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Is wind direction an adequate marker of air mass history? This review looks at the evolution of
methods for assessing the effect of the origin and pathway of air masses on composition
change and trends. The composition of air masses and how they evolve and the changing con-
tribution of sources and receptors are key elements in atmospheric science. Source–receptor
relationships of atmospheric composition can be investigated with back trajectory techniques,
tracing forward from a defined geographical origin to arrive at measurement sites where the
composition may have altered during transport.
The distinction between the use of wind sector analysis, trajectory models and dispersionmodels
to interpret composition measurements is explained and the advantages and disadvantages of
each are illustrated with examples. Historical uses of wind roses, back trajectories and dispersion
models are explained aswell as themethods for grouping and clustering air masses. The interface
of these methods to the corresponding chemistry measured at the receptor sites is explored. The
review does not detail the meteorological derivation of trajectories or the complexity of the
models but focus on their application and the statistical analyses used to compare them with in
situ composition measurements. A newly developed methodology for analysing atmospheric
observatory composition data according to air mass pathways calculated with the NAME disper-
sion model is given as a detailed case study. The steps in this methodology are explained with
relevance to the Weybourne Atmospheric Observatory in the UK.
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1. Introduction

At a rudimentary level, clean, polluted, background and in-
dustrially influenced are all terms used to describe the composi-
tion of an airmass. These are clearly subjective in this context but
in some way reflect an assessment of the air mass composition
and its history. There has been a historical push in particular to
classify airmasses that are representative of direct anthropogen-
ic influences nearby. In particular, this has been driven by a need
to quantify the impact of the perturbation of continuing anthro-
pogenic emissions on the overall state of the atmosphere.

Primary pollutants can originate from anthropogenic source
regions (cities, industry, roads etc.) or stochastic events (biomass
burning, volcanoes). Source–receptor relationships investigate
composition over a receptor region produced by emission
changes within a source region (Fiore et al., 2009; HTAP, 2007).
Source–receptor relationships of atmospheric composition have
been extensively investigated to look at the relationships be-
tween emission, transport and in situ measurements and
reveal the influences that pollutant emissions have not only on
the local area but also on regions far from the source. Trends in
meteorological variability can explain composition trends at
some sites as well as the influence of transport pathways. In
this review,methods for following source–receptor relationships
on regional and global scales by using in situmeasured composi-
tion data are explored.

The chemical and physical composition of an air mass
is inherently related to its path through the atmosphere and
in order to get the maximum information out of long term
time series of compositionmeasurements, data are often divided
according to air mass history. Atmospheric composition mea-
surements have been interpreted using wind speed and direc-
tion measurements as a marker of air mass history for many
years but current science requires better attribution than that
available from using wind direction.

Atmospheric flow can be viewed in two possible fields of
reference: Eulerian or Lagrangian. Eulerian modelling uses a
fixed reference system (latitude/longitude and elevation)
whilst Lagrangian models use a reference system, which
follows the average atmospheric motion. Trajectory models
use a set of meteorological fields from within the domain of
influence and dispersion models are one step on from trajec-
tory models, in that the complexity of turbulence is included.
A further complexity to transport-only or tracer models comes
with the addition of emissions and chemistry of the atmo-
spheric species making these Chemistry Transport Models
(CTMs).

Using back trajectories it becomes possible to examine
source–receptor relationships and the timescales of long-
range and local transport and its effect on the observed com-
position. In short-range transport, the airflow pathway is
more influenced by emission source areas than in long-
range transport, where various exchange and mixing pro-
cesses (e.g. deposition and advection), physical losses and
chemistry have more influence on the composition at the re-
ceptor location. The frequency and type of short-term pollu-
tion events can be tracked back to their source and seasonal
and long term trends can be studied and compared to season-
al and long term air mass transport patterns. For example,
Moody et al. (1989) carried out an analysis of atmospheric
transport recognition techniques and found that as much as
30% of chemical variability in the troposphere can be related
to transport. Therefore, segregating chemical time series into
periods receiving different air masses is important. Early
work by Draxler and Taylor (1982) explained long-range
transport of pollutants by running trajectory models from a
series of vertical layers as fractions of the boundary layer
and investigated the effect of wind shear on pollutants repre-
sented by instantaneous puffs of particles and showed how
wind shear must be incorporated into models to explain the
dispersion.

Long term measurement stations at specific locations
around the globe provide a vast amount of data on the chem-
ical composition specific to their location. There are hundreds
of permanent long term stations that form part of various na-
tional (e.g. AURN in UK, PAES in France, EPA's network in the
US) or international (e.g. WMO's GAW (Global Atmospheric
Watch), and the European AirBase and EMEP) networks as
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discussed in Laj et al. (2009). Measurement stations are gen-
erally denoted as urban, rural or marine as they are strategi-
cally positioned to sample representative segments of air
masses, with the closest known pollution source (i.e. roads,
industry, cities) or biogenic and natural emissions (e.g.
oceans, forests and peat bogs). Background or “baseline” sta-
tions are located in geographical locations where they sample
and detect any long term trends in the background atmo-
sphere and determine the extent and effect of long range
transport bringing pollution to the site. Much of the analysis
of ground based composition data is accompanied by studies
of what is known as “climatological pathways” with the aim
of mapping the probability of hypothetical air masses reach-
ing the station and identifying the emission sources and in-
fluences on the site.

Seasonal variations in composition at each station reflect
changing meteorological patterns, temperatures, emission
patterns, chemistry and physical loss processes within a
year. Investigating long term trends (inter-annual or seasonal
between years) is now possible, with many stations having
continuous measurements for over 30 years. Intra-seasonal
and short term changes in composition are very specific to
the location of the station and can often be explained by trac-
ing back the air mass history during these events. Short-term
measurement campaigns from aircrafts provide a vital pic-
ture of the three dimensional composition of the atmosphere
and have been described as mobile in situ measurement plat-
forms. Tropospheric–stratospheric exchange processes and
advection, boundary layer height, convection, temperature
and humidity and their relation to tropospheric composition
have been investigated in these experiments. The airborne
campaigns are often planned with the idea of investigating
specific pollution plumes and use prediction tools (often
run using trajectory models) to enable flights to traverse par-
ticular air masses and follow composition changes within a
plume's evolution (Blake et al., 1993). Aircraft campaigns
provide a spatial scale and a representativeness to an area
as opposed to a fixed point for ground based platforms but
by their very nature they are temporally limited. To some ex-
tent this can be expanded by long term networks of aircraft
measurements e.g. MOZAIC (Cammas et al., 2009), CARIBIC
(Brenninkmeijer et al., 2007) and the HIPPO (HIAPER Pole-
to-Pole Observations) Carbon Cycle and Greenhouse Gases
Study (http://hippo.ucar.edu/).

Methods to attribute composition changes according to
trajectory or dispersion models that do not include emissions
are not subject to the errors and assumptions that would
propagate from the emission inventories and can result in bi-
ased source attribution results. Chemistry Transport Models
have many more assumptions in them, so even though both
the inventories and the chemistry schemes within the
models have been vastly improved, there is still an important
role for using trajectories or dispersion models to interpret
measurements.

This reviewoverviewsprevious studies inwhich atmospheric
composition measurements have been analysed with respect to
air mass history. It explains the techniques used and looks at
the classification of the variousmethods. A step by step explana-
tion of a new technique that classifies the regional influences of a
site is described (for theWeybourneAtmosphericObservatory in
Norfolk, UK) as a detailed exemplar of the review topic.
2. Outline of methodologies used to assess air mass history
and its influence on observed composition

2.1. In situ wind direction as a proxy for air mass history

Meteorological parameters have been used to derive sta-
tistically distinct meteorological regimes as a primary tech-
nique. In situ wind direction measurements at a given point
have been extensively used to trace the direction of air arriv-
ing at a given site but this clearly does not take into account
the synoptic scale of the flow field. Wind roses have been
used to show the distribution of wind influences at a particu-
lar station and divide the composition data into the corre-
sponding wind sectors. Trace gas data at Mace Head in
Ireland from measurements in 1996 and 1997 were separated
into five wind directions in order to isolate “clean” (Atlantic)
and polluted (European) air masses as shown in Fig. 1a
(Salisbury et al., 2002). The wind rose method often tracks
local wind influences (the last 2 or 3 h before reaching the
station), but in the longer term it can often be misleading.
For example, local coastal sea-breeze effects can be differ-
ent to the general circulation and the synoptic scale wind-
field.

