekly averages of precipitation within one month.
Improving the 1–2 week forecasts of daily precipitation is still
needed.

It is well-known that forecasting whether a rainfall event of
concern will occur in a deterministic or probabilistic way is
quite useful for the enterprise, government, and agricultural
decision-makers (Katz and Murphy, 1997; Lee and Lee, 2007).
As for the traditional Probabilistic Quantitative Precipitation
Forecast (PQPF), many works (e.g., Eckel and Walters, 1998;
Buizza et al., 1999; Hamill et al., 2008) have shown its
limitation for 6–15 day precipitation events since the corre-
sponding skill generally decreases significantly after 6 days;
this is because it lacks the sharpness to discriminate which
events occurred and which events did not in this period. In this
paper, another forecast type is used to provide a deterministic
(yes/no) forecast for different precipitation categories from the
ensemble probability forecasts by using optimal probabilistic
thresholds.

Indeed, our recent study (Jie et al., 2013) has also
attempted to improve the 6–15 day precipitation forecasts
of the Beijing Climate Center Atmospheric General Circula-
tion Model (BCC_AGCM) using a time-lagged ensemble
mean technique (hereafter Time-Lagged Average Forecast,
LAF). It provided a deterministic forecast for separate
precipitation categories depending on the rainfall intensity of
the ensemble mean. Although the LAF is more effective than
the single deterministic forecast using only one initial value
(hereafter, single forecast), it may lead to forecast error for the
low threshold precipitation (see details in Section 3 and Jie
et al. (2013)). In this work, we suggest another Deterministic
Ensemble Forecast method using a Probabilistic Threshold
(hereafter DEFPT, see details in Section 3) replacing the
ensemble mean.

When compared to the LAF and the single forecast, the
effectiveness of the DEFPT for 6–15 day daily precipitation
forecasts during China's summer season is evaluated using the
Equitable Threat Score (ETS, e.g., Schaefer, 1990), the Hanssen
and Kuipers score (HK, e.g., Hanssen and Kuipers, 1965), the
frequency bias (BIA, e.g., Wilks, 1995), and the Root-Mean-
Square Error (RMSE).

The model and data used in this study are described in
Section 2. The design of the experiment, the forecast, and the
evaluation methods are presented in Section 3. Section 4
mainly shows the validation results of the DEFPT as compared
to the LAF and the single forecast. Section 5 presents the
conclusion and discussion.
2. Model and data

The Beijing Climate Center Atmospheric General Circulation
Model (BCC_AGCM) is a global spectral model based on the
National Center for Atmospheric Research (NCAR) Community
Atmosphere Model and subsequently developed by the
National Climate Center at the China Meteorological Adminis-
tration (Wu et al., 2008, 2010; Wu, 2012). The dynamical core
of the model is described in Wu et al. (2008). A precedent
version, BCC_AGCM2.0, is detailed in Wu et al. (2010). Most of
the physical processes in BCC_AGCM2.0 are from CAM3,
developed by NCAR, and a few new schemes are implemented
including parameterizations for the deep cumulus convection,
dry adiabatic adjustment, snow-cover fraction, and latent/
sensible heat fluxes over the ocean surface (Wu et al., 2010).
Previous studies have shown that BCC_AGCM2.0 at a T42
resolution reproduces the present-day climate well (Wu et al.,
2010), the heavy precipitation events in the summer of 1998
over east China (Jie and Wu, 2010), the intra-seasonal
oscillation of 850-mb wind in the tropics (Dong et al., 2009),
the Asian–Australian Monsoon inter-annual variability (Wang
et al., 2009), and the inter-decadal changes of rainfall, temper-
ature, and circulation in east Asia (Chen et al., 2011).

BCC_AGCM2.1 and BCC_AGCM2.2 used in this work are the
atmospheric component in the Beijing Climate Center Climate
System Model (BCC_CSM1.1, Wu et al., 2013), and they include
the updated versions of BCC_AGCM2.0 with a new “deep
penetrative convection” scheme suggested by Wu (2012).
BCC_AGCM2.1 has a horizontal resolution of T42 (approximate-
ly 2.8125° × 2.8125° transformed grid) and 26 levels in a hybrid
sigma/pressure vertical coordinate system. BCC_AGCM2.2 has a
higher horizontal resolution of T106 (approximately 1.125° ×
1.125° transformed grid) andhas beenused for theAtmospheric
Model Intercomparison Project (AMIP) and short-term climate
operational prediction.

Due to the lack of data assimilation systems for BCC_AGCM,
the model's initial values are generated by using the Initial
Coordinated Integration Method (ICIM) considered as a simple
data assimilation procedure for the hindcast simulations (Jie and
Wu, 2010). In ICIM, we spin up themodel for a period of 10 days
by using the atmospheric temperature and the wind fields from
NCEP-II reanalysis data (horizontal resolution of 2.5° × 2.5°and
17 levels), which are interpolated to the model grid. During
the spin-up, the model boundary conditions of sea surface



Fig. 2. The averaged frequency of daily precipitation amounts over China as a
function of threshold from 0.2+ mm to 20+ mm per day at lead times of 6–
15 days during the summer of 1998. The solid line is from the observed
precipitation, and the dashed black line is from the single forecast. In units of
percentages.

Fig. 3. The averaged ETS scores for the 6–15 day forecasts for the different
precipitation categories as a function of ensemble member lagged from the 1st

to 10th days (i.e., from the 1st to 41st members) during the 1998 summer over
China.
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temperature and sea ice are specified according to the NCEP-
OI2 data (1981–2006) (http://www-pcmdi.llnl.gov/projects/
amip/AMIP2EXPDSN/BCS/amipbc_dwnld_files/T42/nc/).

The observed precipitation data are based on reports from
2466 rain gauge stations (Fig. 1) and have undergone quality
control processes such as climate and gauge outlier processing
and homogenization conducted by the Chinese National
Meteorological Information Center. In this work, these precip-
itation data are interpolated to model grids by the Cressman
interpolationmethod (Cressman, 1959) inwhich the 1°, 2° and
5° latitudes are used successively as scanning radii, and the
initial guess field is set to zero. This interpolation process
may generate some missing values in the regions of low-
density rain gauges over western China. To avoid the effect
of missing data, we only verified the model forecasts at the
corresponding grids that have sufficient valid observation
data.