Radar wind profilers for surface winds and radiosonde
data for vertical profiles were used in the MILAGRO campaign
in Mexico City (de Foy et al., 2008) to give an extensive pic-
ture of the meteorological periods of the campaign and clus-
ter analysis of the wind data was used to assign hourly air
mass clusters for the whole campaign (Fig. 1b) which were
linked to composition measurement time series. During a
study at La Réunion island, Bhugwant et al. (2001) used a
sectorised wind analysis (shown in Fig. 1c) to confirm re-
gional contamination of combustion by-products (and higher
black carbon levels) during particular seasons of the year in
the marine boundary layer on the island and confirmed this
by comparing with the 5 day back trajectories for these pe-
riods. The influence of the meteorological component on
the observed ozone and NO2 trends was studied at an urban
site in the Athens basin (Varotsos et al., 2003). Seasonal
wind-roses, derived from both trajectory and meteorological
data showed the air-transport effect on the air pollution of
the Athens basin and cross correlations between surface
ozone and the frequency of the air transport during different
seasons were calculated. Burley and Bytnerowicz (2011)
used monthly wind roses to study the ozone levels in the Cal-
ifornian White Mountains and then compared this with back
trajectory directions to isolate the origin air during high or
low ozone periods.

Many wind rose studies measure wind direction in either
16 direction sectors (22.5° each) (Fig. 2) or 36 sectors (10°
each) (Fig. 1c). Droppo and Napier (2008) describe an
algorithm to interconvert and standardise analysis using
various meteorological datasets with different directional
sectors. Daily averaged wind roses of SO2 and Particulate
Matter (PM) at an industrial harbour computed using a
Power-Ridge Pollutant (PRP) rose computational scheme
(using ordinary least squares regression, outlier handling
and weighted averages) (Fig. 1d) were compared to half-
hourly wind roses of these pollutants and showed that
using daily averaged PRP values was as effective as using
half-hourly wind roses (Cosemans et al., 2008).

http://hippo.ucar.edu/
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Fig. 1. Visualisation of wind data and separation into wind sectors: a) Mace Head wind sector divisions used for a range of trace gas measurements in 1996 and
1997. b) Meteorological episodes derived from surfacewindmeasurements arranged as a timeseriesmeteorological flags during theMILAGRO campaign inMexico City.
c)Wind roses of Black Carbon levels fromvariousdirections for amonth at La Reunion Island. d)High-resolution pollutant roses (known as Power-Ridge Pollutant (PRP)
roses) for SO2 arriving at the Antwerp harbour area. e) The use of wind barbs representing the wind direction and speed used to show one of the 16 meteorological
regime clusters for studying ozone exceedances in Houston, Texas.
a): Taken from Salisbury et al. (2002). b): Taken fromde Foy et al. (2008). c): Taken fromBhugwant et al. (2001). d): Taken fromCosemans et al. (2008). e): Taken from
Darby (2005)© American Meteorological Society. Reprinted with permission.
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Fig. 2. Wind roses of the 75th percentile PM10 levels from biogenic and fuel evaporation sources (out of a total of 8 different sources separated by positive Matrix
Factorisation (PMF) analysis) at Houston, Texas.
Taken from Leuchner and Rappengluck (2010).
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Many statistical techniques have been used with wind
speed and direction, humidity, temperature, pressure and
cloud cover parameters to classify distinct meteorological re-
gimes and periods. Crutcher et al. (1986) pioneered the use
of cluster analysis to better elucidate the dependence of air
quality on meteorology. Other studies include cluster analysis
of ozone in St Louis, Missouri (Altshuller, 1986), Birmingham,
Alabama (Eder et al., 1994), Houston, Texas (Davis et al.,
1998) and ozone exceedances at Houston, Texas (Darby,
2005). The Darby (2005) example is shown in Fig. 1e,
where wind barbs are used to represent wind speed and di-
rection to show the wind direction in one air mass type sep-
arated by cluster analysis.

Neural networks have been used to remove themeteorolog-
ical variability from datasets to discern temporal and spatial
trends in response to changing precursor emissions. Turias et
al. (2006) introduced a neural network approach to classify sur-
face winds that could be used to improve air pollution forecasts.
Long term ozone measurements and a suite of meteorological
measurements have been analysed with neural networks
(Gardner and Dorling, 2001; Gardner and Dorling, 1999, 2000)
as well as NOx and PM (Kukkonen et al., 2003). The use of arti-
ficial neural networks in interpreting air quality data is discussed
in a comprehensive review by Gardner and Dorling (1998).

Beaver and Palazoglu (2006) have used Principal Compo-
nent Analysis (PCA) to cluster ozone measurements in San
Francisco with wind measurements. PCA and Positive Matrix
Factorization (PMF) (see Section 4.1.4 for similar technique
with back trajectories) were used to interpret the elemental
composition and sources of aerosols arriving at Dunkirk,
France (Alleman et al., 2010), associating each sample with
distinctive emission sources. Hart et al. (2006) have analysed
ozone exceedance events over 10 years in Sydney, Australia
by using a suite of meteorological measurements combined
with PCA and cluster analysis to classify days into low and
high ozone days. Oanh et al. (2005) have looked at SO2 levels
in the Mae Moh valley in the northern Thailand with PCA
clustering of synoptic meteorological conditions.

The Conditional Probability Function (CPF) that represents
the probability of an air mass arriving at a receptor site has
been used on wind data in many studies (see Section 4.1.2 for
its applications in trajectory residence time analysis). Wind di-
rection and speed were used for sites measuring Black Carbon
(BC) in New York state (Venkatachari et al., 2006) in order to
identify likely locations of local point sources of BC, with CPF
plots showing fromwhich directions around the sites the high-
est 25% BC levels occur. Extensive wind rose analyses deriving
CPF of the concentration of the species of interest from various
directions around the measurement station have been carried
out: e.g. to attribute PM levels to wind sectors at three sites in
Ontario, Canada (Chan and Mozurkewich, 2007), to study
sources of PM, O3, NO, NO2, CO and SO2 arriving at Erfurt,
Germany (Yue et al., 2008), to study VOC levels in Beijing
(Song et al., 2008), to study PM2.5, SO2, CO, and O3 in Rochester,
NY, USA (Kasumba et al., 2009), to analyse PM10 levels arriving
in Daejeon City, China (Lim et al., 2010) and to analyse
VOC levels in Houston during the TexAQS-II campaign
(Leuchner and Rappengluck, 2010) (as shown in Fig. 2
with wind roses for two of the source types derived from
PMF analysis).

The general weakness of using pollution roses is that one
cannot assume that the wind direction measured at a point is
consistent with the synoptic scale flow. The turbulent and
synoptic nature of wind always leads to changes in the
wind direction over a region and this is not shown from
local or point wind direction measurements.

2.1.1. Meteorological data as synoptic weather patterns to classify
composition

The classical large scale weather classification widely
used in Europe is the Grosswetterlagen system, originally con-
ceived by Baur et al. (1944), recently updated by Gerstengabe
et al. (1999) and since maintained by the German Weather
Service (DWD). The 29 Hess and Brezowsky Grosswetterla-
gen (HB-GWL) regimes can be viewed as readily identifiable
large-scale circulation patterns involving the whole of
Europe and the North-East Atlantic, with their primary
focus on central Europe. Spichtinger et al. (1996) divided
3 years of ozone, NO and meteorological measurements in
Munich into 3 GWL. Linear multiple regression analysis was



Table 1
Overview of studies dealing with using back trajectories or dispersion models to segregate composition measurements.