3. Methodology and experiment design

In this work, the time-lagged ensemble forecast system is
constructed from all forecasts valid for the same time, but
initialized at different lagging times for every 6 h. Thus, for
example, a 3-day ensemble forecast system can render a total
of 13 ensemble members, including the one from the single
forecast. For this study, forecasts within a lead time of 30 days
from each ensemble member are archived.

The Deterministic Ensemble Forecast using a Probabilistic
Threshold (DEFPT) method is established based upon this
time-lagged ensemble system. It is not a probability forecast,
but rather a deterministic categorical forecast of precipitation
intensity at any model grid box. A given precipitation category
is forecasted only when the ensemble probability for the
category to occur at one grid box exceeds a certain threshold.
The DEFPT is defined as:

ADEFPT ¼
1; if

Xn
i¼1

αi ≥ Nthreshold

0; if
Xn
i¼1

αi b Nthreshold

8>>>><
>>>>:

9>>>>=
>>>>;
; ð1Þ

where ADEFPT shows yes/no occurrence of rainfall for a certain
given category such as 1 mm and above per day (hereafter
1+mm) at a model grid box, αi denotes the occurrence (equal
to 1) or nonoccurrence (equal to 0) of the predicted rainfall
event for the ith of total n forecastmembers, andNthreshold is the
threshold number of all members to forecast occurrences of
precipitation for a given category. The value of Nthreshold

depends on the category of precipitation and the performance
of BCC_AGCM model. The optimal probabilistic threshold
(Nthreshold/n) of the DEFPT is chosen based on the condition
that the corresponding ETS and HK scores are relatively higher
than that for the other probabilistic thresholds and that the
corresponding frequency biases (BIA) are not far from 1.0.

The DEFPT may overcome the LAF's disadvantages. The LAF
rainfall at a certain gridbox depends on the rainfall intensity of
each LAF member. It can be expressed as

ALAF ¼ A1 þ A2 þ…þ An

n
; ð2Þ
whereAi is the amount of predicted rainfall for the ith ensemble
member, and n is the number of ensemblemembers. Following
our previous work (Jie et al., 2013), the ALAF is also classified
into different precipitation categories in a verification proce-
dure. Although a six hour time-lagged LAF using the five most
recent members is more effective than the single forecast and
other LAF schemes, it is still easy to forecast inaccurately the
occurrence of low-intensity rainfall. This primarily occurs if

http://www-pcmdi.llnl.gov/projects/amip/AMIP2EXPDSN/BCS/amipbc_dwnld_files/T42/nc/
http://www-pcmdi.llnl.gov/projects/amip/AMIP2EXPDSN/BCS/amipbc_dwnld_files/T42/nc/
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some members with excessive or minor rainfall amounts
appear as the lead time increases (Jie et al., 2013). For example,
if onemember (i=1) from total fivemembers (n=5)predicts
a 15 mm rainfall occurrence (A1 = 15 mm), but the other
members do not predict any rainfall (A2–5 = 0 mm), the final
result (ALAF = 3 mm) will lead to the occurrence of 3+ mm
categorical rainfall at this gridbox. This can lead to errors,
especiallywhen therewas no observed rainfall event. Similarly,
if two members (i = 1, 2) forecast no rainfall event (A1–2 =
0mm)but the othermembers predict rainfall higher than 7mm
(A3–5 = 7.1, 7.8 and 8.1 mm), the ensemble mean (ALAF =
4.6 mm) will belong to the 4+ mm categorical rainfall; this
ensemble mean is not representative of the majority of
members. The DEFPT, however, forecasts the occurrence of a
low-intensity of rainfall event only when the number of
ensemblemembers predicted this occurrence at a given location
exceeds the threshold number Nthreshold, regardless of the
excessive or miniscule rainfall amounts predicted from one
ensemble member.

Due to the importance of summer precipitation prediction
over China (e.g., Ding and Hu, 2003; Fan et al., 2008; Liu and
Fan, 2014), we have conducted a large number of numerical
experiments using BCC_AGCM2.1 at the T42 resolution for this
season. 92 hindcast cases (using the DEFPT method), initiated
respectively at 00 UTC in each day during the 1st June to the
31st August, 1998 are analyzed. The selection of the number of
ensemble members is discussed in Section 4.2. 13 ensemble
time-lagged runs (separated 6 h) in each case are mainly
selected for this work. In the summer of 1998, there are several
typical persistent precipitation events in central China (Ding
and Hu, 2003). In order to test the effectiveness of the DEFPT
method in other years, 27 additional hindcast cases are
investigated, with initial times respectively of 00 UTC for 1
June, 1 July and 1 August in 9 summers of 1996–1997 and
1999–2005. In this work, we also tested the influence of
different horizontal resolutions on the effectiveness of the
DEFPT, and 30 cases resembling to those described above
(i.e., initiated at 00 UTC on the 1st June, the 1st July and the
1st August in the 10 summers of 1996–2005) are conducted
by applying the DEFPT to a higher resolution version of
BCC_AGCM2.2.

In the following section, the discriminating skill and
reliability of each probability bin generated from ensemble
members are evaluated using an attribute diagram (Murphy,
1973) and Relative Operating Characteristic curve (ROC,
Table 1
The averaged precipitation forecast errors correlation matrix of 13 members at lead tim

Number 1 2 3 4 5 6 7

1 1 0.489 0.469 0.477 0.460 0.445 0
2 1 0.497 0.483 0.467 0.459 0
3 1 0.511 0.489 0.479 0
4 1 0.492 0.486 0
5 1 0.511 0
6 1 0
7 1
8
9
10
11
12
13
e.g., Mason, 1982; Harvey et al., 1992; Jolliffe and Stephenson,
2003). The Equitable Threat Score (ETS, e.g., Schaefer, 1990) is
also utilized to evaluate the skill of rainfall event prediction
minus the random forecast skill, the Hanssen and Kuipers score
(HK, e.g., Hanssen and Kuipers, 1965) is used to verify the
accuracy of both events and nonevents, while the frequency
bias (BIA, e.g., Wilks, 1995) is used to evaluate the bias of
rainfall frequency; the rank histograms (RHs) (Hamill and
Colucci, 1998; Hamill, 2001) are used to assess the spread of
ensemble members. The Root-Mean-Square Error (RMSE) is
applied to measure forecast error.

4 . Results

4.1 . The selection of precipitation category

Fig. 2 shows the observed frequencies of daily precipitation
in the summer of 1998 for different categories including
0.2+ mm, 0.5+ mm, 1+ to 10+ mm (separated by 1 mm
intervals), and 20+ mm per day. They are calculated using
daily precipitation data from rain gauge observations and
averaged for the time corresponding to 92 cases at lead times of
6–15 days. The 1+mm, 5+mmand 10+mmper day rainfall
frequency categories (solid line in Fig. 2) from the averaged
grid points across China account for more than 55%, 25% and
10%, respectively. The following analyses will mainly focus on
these categories of 1+ mm to 10+ mm per day.

In Fig. 2, we also see that single forecasts from the
BCC_AGCM2.1 at lead times of 6-15 days underestimate the
frequency of the observed rainfall during the summer of 1998.
It denotes the existence of a dry bias in the BCC_AGCM2.1.

4.2 . The selection of ensemble members

To explore what the longest useful lag timewould be for 6–
15 day forecasts, we calculated the ETS scores for eachmember
forecast (lagging from 1 day up to 10 days) at lead times of 6–
15 days for the various precipitation categories of the summer
of 1998. Fig. 3 indicates that the ETS scores for all these
categories decrease rapidly and then gradually stabilize after
6 days (including 25 members at 6-hour intervals). The
decrease in the ETS score might be caused by the increase of
the real forecast error for earlier members (Dalcher et al.,
1988). The score within the last three day lags (including 13
members) for each precipitation category is generally higher
es of 6–15 days.

8 9 10 11 12 13

.449 0.452 0.440 0.444 0.442 0.448 0.429

.463 0.451 0.438 0.456 0.444 0.445 0.446

.472 0.456 0.450 0.458 0.451 0.452 0.447

.481 0.467 0.461 0.462 0.469 0.456 0.452

.484 0.490 0.470 0.456 0.458 0.457 0.445

.515 0.495 0.474 0.469 0.476 0.456 0.443
0.531 0.501 0.494 0.483 0.463 0.456
1 0.509 0.500 0.492 0.476 0.467

1 0.533 0.503 0.503 0.489
1 0.535 0.513 0.482

1 0.558 0.519
1 0.530

1
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than the corresponding averaged ETS value during 10-lagged
days. In addition, our previous work (Jie et al., 2013) has
demonstrated that the time-lagged members within the last
three days can contain useful information for the 6–15 day
ensemble mean. Thus, 13 ensemble members with 6-hour
intervals within lagging times of three days are mainly used in
this study and 25 members are further tested in Section 4.8.
(a)

(b)

(c)

Fig. 4. The rank histograms (RHs) of time-lagged ensemble members lagged
three days (with 6-hour time-lagged intervals) for the 8th (a), 11th (b) and 14th

(c) day precipitation forecasts using a T42 resolution. The histograms are based
upon the results of 30 cases during 1996 to 2005. The abscissa indicates the
rank of the observation among all ensemble members. The ordinate indicates
the frequency of the total sample for each rank. The black line denotes an
averaged rank. In units of percentages.
Table 1 lists the correlation matrix of forecast errors among
all the 13 members for the 6–15 day forecasts of precipitation
over China. All of these correlations are significant at the 1%
level. It indicates that the 13 members are, to some extent,
(b)

(c)

Fig. 5. The attribute diagrams of the PQPF of (a) 1+ mm, (b) 5+ mm and
(c) 10+mmper day rainfall for 14 probability bins (e.g., 0–1/13, 1/13–2/13, ......
or 12/13–1, etc.) from 92 cases at lead times of 3 days, 6 days and 15 days
during the 1998 summer in China. The colored curves with different marks
respectively denote the results at the different lead times. The short lines
plotted on each curve are the 95%bootstrap CIs. The blue dashed line represents
perfect reliability (i.e., forecasted probability = observed relative frequency).
The “no resolution” line is the climatic frequency of observed rainfall. The red
line is a criterion for yes/no skill of PQPF.
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independent to each other and their correlations of forecast
errors are between 0.429 and 0.558. To further examine the
spread of 13 ensemblememberswithin 3-lagged days, the rank
histograms of the ensemble members are calculated from 30
hindcast cases that are separately initiated at 00 UTC on the 1st
June, the 1st July and the 1st August in the 10 summers (1996–
2005). Fig. 4a shows the rank histogram for the 8th day forecast
and the black dashed line denotes the value of 1 divided by the
number of the total ranks. The 13 ensemblemembers present a
reverse L-shaped RH with sloped distributions of the rank
histograms toward one side. Based on the work of Yuan et al.
(2009), this shape of RH reflects that these ensemble members
have insufficient variability and dry biases in the model. The
frequency in the highest rank almost doubles the perfect rank
histogram (black dashed line), indicating that the intensity of
(a) (b)

(d) (e)

(g) (h)

Fig. 6.The averaged ROC curves of theDEFPT using different probabilistic thresholds for
(left panel) 6 days, (middle panel) 10 days and (right penal) 15 days during the 1998
square indicates the single forecast.
rainfall is under-forecasted by almost all the ensemblemembers.
But, as the lead time increases, the ensemble forecasts for both
the 11th day and 14th day become more disperse and the
corresponding RHs are relatively uniform (Fig. 4b–c), although
the slightly higher frequencies in rank 1 and rank 14 suggest the
ensemble spread is still not large enough. There are four possible
reasons accounting for this slightly insufficient variability of the
time-lagged ensemble system: (i) the time-lagged ensemble
forecast system is only a single-model ensemble system: it does
not account well for the uncertainty of the model processes;
(ii) there is no breeding cycle (as in the NCEP Short-Range
Ensemble Forecast system) and no maximization procedure
cycle (like the singular-vector method used in the ECMWF);
(iii) the description of the initial uncertainties are limited to the
number of ensemblemembers over the past three days (Lu et al.,
(c)

(f)

(i)

(a–c) 1+mm, (d–f) 5+mmand (g–i) 10+mmper day rainfall at lead times o
summer in China. The ROC area is shown on the top-left corner and the black
f
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2007); (iv) there are dry biases in the BCC_AGCM model
simulation of high intensity rainfall events, but wet biases in
that of low-intensity rainfall events and nonevents.