Reference Location Species measured Trajectory or dispersion model Cluster analysis methods Residence time analysis Chemistry modelling

Aalto et al. (2002) Pallas, Finland CO2, O3, SO2, aerosols TRADOS trajectory CF
Abdalmogith and Harrison
(2005)

Belfast and Harwell, UK PM10 HYSPLIT trajectory k-means

Amodio et al. (2008) Bari, Italy PM Trajectory
Apadula et al. (2003) Plateau Rosa, Monte Cimone and

Zugspitze
CO2 TRAIET trajectory CF

Ashbaugh et al. (1985) Grand Canyon NP, USA PM Trajectory CF, PSCF
Baker (2010) Birmingham, Harwell, UK O3, NOx, PM, CO, SO2, benzene HYSPLIT trajectory k-means
Begum et al. (2005) Philadelphia, US PM HYSPLIT trajectory PSCF
Biegalski and Hopke
(2004)

Burnt Island, Canada As, In, Sb, Se, Sn, Zn AES trajectory PSCF

Borge et al. (2007) Athens, Madrid and Birmingham PM HYSPLIT trajectory k-means (2-stage)
Brankov et al. (1998) 3 stations in north east USA O3, PM HYSPLIT trajectory k-means
Burley and Ray (2007) Yosemite NP, USA O3 HYSPLIT trajectory PSCF
Burley and Bytnerowicz
(2011)

White mountains, California, US O3 HYSPLIT trajectory

Cape et al. (2000) Mace Head, Ireland O3 UGAMP trajectory Hierarchical
Cardenas et al. (1998) Weybourne, UK CO, O3, VOC Trajectory
Carvalho et al. (2010) Lamas d'Olo, Portugal O3 HYSPLIT trajectory k-means Hierarchical
Chang et al. (2011) Arctic Ocean Aerosols FLEXPART dispersion, HYSPLIT

trajectory
Footprint Emission Sensitivity,
PSCF

PMF

Cheng and Lin (2001) Lamont, Oklahoma, US Aerosols HYSPLIT trajectory PSCF
Choi et al. (2010) Sukmo Island, Korea VOC HYSPLIT trajectory PSCF PMF
Cohen et al. (2010) Hanoi, Vietnam PM HYSPLIT trajectory CPF PMF
Colette et al. (2005) European stations and MOZAIC

(aircraft)
O3 FLEXPART dispersion MVA

Cui et al. (2011) Jungfraujoch, Switzerland O3 LAGRANTO trajectory Residence time
Crawford et al. (2007) Cape d'Aguilar, Hong Kong Aerosols HYSPLIT trajectory PSCF PMF
Crawford et al. (2009) Cape d'Aguilar, Hong Kong Aerosols HYSPLIT trajectory k-means
Davis et al. (2010) Virginia, USA O3 HYSPLIT trajectory k-means (2-stage)
de Foy et al. (2009) Mexico City O3 FLEXPART dispersion k-means (2-stage) PCA
Delcloo and De Backer
(2008)

Uccle, Belgium O3 APTRA trajectory k-means

Derwent et al. (2010) UK O3 NAME dispersion PTM
Doddridge et al. (1994) Mace Head, Ireland O3, CO NMC trajectory Residence time
Dogan et al. (2008) Antalya, Turkey Aerosols ECMWF trajectory PSCF PMF
Dorling and Davies (1995) 3 Norwegian and 3 UK stations sulphate and precipitation

chemistry
Trajectory k-means

Du and Rodenburg (2007) Camden, NJ, USA PCB HYSPLIT trajectory PSCF PMF
Dueñas et al. (2011) Málaga, Spain Aerosols, 7Be and 210Pb HYSPLIT trajectory k-means
Dvorska et al. (2009) Kosetice, Czech Republic Persistant Organic Pollutants HYSPLIT trajectory Concentration loadings per

country
Ebinghaus et al. (2011) Mace Head, Ireland Mercury NAME dispersion
Eneroth et al. (2003) Ny Alesand, Svaalbard CO2 HYSPLIT trajectory Hierarchical
Eneroth et al. (2007) Zeppelin, Ny Alesand, Svaalbard O3, VOC, Mercury HYSPLIT trajectory Hierarchical
Escudero et al. (2011) La Castanya, Spain PM, TSP HYSPLIT trajectory Residence time
Evans et al. (2000) Mace Head, Ireland O3, NOx, CO UGAMP trajectory CiTTyCAT
Fenneteaux et al. (1999) Porspoder, France O3, VOC, PAN, and NOx NMC trajectory
Font et al. (2011) Northern Spain (aircraft) CO2 FLEXPART dispersion Footprint Emission Sensitivity PCA
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Table 1 (continued)

Reference Location Species measured Trajectory or dispersion model Cluster analysis methods Residence time analysis Chemistry modelling

Forster et al. (2001) Mace Head and Europe O3, aerosols FLEXTRA trajectory FLEXPART with CO
tracer

Fox and Ludwick (1976) Quillayute, Washington Pb Trajectory
Gebhart et al. (2005) Big Bend NP, TX, USA PM HYSPLIT, ATAD and CAPITA

trajectory
CF and PSCF

Gebhart et al. (2011) Rocky Mountain NP, USA SO2, NH3, NO, NO2 HYSPLIT trajectory CF and PSCF
Gheusi et al. (2011) Pic du Midi, France O3 FLEXPART dispersion
Gogoi et al. (2009) Dibrugarh, India Aerosol Optical Depth HYSPLIT trajectory Hierarchical
Gregory et al. (1996) and
Merrill (1996)

Pacific (aircraft) O3, CO, NOxy, VOCs, minerals,
CFCs

NMC trajectory

Gros et al. (2004) Atlantic Ocean (ship) O3, CO, propane FLEXTRA trajectory MATCH-MPIC
Güllü et al. (2005) Antalya, Turkey Aerosols ECMWF trajectory PSCF Factor analysis
Hains et al. (2008) Mid-Atlantic USA (aircraft) O3, CO, SO2 HYSPLIT trajectory
Halse et al. (2011) 86 European background stations Persistant Organic Pollutants FLEXPART dispersion Footprint Emission Sensitivity
Han et al. (2005) New York state Mercury HYSPLIT trajectory

+dispersion
PSCF

Han et al. (2009) Daihai, Mongolia PM HYSPLIT trajectory PCA
Harrison et al. (2000) Weybourne, UK NOx and NOy, NH3, NH4

+ trajectory
Harrison et al. (2006) Birmingham, UK NOxy, OH NAME dispersion (forward

with chemistry)
Hirdman et al. (2010a),
Hirdman et al. (2010b)

Zeppelin, Alert, Barrow
(+ Summit for b)

O3, BC, aerosols FLEXPART dispersion Footprint emission sensitivity

Hirdman et al. (2009) Zeppelin, Svaalbard Mercury FLEXPART dispersion Footprint emission sensitivity
Huang et al. (2010) Alert, Greenland BC HYSPLIT trajectory k-means
Hwang and Hopke (2007) Kalmiopsis, Oregon, USA PM2.5 HYSPLIT trajectory PSCF PMF
Im et al. (2008) Istanbul, Turkey O3, VOC, NO, NO2 HYSPLIT trajectory
Junker et al. (2004) Orogrande, New Mexico, US BC HYSPLIT trajectory Regional
Junker et al. (2009) 4 stations in Taiwan and China O3, CO, SO2, NOx, PM HYSPLIT trajectory Regional
Kaiser et al. (2007) 5 Alpine stations O3, CO, NOx FLEXTRA trajectory PSCF, RCF
Kang et al. (2006) Seoul, Korea PM, HNO3, HONO, SO2 HYSPLIT trajectory PSCF
Karaca and Camci (2010) Istanbul, Turkey PM HYSPLIT trajectory SOM
Karaca et al. (2009) Istanbul, Turkey PM HYSPLIT trajectory PSCF
Kassomenos et al. (2010) Athens, Greece PM10 HYSPLIT trajectory k-means, Hierarchical, SOM
Kim and Kim (2008) Gosan, Korea PM HYSPLIT trajectory
Kocak et al. (2009) Erdemli, Turkey PM10 HYSPLIT trajectory PSCF PMF
Kuhn et al. (2010) Ellesmere island, Canada Aerosols FLEXTRA trajectory Footprint emission sensitivity Emission inventory
Law et al. (2010) West Africa (aircraft) O3, CO, CO2, NOxy UGAMP trajectory RDF
Lawler et al. (2009) Cape Verde and Atlantic Ocean O3, NOx, Chlorine species Trajectory MISTRA
Lee and Ashbaugh (2007a,
2007b, 2007c)

Grand Canyon NP, USA SO2 HYSPLIT trajectory CPF, PSCF, MURA

Lee et al. (2009) Cape Verde NOx, NOy ECMWF trajectory
Lefohn et al. (2011) Yellowstone NP and 10 other

US sites
O3 LAGRANTO trajectory

Lewis et al. (2007) Atlantic Ocean (aircraft) CO, PAN, alkanes UGAMP trajectory
Lin et al. (2004) Taiwan SO2 Trajectory CF Emission inventory
Lupu and Maenhaut
(2002)