4.3 . The evaluation for all probability forecasts

First, the traditional PQPF based upon the 13 ensemble
members (withΔT=6 h)within 3-lagged days is evaluated by
(a) (

(b) (

(c) (

Fig. 7.Evaluation of LAF-based andDEFPT-based rainfall predictionwith a time-lagged i
day rainfall as a function of forecast length for up to 15days during June, July, and Augus
second and third rows are respectively the same as the first row except for showing th
using an attribute diagram (see details in Appendix 5). We
divided all the forecast probabilities generated from 13 ensem-
ble members into 14 probability bins (mutually exclusive) as 0/
13–1/13, 1/13–2/13, …, 12/13–13/13, and 13/13 (hereafter [0]/
13; [1]/13; [2]/13 etc.) for each precipitation category, and then
we compare the number of rainfall events contained in each
probability bin with the observed counterparts (Murphy and
Winkler, 1987).
d)

e)

f)

nterval of 6 h. The averaged ETS scores for prediction of 1+mmand 5+mmper
t 1998 in China are respectively shown as panels (a) and (d) in the first row. The
e HK (b, e) and BIA scores (c, f).
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Fig. 5 shows the attribute diagram of the 14 forecasted
probability bins (x-axis) and their corresponding observed
relative frequencies (y-axis) for 1+mm, 5+mmand10+mm
per day rainfall from 92 cases at lead times of 3 days, 6 days,
and 15 days during the 1998 summer in China. The 95%
bootstrap Confidence Intervals (CIs) suggested by Efron (1979,
1981) are used to reveal the sampling variability in each
probability bin (short lines plotted on the reliability curves in
Fig. 5). In this bootstrap procedure, the sub-sample in each bin
based on 92 cases was randomly resampled 1000 times. On the
3rd day, as shown in Fig. 5, PQPF is skillful in some probability
bins within [7–13]/13 for the 1+ mm per day rainfall, [4–13]/
13 for the 5+ mm per day rainfall, and [2–13]/13 for the
10+mm per day rainfall. This is evidenced by the correspond-
ing orange lines with filled circles (i.e., reliability curve)
(a) (b)

(d) (e)

(g) (h)

Fig. 8. The (a) ETS, (b) HK and (c) BIA scores (y-axis) for the 8th forecast of precipitatio
rainfall amounts (x-axis in mm). The black solid line shows the evaluation score for
members at 6-hour time-lagged intervals. The colored dots respectively show the evalua
thresholds (e.g., 1/13–13/13 color coded according the legend at the bottom of each pan
for showing the 11th day (d–f) and 14th day (h–i).
belonging to the positive skill area, although part of bins are
relatively unreliable (far away from the perfect reliability 1:1
line) such as [8]/13 and [11]/13 for 5+mm per day and [7]/13
for 10+mmper day. The positive skill area is the regionwhere
the reliability curve is above (below) the no skill line when
the forecasted probability is larger (less) than the climatic
frequency of observed rainfall. But for other probability bins,
the forecasted probability of precipitation is obviously less than
the observed relative frequency and out of the positive skill
area. Overall, the BS (including the reliability, resolution,
uncertainty terms) of the traditional PQPF for 1+mm, 5+mm
and 10+mmper day are 0.235, 0.175 and 0.108 on the 3rd day,
respectively.

Beyond 5 days, these BS values generally increase and
stabilize around 0.26, 0.2, and 0.12 (the higher the BS, the
(c)

(f)

(i)

n as a function of the categories (from 1+mmup to 10+mmper day) of daily
the single forecast, while the black dashed line is the LAF using five ensemble
tion scores for the forecasts using theDEFPTmethodwith different probabilisti
el). The second and third rows are respectively the same as the first row excep
c
t



Fig. 9. The averaged frequency of daily precipitation amounts over China as a
function of threshold from 0.2 mm to 10 mm at lead times of 6–15 days during
the 1998 summer. The solid line is from the observed precipitation, the dashed
black lines are from the single forecast and the ensemble mean, and dots are
from the DEFPT (e.g., 1/13–13/13 coded according the legend at the bottom of
each panel). In units of percentages.
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worse the forecast). But as the lead time increases, some
probability bins (green dashed lines with hollow circles,
representing the 6th day, and purple dashed lines with
triangles, representing the 15th day in Fig. 5) are still located
in the positive skill area when the forecasted probability bins
exceed the “no resolution” line, except the [5–8]/13 bins for the
5+mmper day rainfall, and the [3–6]/13 bins for the 10+mm
per day rainfall. It implies that there is still information
available for precipitation forecasts longer than 5 days using
probabilities.

The 95% bootstrap CIs plotted over the corresponding
reliability curves are much larger for the high probability bins
and also generally increase with lead time. In particular, the CIs
for high probabilities with the 5+ mm and 10+ mm per day
precipitation forecasts are quite large after 5 days. It indicates
that sampling variability is involved in the high probability
bins, although the corresponding reliability curves belong to
the positive skill area in the attribute diagram.

4.4 . Case Study of DEFPT method for the summer of 1998

In the following sections, we mainly discuss the usage of
probabilistic thresholds from 1/13 to 13/13 for a certain
categorical precipitation forecast. Here, the probabilistic thresh-
olds are different from the probability bins. All the probability
bins aremutually exclusive to each other, but each probabilistic
threshold includes all the probability bins larger than a certain
value (i.e., ≥k/13; where k is the number of forecasted
occurrences members at a certain grid box).

Fig. 6a–i shows the ROC curves,which reveal the differences
in discriminating skill between rainfall events and nonevents
for different probabilistic thresholds.We found that the 5/13 to
6/13 thresholds for 1+ mm per day and the 2/13 to 4/13
thresholds for 5+ mm and 10+ mm per day categorical
precipitation have higher hit rates in contrast to the single
forecasts (black square) as well as larger hit-rate/false-alarm-
rate ratios than other thresholds with higher hit rates (e.g., 1/
13). In the following sections, theDEFPTmethod defined by the
different probabilistic thresholds is examined.

Fig. 7a shows the ETS scores of DEFPT using different
ensemble probabilistic threshold values varying from 1/13 to
13/13 to predict the 6–15 day precipitation of 1+mm per day
by category, as well as their comparisons with those from the
LAF and the single forecast. Quantitatively, the ETS score for the
single forecast (solid black line in Fig. 7a) decreases from about
0.3 to 0.15 during the first 5 days, and thereafter gradually
declines to about 0.07 for a lead time beyond 5 days (Fig. 7a). In
comparison, the ETS scores for the DEFPT (solid color lines in
Fig. 7a) using thresholds in 4/13–5/13 are larger than 0.1 and
are enhanced significantly by 0.05 for the forecasts beyond
5 days, and these values are slightly higher than the values
obtained with LAF (dashed black line in Fig. 7a) after 6 days.

This enhancement from using the DEFPT is also supported
by the analysis of HK score that accounts for the forecast
accuracy of rainfall events and nonevents. Fig. 7b shows that
the HK score for single forecast (solid black line) beyond 5 days
is less than 0.2 and continues to decreasewith longer lead time.
In contrast, its counterparts for DEFPT (solid color lines)with 4/
13 to 5/13 thresholds are persistently larger than 0.2 beyond
5 days, and they are also slightly higher than that for the LAF
(dashed black line) as a whole (Fig. 7b).
In Fig. 7a and b, we also note that the DEFPTwith thresholds
less than 20% (e.g., 1/13–2/13) or larger than 50% (e.g., 7/13–
13/13) shows no improvement when compared to the DEFPT
using thresholds in 4/13–5/13 range. It may be caused by the
lack of the sharpness in ensemble system to discriminate
among rainfall events and nonevents as the lead time increases
(as shown in Fig. 6a–c). This is also supported by the evaluation
of BIA scores (Fig. 7c), which presents an overestimation from
the forecasts with low probabilistic thresholds (BIA scores of
1.5–2.0) and an underestimation from those with high
probabilistic thresholds (BIA scores of 0.0–0.5). In addition,
the BIA scores for DEFPT with thresholds of 5/13 or 6/13 are
generally closer to 1.0 than that for the single forecast (a
persistent underestimation with BIA scores of 0.8–0.9) and the
LAF (an overestimation with the scores of 1.1–1.4 beyond
6 days) (Fig. 7c). This further suggests that the disadvantage of
the LAF for the low threshold precipitation can be reduced.
Overall, the 5/13 threshold can be regarded as an optimal
threshold value for the DEFPT to predict 6–15 day 1+mm per
day categorical precipitation in the region of this study.

The prediction of heavier precipitation using the DEFPT
method is also evaluated. Fig. 7d–f shows the ETS, HK and BIA
scores of 5+ mm per day rainfall prediction. Similar to the
1+ mm per day categorical rainfall prediction, the 6–15 day
forecasts' skill for 5+ mm per day categorical rainfall is
enhanced by the DEFPT, especially with 2/13–4/13 ensemble
probabilistic thresholds. The resultant ETS scores are close to
0.1 and are higher than the single forecast and the LAF (Fig. 7d).
The corresponding HK scores with 2/13–4/13 thresholds are
also higher than the single forecast by about 0.1 beyond 5 days,
which indicates that the forecast accuracy for precipitation
events and nonevents can be improved significantly with
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DEFPT using 2/13–4/13 thresholds (Fig. 7e). As for the high
probabilistic thresholds (6/13–13/13), the ETS and HK scores
are not enhanced. In terms of BIA evaluation (Fig. 7f), the result
with 4/13 threshold has relatively smaller bias than thatwith 2/
13 or 3/13 thresholds. As a whole, the 4/13 threshold is a good
selection for the DEFPT to forecast the 5+ mm per day
categorical precipitation over China.

Furthermore, other category precipitation forecasts from
1+mmto 10+mmper day are verified. These evaluations are
plotted in Fig. 8 in terms of ETS, HK, and BIA scores for the 8th,
the 11th and the 14th days as a function of rainfall category.
(a) (b)

(d) (e)

(g) (h)

(j)

Fig. 10.Geographic distribution of the averaged ETS, HK and BIA scores for 1+mmper
for (a, d, g) the single forecast, (b, e, h) the LAFusing five ensemblemembers at 6-hour t
same intervals, and (j) the frequencies of occurrence for 1+ mm per day categorical r
Fig. 8a–b indicates that the DEFPT, for a certain probabilistic
threshold, generally improves the 8th day forecast skill for
all the precipitation categories from 1+ to 10+ mm (in
comparison to the single forecast and the LAF), because the
corresponding ETS andHK scores are often higher than those of
the single forecast and the LAF. It also shows that the optimal
thresholds for the DEFPT method to achieve the best results
slightly decreases as the precipitation category increases
(e.g., 5/13 for 1+ mm; 4/13 for 2+ mm; 3/13 for 5+ mm; 2/
13 for 10+mmper day). The BIA scores for the single forecast,
the LAF, and the DEFPT using the 4/13–5/13 probabilistic
(c)

(f)

(i)

day precipitation forecasts at lead times of 6–15 days from June to August 1998
ime-lagged intervals, (c, f, i) theDEFPTusing a 5/13 probabilistic threshold at the
ainfall. In units of percentages.
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thresholds do not visibly depart from the BIA=1.0. Overall, the
probabilistic thresholds with 5/13 for 1+ mm and 4/13 for
2+mm to 10+mmper day are relatively good choices for the
DEFPT. The evaluations for the predictions on the11th (Fig. 8d–f)
and 14th day (Fig. 8g–i) are similar to those on the 8th day.

In addition, as lead time increases, the number of samples at
some probabilistic thresholds may be few and unrepresenta-
tive, although their evaluation scores may be high. To some
extent, the forecasted rainfall frequency of the DEFPT in
(a)

(b)

(c)

Fig. 11. Same as Fig. 7, but for the ETS (a, d), HK (b, e), and BIA (c, f) for (left panel) the 1
from BCC_AGCM2.1 (T42 resolution) for 30 cases during 1996 to 2005.
summer for different categories can reflect the number of
samples within the 1/13–13/13 probabilistic thresholds. Fig. 9
shows the averaged frequency of daily precipitation amounts
as a function of threshold from 0.2 mm to 10 mm per day at
lead times of 6–15 days over China. The observed rainfall
frequency (solid line) decreases from 70% to 10% as the
threshold increases and the single forecast frequency is
underestimated. Using the optimal probabilistic thresholds
(e.g., 5/13 for 1+mm, 4/13 for 5+mm–10+mm), the DEFPT
(d)

(e)

(f)

+mmand (right panel) the 5+mmper day categorical precipitation forecasts
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and the LAF are generally closer to the observed frequency than
the single forecast. However, the occurrence frequencies of the
DEFPT with higher probabilistic thresholds are always lower
than 10% and even close to 0 when the category is larger than
5 mm. It indicates that there may be sampling variability
involved in these high probabilistic threshold samples.