3 sites in Scandinavia and 1
in Israel

PM, BC HYSPLIT trajectory PSCF, CF

Makra et al. (2010, 2011) Thessaloniki, Szeged, and
Hamburg

Pollen counts and PM
respectively

HYSPLIT trajectory k-means (Mahalanobis,
Convhull)

Malcolm et al. (2000),
Malcolm and Manning
(2001)

UK and European sites PM NAME dispersion

Manning et al. (2003) Mace Head, Ireland CFCs, CH4 and NO NAME dispersion

(continued on next page)
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Table 1 (continued)

Reference Location Species measured Trajectory or dispersion model Cluster analysis methods Residence time analysis Chemistry modelling

Martin et al. (2011) Manchester, UK PM ECMWF trajectory k-means
McConnell et al. (2008) West Africa (aircraft) O3, Ca and Al (dust),

aerosols
NAME dispersion

Merrill and Moody (1996),
Merrill (1994)

Barbados, Bermuda, Mace Head,
Tenerife

– NMC trajectory CPF

Methven et al. (2001) Mace Head, Ireland O3 UGAMP trajectory CPF CiTTyCAT
Methven et al. (2003) Atlantic and Arctic Oceans (aircraft) O3 UGAMP trajectory RDF CiTTyCAT
Methven et al. (2006) Atlantic Ocean (aircraft) O3, CO, NOy UGAMP trajectory RDF CiTTyCAT
Methven et al. (2006) Atlantic Ocean (aircraft) O3, CO, NOxy, VOCs, UGAMP trajectory, FLEXPART

dispersion
RDF

Moody et al. (1989) Virginia, Bermuda, Cape point,
Amsterdam island

Precipitation chemistry ATAD trajectory Hierarchical GAMBIT

Moy et al. (1994) Shenandoah NP, Virginia, US O3, CO, NOy HYSPLIT trajectory Hierarchical
Müller et al. (2010) Cape Verde PM, Ca, K, Fe HYSPLIT trajectory
Nyanganyura et al. (2008) Rukomechi, Zimbabwe PM HYSPLIT trajectory Non-hierarchical
Occhipinti et al. (2008) North Carolina, USA PM, nitrogen precipitation HYSPLIT trajectory Regional
Park et al. (2008) Incheon, Korea PM HYSPLIT trajectory PSCF, CPF
Paris et al. (2010) Siberia (aircraft) O3, CO2, CO FLEXPART dispersion k-means Footprint emission sensitivity
Pekney et al. (2006) Pittsburgh, USA PM HYSPLIT trajectory PSCF PMF
Pochanart et al. (2001) Arosa, Switzerland O3 Trajectory Residence time
Pochanart et al. (2003) Mondy, Siberia O3, CO NIES trajectory Regional
Poirot andWishinski (1986) Vermont SO2 Trajectory Residence time
Poirot et al. (2001) Underhill (Vermont), USA PM CAPITA trajectory PSCF, IP PMF, UNMIX
Poissant (1999) St. Lawrence River valley, Canada Mercury AES trajectory PSCF
Polissar et al. (1999, 2001a) Barrow, Alaska CN, BC, aerosols CMDC trajectory PSCF
Polissar et al. (2001a) Underhill (Vermont), USA Na, Br, Ca, Mg, BC,

Sulphate
CAPITA trajectory PSCF

Pongkiatkul and Kim Oanh
(2007)

Bangkok, Thailand O3, PM HYSPLIT trajectory k-means PSCF

Real et al. (2007) Canada, Arctic, Atlantic (aircraft) O3, NOx, CO, PAN UGAMP trajectory CiTTyCAT
Real et al. (2008) Atlantic Ocean (aircraft) O3, CO, NOxy, VOCs,

aerosols
FLEXTRA trajectory CiTTyCAT

Real et al. (2010) Africa and Atlantic (AMMA) O3, CO, NOx FLEXTRA trajectory CiTTyCAT
Reddy et al. (2010) Anantapur, India O3 HYSPLIT trajectory
Reidmiller et al. (2009) Mount Bachelor, WA, USA O3, CO, Mercury HYSPLIT trajectory Residence time GEOS-CHEM
Riccio et al. (2007) Naples, Italy O3, PM HYSPLIT trajectory k-means PCA
Robinson et al. (2011) Borneo CO, aerosols, halocarbons ECMWF trajectory Hierarchical CF
Rodriguez et al. (2011) Izaňa, Canary islands Aerosols HYSPLIT trajectory MCAR
Rozwadowska et al. (2010) Hornsund, Svaalbard Aerosol Optical Thickness HYSPLIT trajectory k-means
Ryall et al. (2001) Mace Head, Ireland CFC NAME dispersion
Ryall et al. (2002) UK PM NAME dispersion
Salvador et al. (2008) Campisabalos, Spain PM, aerosols FLEXTRA trajectory k-means
Salvador et al. (2010) Schauinsland (Germany), Puy de

Dôme (France), Sonnblick (Austria)
PM, aerosols FLEXTRA trajectory k-means RCF

Schelfinger and Kaiser
(2007)

Austrian stations O3, CO, NOx FLEXTRA trajectory PSCF, RCF Emission inventory

Schichtel et al. (2006) Big Bend NP, Texas PM CAPITA trajectory IP, PSCF
Schmale et al. (2011) Greenland (aircraft) Aerosols OFFLINE and LAGRANTO

trajectory FLEXPART dispersion
Emission inventory

Schwarz et al. (2008) Prague, Czech Republic PM HYSPLIT trajectory
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Table 1 (continued)

Reference Location Species measured Trajectory or dispersion model Cluster analysis methods Residence time analysis Chemistry modelling

Seibert and Frank (2004) Stockholm, Sweden 137Cs FLEXPART dispersion Residence time
Shan et al. (2009) Jinan, China O3 HYSPLIT trajectory
Sharma et al. (2004) Alert, Greenland PM, aerosols CMC trajectory k-means CF
Sharma et al. (2006) Alert, Barrow, Arctic PM, aerosols CMC trajectory k-means CF
Simmonds et al. (2004) Mace Head, Ireland O3 NAME dispersion
Simmonds et al. (1997) Mace Head, Ireland O3, CO Trajectory Regional
Solberg et al. (1996) Zeppelin, Svaalbard O3 EMEP trajectory Regional
Solberg et al. (1997) Zeppelin and Norwegian

stations
O3 EMEP trajectory Regional

Solberg et al. (2008) European stations – FLEXTRA trajectory Residence time OSLO CTM EMEP
model

Stohl (1996) European stations sulphate FLEXTRA trajectory RCF
Stohl et al. (2000) Jungfraujoch, Sonnblick,

Zugspitze,
Mt. Cimone

O3 FLEXPART dispersion FLEXPART tracers

Stohl et al. (2001) MOZAIC aircraft O3 FLEXTRA trajectory Regional
Stohl et al. (2002) Mace Head, Ireland – FLEXPART dispersion Retroplume clusters
Stohl et al. (2004) Zeppelin, Svaalbard Halocarbons CO2, O3, CO,

Mercury
FLEXPART dispersion FLEXPART tracers

Stohl et al. (2006) (Aircraft) Aerosol Optical Depth FLEXPART dispersion Footprint emission
sensitivity

Stohl et al. (2007) Zeppelin, Svaalbard O3, CO, aerosol FLEXPART dispersion Footprint emission
sensitivity

FLEXPART tracers

Stohl et al. (2009) Various stations around the
world

HFC FLEXPART dispersion Inversion model

Strong et al. (2010) 14 UK rural sites O3 HYSPLIT trajectory ELMO
Tarasick et al. (2010) North American stations O3 (sondes) HYSPLIT trajectory Trajectory-mapping
Tarasova et al. (2009) Jungfraujoch (Switzerland),

Kislovodsk (Russia)
O3 LAGRANTO trajectory

Taubman et al. (2006) US/Atlantic Ocean (aircraft) O3, CO, SO2 HYSPLIT trajectory Hierarchical
Toledano et al. (2009) El Arenosillo, Spain Aerosol Optical Depth Trajectory k-means Regional
Traub et al. (2003) Mediterranean (aircraft) O3, NOxy, CO, CO2,

HCHO, CH4, VOCs
FLEXTRA trajectory Regional

Tscherwenka et al. (1998) Sonnblick, Austria SO2 FLEXTRA trajectory Residence time
Tuzson et al. (2011) Jungfraujoch, Switzerland CO2 FLEXPART dispersion Residence time
Vasconcelos et al. (1996) Grand Canyon NP, USA CH3CCl3 ATAD trajectory CF
Virkkula et al. (1999) Sevettijärvi, Finland Aerosols TRADOS trajectory Regional
Walker et al. (2009) Birmingham, UK CO, O3, NOx, VOC HYSPLIT and ECMWF

trajectory
PTM

Wang et al. (2004) Hong Kong, China O3, CO HYSPLIT trajectory Hierarchical
Wang et al. (2010) Beijing, China O3, CO HYSPLIT trajectory
Weiss-Penzias et al. (2004) Cheeka Peak, WA, USA O3, CO HYSPLIT trajectory Residence time GEOS-CHEM
Weiss-Penzias et al. (2006) Mount Bachelor, WA, USA O3, CO, Mercury HYSPLIT trajectory Residence time
Wimolwattanapun et al.
(2011)

Bangkok, Thailand PM HYSPLIT trajectory PSCF PMF

Wolfe et al. (2007) Mount Bachelor, WA USA O3, CO, PAN HYSPLIT trajectory Residence time
Wotawa and Kroger
(1999)

central Europe NOxy FLEXTRA trajectory CF IMPO model

Wotawa et al. (2000) 11 stations in the Alps O3 FLEXTRA trajectory CF, PSCF
Wu et al. (2009) Beijing, China PM, NH3, acidic gases HYSPLIT trajectory PSCF
Xia et al. (2007) Beijing, China Aerosol Optical Depth HYSPLIT trajectory k-means (fuzzy c-means)
Xiao et al. (2010) Tibetan plateau PCBs, PAH HYSPLIT Trajectory
Xie and Berkowitz (2007) Houston, Texas, USA VOCs Trajectory derived from winds PSCF, CPF

(continued on next page)
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Table 1 (continued)

Reference Location Species measured Trajectory or dispersion model Cluster analysis methods Residence time analysis Chemistry modelling

Xu et al. (2006) US National Parks PM HYSPLIT trajectory Residence time
Xue et al. (2011) Mt Waliguan, China O3, NOx, NOy HYSPLIT trajectory Hierarchical
Yan et al. (2008) Shangdianzi, China Aerosol optical depth trajectory k-means
Zhu et al. (2011) Beijing, China PM HYSPLIT trajectory k-means PSCF

If the trajectory type is not specified, it is just left as “Trajectory”.
If the Residence Time Analysis section and Cluster Analysis section are both left blanks then the methods were not standard and visual divisions or the respective author's own methods have been used.
Abbreviations in the cluster analysis, residence time and modelling columns are explained in Sections 4.2, 4.1 and 2.4 but a summary is included here; CF (Concentration Field), CPF (Conditional Probability Function), PSCF
(Potential Source Contribution Function), IP (Incremental Probability), RCF (Redistribution Concentration Field), RDF (Reverse Domain Filling).
Source apportionment models (e.g. PMF (Positive Matrix Factorisation) and PCA (Principal Component Analysis)) are included in the chemistry modelling column in bold as well as whether emission inventories were used
to validate and test.
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performed on each weather type to reveal how the ozone and
NO concentrations are explained in terms of meteorological
parameters, showing how there is a better correlation in the
cyclonic compared to anticyclonic conditions, which shows
how the increasing significance of photochemistry in cyclonic
periods.

The classification of daily weather types (DWT) on a daily
basis for the British Isles between 1861 and 1997 has been car-
ried out by Lamb (1972) and further developed by Jenkinson
and Collison (1977), where the basic flow direction and level
of anticyclonicity or cyclonicity over an area were determined.
The grid over which the objective DWTs are calculated can be
moved to different locations and a new catalogue, appropriate
for the new location, can be constructed. Ohare and Wilby
(1995) used the Lambweather types to show that ozone levels
from a variety ofmeasurement stations in theUKwere strongly
correlated with the prevailing weather type.

Meteorological measurements at Szeged, Hungary have
been separated according to Factor Analysis (reduction of the di-
mensionality of the meteorological dataset) and objectively
grouped into days with similar weather conditions and then
compared to CO, NO, NO2, SO2, O3 and Total Suspended Particles
(TSP) measurements over 4 years (Makra et al., 2006). Factor
analysis of meteorological data, followed by cluster analysis
was applied to air masses arriving in Athens over 4 years and
corresponding air pollutant measurements (Sindosi et al.,
2003). Helmis et al. (2003) studied the connection of atmo-
spheric circulation to trans-boundary air pollution by using a
circulation-to-environment approach where 14 synoptic scale
patterns were distinguished over Athens and SO2, NOx and O3

data were compared between the synoptic periods and addi-
tional modelling linked this to inflow and outflow of the Athens
basin. Demuzere and van Lipzig (2010) used linear regression
methods to explain O3 and PM variations and found that classi-
fying according to the automated “Lamb” weather type prior
to the regression analysis was superior to just using the
linear regression. Comparison of objective air mass types and
the “Peczely” weather types to classify daily pollution levels
over the Carpathian Basin (using 12 meteorological and eight
pollutant parameters) has been conducted for a four year period
(Makra et al., 2009).
2.2. Trajectory models

Amodelled trajectory is an estimate of the transport pathway
of an infinitesimally small air parcel and an estimate of the cen-
treline of an advected air mass subject to vertical and horizontal
dispersion. Back trajectories trace the path of a polluted air parcel
backward in time and have long been used to track the history
and pathway of air parcels arriving at a specific location since
they were first developed in the 1940s by Petterssen (1940).
The first trajectories were one dimensional lines calculated
using recorded meteorological fields in a model dealing with
the combination of wind field influences on the air. Computa-
tional advances in the 1960s allowed isentropic analysis and tra-
jectory calculations to be performed graphically on computers
(Danielsen and Bleck, 1967). These back trajectories followed
the path of release backwards on an Eulerian grid, where the
flow of particles is depicted as a function of a fixed position and
time. More information can be extracted from two-dimensional
trajectories by colour-coding their pathways byheight andby in-
cluding markers corresponding to time of travel.

Fox and Ludwick (1976) carried out one of the first stud-
ies using back trajectories to identify source regions of atmo-
spheric pollution. They compared levels of lead at Quillayute,
Washington using 1 day back trajectories and found that the
land areas where source regions and the oceanic air yielded
low levels of lead. Ashbaugh et al. (1985) carried out pioneer-
ing work on identifying sources of sulphur and correspond-
ing statistical associations between air mass history and
above average concentrations. Air quality monitoring records
and back trajectories were used to identify those regions
from which high sulphur concentrations were most likely to
arrive.

A review of the types and uses for back trajectories and the
associated errors and probabilities within them has been pro-
vided by Stohl (1998), in which it is stated that there can be se-
rious misinterpretations of a flow situation (represented as
linear air mass movements) if the magnitude of the errors can-
not be estimated. Owing to errors and assumptions in thewind
fields used to calculate the trajectories, the uncertainty of tra-
jectories increases with time along the path. Seibert (1993)
has investigated the accuracy of trajectories. Kahl (1993) inves-
tigated the errors within the calculation of trajectories by cal-
culating trajectories at multiple levels and at regular grid
intervals around a site to assess the extent of vertical and hor-
izontal wind shears. The errors and issues associated with back
trajectories (uncertainty arising from interpolation of sparse
meteorological data, assumptions regarding vertical transport,
observational errors, sub-grid-scale phenomenon, turbulence,
convection, evaporation, and condensation) are explained in
Polissar et al. (1999). Taking into account uncertainties, back
trajectories are often better suited to large scale circulation
studies, such as shown in the detailed global trajectory study
on air parcel circulation between the troposphere and strato-
sphere carried out by Jackson et al. (2001).