We further assessed the geographical performance in ETS,
HK and BIA scores for 1+ mm per day precipitation forecast
using theDEFPTmethodwith a 5/13 optimal threshold. The hit,
miss, false alarm, and correct no-rain forecasts which comprise
these evaluation scores for any 6–15 day lead time (ith day) are
calculated for each model grid box over China, which is
accomplished by comparing the 92 hindcasts at the ith day
lead time with observations from the summer of 1998. In
comparison to the single forecast, Fig. 10a–c shows that the
areas that have improved the ETS scores from the DEFPT and
LAF for the 1+ mm per day categorical precipitation are
located in most parts of southern and northeastern China as
well as the eastern part of the Tibetan Plateau. The DEFPT
method is substantially better than the LAF in the semi-arid
regions over northern China as the corresponding ETS score
increases by 0.025–0.05. The above results are also supported
by the spatial distribution of HK scores (Fig. 10d–f). For the
frequency biases (Fig. 10g–i), the single forecast under-
forecasts the 1+mmper day rainfall in the most rainy regions
of China (|1-BIA|b0.5). The LAF can reduce these biases in the
most regions where the frequencies of observed rainfall days
are larger than 40%–50% except central to northern China, as
the values of |1-BIA| are in the range of 0–0.25 (Fig. 10h and j).
However, the DEFPT method can further partly reduce the LAF
overestimation in central to northern China, as we expected.
(a) (b)

(d) (e)

Fig. 12. Geographic distribution of the differences of ETS scores at lead times of (a–b)
DEFPT (5/13 probabilistic threshold) and the LAF. 30 cases in 10 summers (1996–2005)
used; and (c, f) the corresponding frequencies of occurrence for 1+ mm per day categ
Overall, the regions of significant improvement from the DEFPT
are mainly located in the areas where the frequencies of
observed 1+ mm per day rainfall days are above 40%–50%
when compared to both the single forecast and the LAF.

4.5 . Verification of DEFPT method for 10 summers

To evaluate the performance of the DEFPT for different
precipitation processes that are likely to occur in China, we
applied the DEFPTwith different probabilistic thresholds to the
1+ mm (5+ mm) per day precipitation in the summers of
1996–2005. Fig. 11a–c shows the averaged ETS, HK and BIA
scores for 30 cases from the first day of every month from June
to August in 10 years. Similar to the results of the 1998
summer, the ETS and HK scores for the 6–15 day 1+ mm per
day rainfall are greatly increased by the DEFPT (solid color
lines) using 4/13–6/13 probabilistic thresholds as compared to
the single forecast (solid black line) and the LAF (dashed line).
This indicates that the prediction skills of rainfall and no rainfall
events can be enhanced by the DEFPT. The BIA values
(indicating frequency biases) for the DEFPT with the 5/13–6/
13 probabilistic thresholds are also closer to 1.0 than that for
the LAF. The above result is similar to what is shown in thewet
summer of 1998 (Fig. 7a–b). In addition, as compared to the
LAF, we also note that the improvement from the DEFPT for the
1996–2005 summers seems to bemore significant than that for
the extreme year of the 1998 summer. It is mainly caused by
the LAF's relatively poor skill for the normal year (Jie et al.,
2013). For the 5+ mm per day rainfall prediction, the
significant improvements are still obtained when 4/13 thresh-
old is applied to the DEFPT (Fig. 11d–f).
(c)

(f)

8 and (d–e) 14 day for 1+ mm per day categorical precipitation between the
fromBCC_AGCM2.1 (T42 resolution) and BCC_AGCM2.2 (T106 resolution)were
orical rainfall. In units of percentages.
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Fig. 12a shows the geographical distribution of differences in
ETS scores for 1+mmper day categorical rainfall between the
DEFPTwith a 5/13 threshold and the LAF for the 30 cases during
10 years. It shows that improvements using the DEFPTmethod
on the 8th day predicted rainfall are located in the rainiest
places and part of the arid and semi-arid regions over China
(Fig. 12c). In these locations, the corresponding ETS scores are
generally about 0.05–0.1 higher than the counterparts of the
LAF. On the 14th day, the DEFPT also improves generally the
forecast of 1+ mm per day categorical rainfall as compared to
(a) (

(b) (

(c) (

Fig. 13. Same as Fig. 11, but for the forecasts
the LAF, although there are some negative skill regions in part
of northern and western China. The corresponding ETS scores
increase by about 0.025–0.075 (Fig. 12d and f). The distribution
of false alarm difference (not shown) between the DEFPT and
the LAF can further explain why the DEFPT is better than the
LAF in these areas. It shows that, geographically, the ETS values
are always positive if the corresponding false alarm rates of
DEFPT are lower than the LAF. This also supports our claims
that the DEFPT can decrease the over-forecast errors from the
LAF for the low categorical precipitation.
b)

e)

f)

from BCC_AGCM2.2 (T106 resolution).



Fig. 14. The RMSE of the 1 mm–10 mm categorical precipitation (i.e., 1+ mm,
2+mm,……, 10+ mm) forecasts from the single forecast, the DEFPT and the
LAF as a function of forecast length for up to 15 days for 30 cases in 10 summers
(1996–2005) from BCC_AGCM2.2 (T106 resolution).
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4.6 . Tests for a higher horizontal resolution

The above evaluations of theDEFPT are all conducted from a
large number of hindcasts using the BCC_AGCM2.1 with T42
horizontal resolution. To further evaluate the DEFPT, we
applied this method to the higher resolution version (T106)
of BCC_AGCM2.2 for 10 summers to study the influence of
horizontal model resolutions on the DEFPT's ensemble results
of. As shown in Fig. 13a–c, when compared to the single
forecast, the DEFPT at the T106 resolution with 5/13–6/13
thresholds can dramatically enhance the skill of 6–15 day
rainfall event and no event forecasts, as the corresponding ETS
and HK scores separately reach above 0.15 and 0.25 and are
obviously higher than the scores from the single forecast
(Fig. 13a–b). The frequency biases of theDEFPTwith 5/13–6/13
thresholds (Fig. 13c) are much closer to 1.0 than with other
thresholds. For a heavier rainfall prediction in the 5+ mm per
day category (Fig. 13d–f), the results of the DEFPT at the T106
resolution are basically consistent with those at the T42
resolution, and the optimal probabilistic threshold for DEFPT
is still 4/13.