Examples of some of the community's commonly used
trajectory models are listed in Table 1. The FLEXTRA model
has been used extensively and is described by Stohl et al.
(1995). The HYbrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT) model (Draxler and Rolph, 2003) has
been used extensively in many studies as illustrated in
Table 1. The UK Universities' Global Atmospheric Modelling
Programme (UGAMP) trajectory model has been used to
complement many field campaigns (e.g. Cape et al., 2000;
Methven et al., 2006). The Centre for Air Pollution Impact
and Trends Analysis CAPITA Monte Carlo (CMC) model
(Schichtel et al., 2006) uses meteorological wind fields to
advect the particles in three dimensional space, whilst the in-
tense vertical mixing that takes place within the atmospheric
boundary layer is simulated using a Monte Carlo technique,
which evenly distributes the particles between the surface
and the mixing height. Other trajectory models include
APTRA (Delcloo and De Backer, 2008) obtained from the
ECMWF (European Centre for Medium-Range Weather Fore-
casts), the LAGRANTO model (Tarasova et al., 2009), the
TRADOS model (long-range Trajectory, Dispersion and Dose
Model of the Finnish Meteorological Institute) (Virkkula et al.,
1999) and trajectory models run directly from meteorological
datasets such as the ECMWF three dimensional isentropic
model (Dogan et al., 2008), NMC (US National Meteorological
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Centre) (Merrill, 1994; Merrill and Moody, 1996), CMDC (Cli-
mate Monitoring and Diagnostics Laboratory) (Polissar et al.,
1999, 2001b) and NIES (Russian National Institute for Environ-
mental Studies) (Pochanart et al., 2003) trajectory models.

A thorough comparison of various trajectory models with a
number ofmeteorological parameters derived through different
systemshas been carried out byGebhart et al. (2005). The 1980s
era Atmospheric Transport and Dispersion (ATAD) model was
compared to two of the more recent models; HYSPLIT and the
CAPITA CMC model. Various data sets (ATAD, BRAVO, MM5
and GDAS) were used as meteorological fields. Tests on data at
a field station in Texas showed that there was evidence for sys-
tematic differences between the average results of different
back trajectory models. Depending on the meteorological
input data used in the calculations, the trajectories could be as
different by as much as 180° during certain episodes.

Multiple trajectories are used to simulate the air mass his-
tory, since the air parcels arriving at a site could have fol-
lowed different trajectories owing to turbulent atmospheric
mixing and advective processes. Multiple trajectories also
provide a measure of the uncertainty in the air mass trans-
port pathway and the clustering of individual trajectories dis-
cussed later shows how grouping trajectories reduces
uncertainty. Cabello et al. (2008) reported on how there are
large differences in clustering trajectories when using differ-
ent NCEP met data (either 1°×1° FNL data or 2.5°×2.5° glob-
al reanalysis data), and the type of meteorological data rather
than the clustering method makes the biggest difference to
defining the different clusters.

Example back trajectory analyses are shown in Fig. 3 forMace
Head, Ireland (Cape et al., 2000), Weybourne, UK (Cardenas et
al., 1998), the Cape Verde Atmospheric Observatory (Müller et
al., 2010) and the TOR station at Porspoder, France (Fenneteaux
et al., 1999).

2.3. Particle dispersion models

More complex methods to calculate air mass pathways and
air mass footprints have mostly come from Lagrangian Particle
DispersionModels (LPDM) that follow the chaotic pathways of
air parcels as probability distributions. Lagrangian methods in-
volve plotting the position of an individual parcel through time
as it follows the average atmospheric motion, giving the path-
line of the parcel within a specific period of time. The Lagrang-
ian dispersion concept is more accurate because individual
particles move independently from each other and can thus
carry additional information and the advection scheme is
more accurate than those of trajectory models as it attempts
to capture turbulence, which causes a more probabilistic and
realistic growth in the volume of influence.

The 2-D maps created for backward runs illustrate which
geographical regions have influenced the air arriving at a
site. These can be seen as four-dimensional as opposed to
quasi-one-dimensional back trajectories, making them an in-
teresting extension to conventional trajectory models, allow-
ing a more realistic representation of transport in the
planetary boundary layer, where turbulence is important.

Stohl et al. (2002) explains the added accuracy and regional
spread of dispersionmodels and how they can be a replacement
for simple back trajectory models for comparing atmospheric
composition measurements at a given site. Flesch et al. (1995)
describes the parameters within Lagrangian Stochastic models
and their use in estimating atmospheric emissions and source–
receptor relationships.

The HYSPLIT 4model can be run with puffs instead of parti-
cles with an added dispersion scheme added to the initial tra-
jectory computation (Cohen et al., 2004; Han et al., 2005).
This was combined with emissions to extract source–receptor
relationships in the area.

Typical models used in many studies include the FLEXPART
and NAME models. The FLEXPART model (Stohl et al., 2005,
1998) (an example is shown in Fig. 7), has been used for a
variety of research purposes and for emergency preparedness.
The model is usually driven by ECMWF meteorological input
data. FLEXPART evolved from the FLEXTRA back trajectory
model but represents transport and dispersion by calculating
the 3-D trajectories of a multitude of particles.

The UK Met. office's NAME (Numerical Atmospheric Dis-
persion Modelling Environment) (Jones et al., 2007; Ryall
and Maryon, 1998) dispersion model described in detail in
the case study in Section 5 can be used to give a footprint of
a site on scales of hours to years. The model was developed
in the late 1980s following the Chernobyl accident (and orig-
inally named Nuclear Accident Model) to give emergency re-
sponse dispersion predictions for nuclear incidents (Maryon
et al., 1991). NAME is usually run with the Met Office's oper-
ational global Numerical Weather Prediction NWPmodel, the
Unified Model (Cullen, 1993) meteorological data on a varie-
ty of regional or global scales.

Manning et al. (2003, 2011) and Ryall et al. (2001) have
used NAME to calculate the distribution of air masses arriving
at Mace Head, Ireland, from different Atlantic Ocean and
European regions and by combining with composition mea-
surements at the station, they have derived emission invento-
ries for Europe. Ebinghaus et al. (2011) used the NAME model
to separate out baseline (non-polluted) air arriving at Mace
Head and looked at monthly mercury levels over a 13 year pe-
riod and found there to be a statistically significant downward
trend. In combination with satellite imagery and observational
data fromMace Head the NAMEmodel was used to investigate
the origin of high Particulate Matter concentrations over the
British isles during March 2000 and it showed that the most
likely origin of the episode was long range transport of dust
from the Sahara region of North Africa and not volcanic ash
from an Icelandic volcano (Ryall et al., 2002). Ryall andMaryon
(1998) testedNAMEusing the ETEX database (European Tracer
Experiment database of 168 ground-level sampling stations in
Western and Eastern Europe) to assess its suitability to predict
the overall spread and timing of a pollutant plume across Eu-
rope. The NAME model has also been used in conjunction
with satellitemeasurements (Hewitt, 2010) to develop ameth-
odology to investigate regional scale carbon budgets. Polson et
al. (2011) used NAME to carry out inversions of aircraft mea-
surements over the UK to derive mapped emissions of the UK
which comparedwell with the UK national emission inventory
(NAEI).

2.4. Chemistry transport models

Chemistry TransportModels (CTM) combinemeteorological
fields, emissions and physical atmospheric processes with
chemistry schemes and reaction kinetics to describe the



Fig. 3. Trajectory examples: a) Westerly and Easterly Mace Head, Ireland 6 hourly 5 day back trajectory clusters. b) Weybourne, UK 6 hourly trajectories arriving
during 1993. c) 4 day backward Cape Verde Observatory daily trajectories from mid May to mid June 2007. d) Back trajectories for the TOR station at Porspoder,
France for summers 1992–1995 associated with 10th and 90th percentile ozone levels respectively.
a): Taken from Cape et al. (2000). b): Taken from Cardenas et al. (1998). c): Taken from Müller et al. (2010). d):Taken from Fenneteaux et al. (1999).

13Z.L. Fleming et al. / Atmospheric Research 104-105 (2012) 1–39
chemistry and physical transformations within air masses. The
NAME dispersion model has an option to add a chemistry
scheme to the tracer transport calculations but is not as com-
plete as a CTM. In this work we define CTMs as ones that by
default include emission inventories chemistry and transport
schemes.

Emissions databases and chemistry reaction scheme data-
bases are incorporated into models in order to quantitatively
predict composition during transport. CTMs contain a large
number of uncertainties as do the emission databases that
are used within them. They have been used in parallel with
many of the studies detailed in this review to test how well
they compare with the observed composition from various
emission sources and influences and to add value to the tra-
jectory analysis but CTMs are only mentioned in this review
if they have been used to compare to simple trajectory or dis-
persion models.

Wind data have been used as input for many CTMs such as
in the distance-weighted wind roses that were combined
with measured ozone as input for the Edinburgh Lancaster
Model for Ozone (ELMO) model. The model was used to pre-
dict ground level ozone concentrations in the UK (Strong et
al., 2006) and it predicts the higher ozone episodes (98th
percentile) well. ELMO-2 used the HYSPLIT trajectory model
as input and was seen to reproduce ozone episodes and diur-
nal cycles at several UK monitoring sites during summer
1995 (Strong et al., 2010). In the study by Gilliam et al.
(2006), the Pennsylvania State University/National Center
for Atmospheric Research Fifth Generation Mesoscale Meteo-
rological Model (MM5) was used with seasonal subsets of
pseudo-trajectories derived from radar wind profiler data
and from simulated wind fields as input to provide an esti-
mate of model errors in terms of wind transport. They
found that any inconsistencies in the meteorology were
passed on to the air quality model. CO and SO2 transport
was well simulated with both MM5 and WRF (Weather Re-
search and Forecast) meteorological parameters over the
Mexico City basin during the MILAGRO study (de Foy et al.,
2009). de Foy et al. (2009) used FLEXPART back trajectories,
in combination with measured air pollutant concentrations to
identify potential source regions and theWRF andMM5models
were used to evaluate the simulated trajectories by comparing
the potential source regions with emission inventories.

A Photochemical Trajectory Model (PTM) was used with
emissions databases to simulate atmospheric composition,
during the Pollution in the Urban Midlands Atmosphere
(PUMA) campaign in Birmingham (Walker et al., 2009). The
model described the photochemical ozone formation as
well as inorganic and organic aerosol formation in north-
western Europe and in this case followed advected air masses
from source regions in Europe to the receptor location in the
UK. The model was tested against 3 day back trajectories to
test the model's ability to pull out the origin of all the pollut-
ant episodes and it was not able to trace back the pollutant
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transport during conditions of slow moving anticyclonic con-
ditions. This example shows how trajectory studies should be
carried out independently to trajectory chemical modelling
studies as in some cases the model cannot interpret all
periods.

The Lagrangian chemistry transport model CiTTyCAT
(Cambridge Tropospheric Trajectory model of Chemistry
and Transport) (Evans et al., 2000) has been used in many
studies investigating atmospheric composition. CiTTyCAT
simulates chemical transformation following trajectories
with a photochemistry scheme that includes the degradation
of some hydrocarbons, a representation of the spread of
surface emissions into the boundary layer (using emission
inventories) and dry deposition. The chemical initial condi-
tions at the trajectory origin are defined by interpolating con-
centrations from the TOMCAT CTM, which calculates the
abundances of chemical species in the troposphere and
stratosphere. CiTTyCAT was seen to accurately simulate 70%
of the variance in the relationship between chemical compo-
sition at Mace Head during field measurements in 1996 and
the origin of the resolved flow when compared to time series
of trajectory-origin-averaged measured ozone (Strong et al.,
2006). Different processes influencing the evolution of pol-
lutant levels in a trans-Atlantic plume have been analysed
with the CiTTyCAT model and average trace gas concentra-
tions and their correlations (O3/CO and NOy/CO) calculated
to study the factors governing ozone production (Real et al.,
2008).

The GEOS-CHEM 3-D global CTM (using assimilated mete-
orological data compiled at the NASA Global Modeling and
Assimilation Office (GMAO)) was used to calculate a long
range transport component to air masses arriving at Cheeka
Peak Observatory (western US) from over Asia from trajecto-
ry analysis (Weiss-Penzias et al., 2004). The CO produced
from Asian biomass burning, and Asian and European fossil
fuel and biofuel sources was calculated and compared with
measured CO. Reidmiller et al. (2009) used back trajectory
analysis coupled with ground-based measurements from
the Mount Bachelor Observatory (western US) to confirm
GEOS-CHEM simulations, suggesting a significant change in
long range transport between 2005 and 2006, owing to
changing patterns of long range transport Asian air masses ar-
riving at the site. Investigations of ozone and CO in biomass
burning plumes were investigated using the GEOS-CHEM
model during the AMMA campaign in West Africa campaign
(Real et al., 2010) and the modelled mixing ratios at each suc-
cessive day along the trajectory are shown in Fig. 4, showing
Fig. 4. Chemistry modelling along a trajectory: GEOS-CHEM model simulations of
Africa from South America during the AMMA aircraft campaign. Black represents th
and orange a lower level trajectory.
Taken from Real et al. (2010).
how modelled CO decreases downwind at all heights whereas
O3 decreases downwind only in the lowest trajectory.

Back trajectories calculated for analysis of cruise ship mea-
surements in the Atlantic Ocean and were compared to the
MATCH-MPIC (Model of Atmospheric Transport and Chemis-
try-Max Planck Institute for Chemistry version) model (Gros
et al., 2004). MATCH is a global atmospheric offlinemodel, driv-
en by 3-D meteorological parameters with a CH4–CO–HOx–
NOx “background” chemistry, a simplified representation of iso-
prene and other VOC chemistry and emissions of CO and VOCs
from energy and industrial activities taken from the EDGAR in-
ventory (Olivier et al., 1996) emissions database.

The MISTRA 1-D Lagrangian chemistry model has been
used to simulate multiphase halogen cycling mechanisms
and compared with the observed association between Cl2
and pollutants at the Cape Verde islands. The model data
was compared to the halogen chemistry during particular
air transport pathways and found Cl to be involved in CH4,
DMS and O3 cycling (Lawler et al., 2009).

Another model to quantify source–receptor relationships
was the Gaussian trajectory transfer-coefficient model
(GTx), which has been used to model PM at Taichung City
and Taipei City, Taiwan (Tsuang, 2003; Tsuang et al., 2003a,
2003b). It was able to simulate the daily variation of PM con-
centrations at these sites and was used to determine the
source of particulates and dust from long range transport.

3. Applications of trajectory data to interpret composition
observations

Many studies have been carried out to relate variability in
chemical observations to variations in synoptic-scale circula-
tion. A summary of previous research studies that combine
trajectory or dispersion modelling with chemistry datasets
from long term measurement stations and field campaigns
is presented in Table 1. Examples of the techniques used,
the composition measurements that were analysed, the loca-
tions, the type of cluster analysis or sector analysis tech-
niques used (described in Section 4) and if chemistry
modelling was used to complement the study are listed for
each study.

3.1. Characterisation of long-term in situ ground based
measurements

Studies at the Northern hemispheric background mea-
surement site of Mace Head, Ireland used trajectories to as-
ozone and CO evolution in a biomass burning plume arriving into Western
e reference trajectory from the flight altitude, green a higher level trajectory
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sign each 6 hourly air mass arriving at the site to one of eight
45° sectors (centred on north, northeast, and so on to north-
west) (Simmonds et al., 1997). If all four trajectories within a
day lay within the same sector, it was classified to that sector
and if no such allocation was possible for a particular day,
then that day was unclassified. Additional trajectory analysis
sorted the data into the specific regions of USA and Canada,
Greenland and Iceland, Europe, and southerly latitudes and
with both of these sector analyses, so-called background or
polluted conditions were separated for analysis of ozone
and CO levels. The methodology has been shown to be robust
for the determination of background trends. The Zeppelin
station in the Arctic has also been classified with the same
8 sectors surrounding the site (see Fig. 8d) and a transport
sector allocated to each trajectory if at least 50% of the last
24 h of the trajectory was closer than 850 km from the sta-
tion (Solberg et al., 1996). Spring low ozone episodes were
found to originate from a Westerly/Northerly Arctic oceanic
direction.

The air arriving at Porspoder in Brittany, France was split
into three kinds of oceanic air masses (North Atlantic northern
and southern latitudes and North American continent) and
seasonal variations of PAN, VOCs, O3 and NOx according to air
mass types over a period of 4 years were studied (Fenneteaux
et al., 1999). Corresponding back trajectories for the 10th and
90th percentiles (see Fig. 3d) and average levels of the species
in winter and summer showed that therewere strong seasonal
and regional influences on these species. Air arriving at the
remote mountain site of Mondy in Siberia was classified into
4 transport pathways (Europe, Siberia, High-latitude, and
south-west air masses) and CO and O3 levels at the site were
then averaged for each trajectory type to reveal how European
air masses had the highest O3 and CO levels (Pochanart et al.,
2003).