We also show the spatial distribution of ETS score
differences for the T106 resolution in Fig. 12. Similar to model
results at the T42 resolution, the geographical distribution of
ETS score differences for the DEFPT's 1+ mm per day rainfall
also shows significant improvements (in contrast to the LAF)
for both the 8th day and 14th day forecasts in most parts of
China, except for themiddle and lower reaches of YangtzeRiver
or parts of northern China (Fig. 12b and e). Compared with the
LAF, the DEFPT shows no improvement regions where the
DEFPT has higher false alarms rate (e.g., the northeastern
China; not shown).

Overall, the optimal thresholds for DEFPT to predict the
1+mmand 5+mmper day rainfall do not appear sensitive to
the model horizontal resolutions (T42 and T106).

4.7 . The RMSE of DEFPT

Finally, we used the RMSE to measure the forecast error
from the DEFPT method with optimal probabilistic thresholds.
Fig. 13 shows the RMSE of the 1 mm–10 mm per day
categorical precipitation predicted from the single forecast,
the DEFPT, and the LAF as a function of forecast length for up to
15 days. This test is based on the 30 cases in 10 summers
(1996–2005) at the T106 resolution. In the DEFPT, this forecast
is a combination of the 1+mmper day precipitation predicted
using 5/13 probabilistic threshold and the 2+ mm–10+ mm
per day using 4/13 probabilistic threshold. During 6–15 day
forecasts, the forecast error of the DEFPT is generally smaller
than the single forecast (LAF) error as the RMSE value of single
forecast decreases by about 0.25 (0.15) mm per day in Fig. 14.

4.8 . The influence of size of ensemble on optimal probabilistic
thresholds

We explored the impact of ensemble size on the DEFPT's
skill. Fig. 15 shows the ETS, HK and BIA scores of the DEFPT
using the 25 members with a 6 hour interval for 6–15 day
forecasts during the 1998 summer as a function of rainfall
categories (from 1+ mm to 10+ mm per day). Here, 25
members are obtained by extending the lagging time from 3 to
6 days because the ETS scores of all precipitation categories for
each ensemblemember stabilized after about 6 days (Fig. 3). As
shown in Fig. 15, the optimal thresholds for the DEFPT method
to get the best forecast results for the 8, 11, and 14 day forecasts
also decrease as precipitation category increases, such as 9/25
for 1+ mm, 8/25 for 2+ mm, 7/25 for 5+ mm, and 6/25 for
10+ mm. Overall, for the 1+ mm to 5+ mm per day rainfall,
optimal probabilistic thresholds show little change as the
maximum lagging time is changed from 3 to 6 days (i.e.,4/13–
5/13 or 31%–38% vs. 7/25–9/25 or 28%–36%), and the DEFPT
with these optimal probabilistic thresholds is generally better
than the LAF.

5 . Summary and discussion

This paper studies ensemble forecast methods for 6–15 day
daily summer precipitation over China using the BCC_AGCM
model. On the basis of the observations of rainfall occurrence,
the discussion for categories of 1+ mm to 10+ mm per day
rainfall forecasts in this work is meaningful. Although the
traditional ensemble mean and probability ensemble forecast
methods have their limitations for the 6–15 day precipitation
prediction, the DEFPT method based upon 13 6-hour time-
lagged ensemble members by using optimal probabilistic
thresholds shows significant improvement for predicting
precipitation and provides a deterministic (yes/no) forecast
from ensemble probability forecasts.

Our analysis via the evaluations of the ETS, HK, BIA scores
and ROC curves for a large number of hindcast experiments of
1996–2005 summers shows that the DEFPT method, when
compared to a single forecast and the LAFmethod, can enhance
rainfall forecast skill for the 1+ mm and 5+ mm per day
categories if the probabilistic threshold for 13 ensemble
members is set in the range of 5/13 and 4/13, respectively.
These evaluations also support the improvements by theDEFPT
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Fig. 15. Same as Fig. 8, but for the DEFPT using 25 time-lagged ensemble members.
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for other categories of precipitation between 1+ mm and
10+ mm per day. The forecasts with optimal probabilistic
thresholds not only dramatically enhance the single forecast
skill of rainy areas over China where the frequencies of rainfall
days are higher, but also improve the LAF ensemble in the
semi-arid drought regions over China. The RMSE further
demonstrates that the forecast errors can be smaller than the
single forecast and the LAF. The influence of larger ensemble
sizes on the selection of optimal DEFPT thresholds appears to
be small.

The comparison of the DEFPT for precipitation hindcasts
of the 1996–2005 summers using two different horizontal
resolutions (T42 and T106) with BCC_AGCM further indicates
the effectiveness of the DEFPT for 6–15 day categorical
precipitation forecasts. The optimal probabilistic thresholds of
the DEFPT are not sensitive to the model horizontal resolution.

Presently, the physical interpretation of the effectiveness of
the DEFPT ensemble method is not completely clear. Despite
this, it can reduce the initial uncertainty in long-to-medium
range forecasts, because (i) the DEFPT method constitutes a
simple form of post-processing in that the flexible choice of the
threshold in Eq. (1) permits different adjustments for different
precipitation categories; (ii) the DEFPT uses the proper forecast-
ed probabilities to produce a precipitation forecast whose
occurrence frequency can be closer to the observation; (iii) this
ensemblemethod does not depend on the intensity of excessive
precipitation predicted from only few members, so it is more
reliable than the ensemble mean method; (iv) the precipitation
events cannot be fully captured by a single forecast, but they
might still be predicted by some DEFPT ensemble members.

This study has shown that the selection of the probabilistic
threshold for different categories of precipitation is empirical
in nature and is expected to depend on uncertainties, error
characteristics of current climate models, and ensemble
processes. The results of this study are limited to the ensemble
techniques for medium range forecasts of the summer rainfall
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in eastern Asia. Additional analyses are needed to verify the
usefulness of the DEFPTmethod in other parts of the world and
other seasons in future. Moreover, the optimal probabilistic
thresholds of the DEFPT method selected for the different
regions over China could possibly be different, so it is worth
studying further. In addition, if under the constraint of practical
limitation, models can only run once or twice per day (instead
of four times per day), so the DEFPT using the selection of the
time-lagged intervals (24 h or 12 h) also needs to be verified.
We can possibly develop this method for other ensemble
systems in future work.

Finally, better surface observation data are needed to
characterize the effects of observation uncertainty (Yuan
et al., 2005) in our evaluation of the DEFPT. For example,
the improvement from the DEFPT over western China
(longitude ≤ 90°E), where rain gauges are relatively very
rare, is notmore remarkable than in other regions of China. The
corresponding ETS and HK values are lower and frequency
biases are larger (not shown). It possibly relates to the low
density of rain gauges. Thus, the results in these regions should
be verified using other high-resolution observation data.
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Appendix A

The BIA, ETS, and HK scores are based on a categorical
dichotomous statement (e.g., a yes–no statement). It is then
possible, with a given set of matched rain forecasts and
observations, to build a 2 × 2 contingency table (Table 2).
Each event in this table is identified when a forecast or the
observed precipitation is below or above a precipitation
category. For a certain precipitation category, the combination
of four possibilities of hits, false alarms, misses, and correct
no-rain forecasts (a, b, c and d as shown in Table 2) between
observations and forecasts define the contingency table.
Table 2
Contingency table of possible events for a selected threshold.

Rain observed

Yes No

Rain forecast Yes a b
No c d
(1) The BIA score denotes underestimation (overestima-
tion) of rainfall frequency with the value lower (higher)
than 1.0, and it is defined as

BIA ¼ aþ b
aþ c

: ð3Þ

(2) The ETS score is used to verify the skill of predicted
rainfall events minus the random forecast skill. An ETS
equal to 1 indicates a perfect forecast, while an ETS close
to 0 or negative indicates poor rain forecasting skill. The
ETS is calculated as

ETS ¼
a−ar

aþ bþ c−ar
; ð4Þ

where ar is a factor of the model hits expected from a
random forecast:

ar ¼
aþ bð Þ aþ cð Þ
aþ bþ cþ d

: ð5Þ

(3) The HK score is a measure of the accuracy both for
events and nonevents. A perfect forecast has anHK score
equal to 1.0. This score is computed as:

Hk ¼
ad−bc

aþ cð Þ bþ dð Þ : ð6Þ

(4) The rank histograms (RHs) (Hamill and Colucci, 1998;
Hamill, 2001) are generated by computing the rank of
observed precipitation relative to values from an
ensemble sorted from lowest to highest for each grid
box. A U-shaped rank indicates lack of variability in the
ensemble, but a uniform rank shows the ensemble is
dispersed as the observation ranks equally among the
ensemble members. In addition, wet biases (over
forecast) in ensemble forecasts can lead to an L-shaped
RH, while dry biases (under forecast) often cause
observations to rank highest with a reversed L shape
(Yuan et al., 2009).

(5) The attribute diagram is usually used to reveal the
properties of PQPF which can be described by three
terms (reliability, resolution, and uncertainty of the
forecasts) from the Brier score (BS, Murphy, 1973;
Murphy and Winkler, 1987). The lower the BS, the
better the forecast. Its formulation is:

BS ¼
1
N

XK
k¼1

Nk f k−okð Þ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

− 1
N

XK
k¼1

Nk ok−oð Þ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2

þ o 1−oð Þ|fflfflfflffl{zfflfflfflffl}
3

:

ð7Þ

where K is the number of forecasted probability bins
(are mutually exclusive) for a certain category of
precipitation, the kth bin sub-sample contains Nk events

(i.e., ∑
K

k¼1
Nk ¼ N), fk (0 ≤ fk ≤ 1) denotes the forecasted

probability in the kth bin, ok is the relative frequency of
observed rainfall occurrence in the kth bin, ō is the mean

of all the frequencies (i.e., o ¼ 1
N∑

K

k¼1
Nkok). The first term

is the averaged squared difference between the fk and
the ok . It indicates that the PQPF is reliable, when it is
close to 0 (i.e., f k ≈ ok). The second term is the mean of
squared difference between the ok and ō. It is a measure
of the resolution degree of the observed relative
frequency in each probability bin and the mean of all
these frequencies. The larger second term indicates
better resolution. Overall, if the second term is larger
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than the first one (i.e., ok−oð Þ2≥ f k−okð Þ2 ), the Brier
skill score will be positive. It suggests that the PQPF is
skillful as compared to the forecast using climatic
frequency of observation (see details in Hsu and
Murphy, 1986). Thus, the ok ¼ f k þ oð Þ=2 can produce
a no forecast skill line in attribute diagram and when
this line is below (above) the no resolution line, the
positive skill is provided when the reliability curve is
also below (above) the no skill line. In addition, thework
of Hamill and Juras (2006) indicated that the variations
of climatological event frequency may partly affect the
evaluation of attribute diagram.

(6) The Relative Operating Characteristic (ROC) curve is
used to verify the discriminating ability of the ensemble
probability forecast (e.g., Mason, 1982; Harvey et al.,
1992; Jolliffe and Stephenson, 2003). Its ordinate
indicates the hits rate (a/(a + c)) and the abscissa is
the false alarm rate (b/(b + d)), where a, b, c and d are
the same as Eq. (3). Therefore, a better discriminating
probability forecast can produce a skewed curve in the
upper-left corner of the diagram. The area under the
ROC curve is the perfect value of 1.0 and no skill value of
0.5. Generally, the discriminatory skill of probability
forecast is useful when the ROC area exceeds 0.7 (Buizza
et al., 1999; Bright et al., 2004).

(7) The Root-Mean-Square Error (RMSE) is applied to
measure the forecast error. The formulation is:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Xi−Yið Þ
2

vuut ð8Þ

where Xi is forecast value, Yi is observed value for the ith

element, and N denotes total number of elements.
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