Various studies on many US National Parks and wilder-
ness areas (through the IMPROVE sites) used residence
time analysis of back trajectories to find source–receptor re-
lationships and the source type and origin of high air-borne
pollutants (Hopke and Allan, 2009). The online Combined
Aerosol Trajectory (CATT) tool, uses the IMPROVE sites and
5 day back trajectories to colour weight the trajectories to in-
dividual or aggregated sites, in order to analyse long term
patterns in pollution transport to these areas (Poirot and
Allan, 2009).

Brankov et al. (1998) analysed the ozone footprint at
Whiteface Mountain in New York state by correlating the
short-term component of its ozone time-series with ozone
time series at neighbouring stations. The short-term (weath-
er-related) component was separated from the long-term
(climate-related) and seasonal components embedded in
ozone time-series data with the Kolmogorov filter. They car-
ried out the correlations between each trajectory cluster type
and the short-term component of ozone and found it to be
correlated with that measured at a number of other sites
lying within a cluster envelope, lagged by up to 3 days. This
form of analysis tested the hypothesis of whether when
ozone was transported from a certain direction, the time-
lagged correlation increases in that direction. The distance
at which the time-lagged inter-site correlations reach a max-
imum is expected to be proportional to the distance the air
mass can travel in that time and would suggest the transport
of ozone pollution to the location of concern and reveal the
spatial and temporal scales involved.

In a review of recent aerosol studies in Europe it was
found that 11% of all studies used back trajectory methods
to cluster aerosol levels according to their origin and trans-
port pathways (Viana et al., 2008). Rozwadowska et al.
(2010), Salvador et al. (2008, 2010) and Sharma et al.
(2006) show some of the latest aerosol source–receptor stud-
ies using back trajectory classification at a range of sites in
Europe and the Arctic.

3.1.1. Vertical transport studies at ground based stations
Tarasova et al. (2009) classified the vertical as well as geo-

graphical origin of air masses arriving at two mountain sta-
tions (Jungfraujoch and Kislovodsk) by using potential
vorticity, altitude along the trajectory and boundary layer
height to discriminate different vertical source areas, as well
as the usual classification using the horizontal coordinates
of back trajectories. This methodology allowed classification
of the air masses according to their contact with the free tro-
posphere and the stratosphere and showed how ozone levels
varied significantly depending on their vertical pathway to
the mountain tops. CO2 measurements at the Jungfraujoch
mountain station were compared using the FLEXPART disper-
sion model and the model was also used to calculate the res-
idence times of the air masses in the boundary layer and
relate this to CO2 exchange processes (Tuzson et al., 2011).
Delcloo and De Backer (2008) separated the trajectory analy-
sis clustering of 32 years of trajectories arriving in Uccle, Bel-
gium by elevation, into planetary boundary layer and free
troposphere origins to understand how ozone levels have
varied in both high and low elevation air masses. Lefohn et
al. (2011) used trajectories to isolate periods of strato-
sphere-tropospheric exchange at several rural US sites that
these periods often coincided with ozone exceedance pe-
riods, especially at the high elevation site in Yellowstone
National park. Gheusi et al. (2011) used 3 day back trajecto-
ries to calculate the time spent in the boundary layer before
arriving at the high altitude site of Pic du Midi in France in
order to study the influences on ozone levels.

Tarasick et al. (2010) ran forward and back trajectory
from a series of North American ozone sonde stations and
linked the ozone sonde measurements at the receptor sites
to the grid points of the trajectory pathways to obtain
ozone maps. The trajectory-mapped ozone values showed
reasonable agreement to the actual soundings and also com-
pared well with MOZAIC aircraft measurement profiles and
surface station data.

3.2. Investigating long term trends and seasonality in composi-
tion measurements

Understanding the influence of transport patterns on long-
term trends is essential to interpreting their changing chemical
and physical signatures. Seasonal cluster analysis of trajectory
types has been used to reveal the percentage of each trajectory
type arriving in each season as well as the ozone trends in
each season in Uccle, Belgium (Delcloo and De Backer, 2008).
Monthly averaged CO and O3 for different trajectory types
were calculated for a station in Siberia (Pochanart et al., 2003).
Junker et al. (2009) studied 12 years of O3, CO, SO2, PM and
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NOxmeasurements at fourmeasurement stations in Taiwan and
China and separated the composition by their airmass history to
show long term trends and also seasonal variations. Abdalmo-
gith and Harrison (2005) carried out a seasonal cluster analysis
of PM levels at Harwell and Belfast in the UK and found small
variations in the direction of the clusters and the levels and
type of PM observed between the seasons. Solberg et al.
(1997) found the background ozone to have a small seasonal
variation and a spring maximum as opposed to the summer
maximum and large seasonal variation for European polluted
air masses at Birkenes in Norway (Fig. 5a). Simmonds et al.
(1997) looked at the relative ozone contribution from each of
the source regions to the observed spring maximum at Mace
Head. This was obtained by subtracting the mean ozone con-
centration for the Northern Hemisphere Marine Mid-Latitude
Background (NHMLB) (34.8 ppbv at the time) from 5 years of
ozone monthly means. These monthly differences were
shown as ozone excesses or deficits relative to the NHMLB
ozone concentration and displayed marked seasonal differ-
ences between Atlantic, European and American air masses in
Fig. 5b.

Long term records of composition variations separated by
corresponding air mass history are rare due to the fact that
running back trajectories on hourly or even daily timescales
for over 10 years is very computer-intensive and the meteo-
rological data needed for the model may have changed over
the years. Trends in air mass climatology for a 40 year trajec-
tory dataset have been investigated by Shadbolt et al. (2006)
and discussed in Section 4.1.2.

Jorba et al. (2004) presented a study on the air arriving in
Barcelona spanning July 1997–June 2002 showing the sea-
sonal influence on climatology (Fig. 6a). A similar monthly
distribution of regional influences was calculated for
15 years at both Alert and Barrow in the Arctic (Sharma et
al., 2006) as shown in the monthly distribution of sector in-
fluences in Fig. 6b. Furthermore, Sharma et al. (2006) used a
geometric time variation model to describe the temporal
variation of 6-hourly Black Carbon (BC) concentrations, includ-
ing a long-term trend, long-term cycles, seasonal variation, and
an autoregressive component that described short-term tempo-
ral correlations. The long term trends in both winter and
Fig. 5. Seasonal composition cycles in different trajectory types: a) Seasonal O3 cyc
b) The difference between the Northern Hemisphere Mid Latitude background (NH
a): Taken from Solberg et al. (1997). b): Taken from Simmonds et al. (1997).
summer varied greatly between the different sectors, especially
at Barrow.

Pochanart et al. (2001) found that therewere strong season-
al differences in the relationship between residence times of air
masses over Europe and ozone levels in Arosa, Switzerland and
that ozone concentration depends significantly on European
residence times in spring and summer. Eneroth et al. (2003) car-
ried out a cluster analysis of 10 years of trajectories arriving at
Ny-Ålesund on a monthly basis, to study inter and intra-annual
variations of CO2 and found that therewere seasonal differences
in the prevalence of each trajectory type that lead to varying CO2

levels but they found no conclusive linkage between CO2 levels
and transport pathways. They found that the Arctic CO2 obser-
vationswere influenced by synoptic scale atmospheric flowpat-
terns and there were correlations between the North Atlantic
Oscillation (NAO)-index and the number of trajectories in each
trajectory cluster.

It is clear that for many of these studies the ability to sep-
arate the variability, mainly driven by the meteorology from
the underlying emission/pre-curser emission trend is a key
area for further work or both scientific and policy relevance.

3.3. Analysing the air mass history for aircraft based
measurements

Combining trajectory and dispersion studies of air mass
histories with aircraft measurements helps to build a 3-D pic-
ture of air mass movement and transport. This picture is
often achieved by calculating back trajectories and dispersion
pathways from multiple elevations along the aircraft flight
track.

Back trajectories at 1, 2 and 3 km were run during the
RAMMPP aircraft campaign over themid-Atlantic US (Taubman
et al., 2006) in order to pick out any variations in atmospheric
circulation patterns in the lower atmosphere and identify the
impacts on regional transport. Vertical composition measure-
ments were combined with these back trajectories to investi-
gate the history of the air during summer ozone pollution
episodes and the role of transport to the boundary layer.

Hains et al. (2008) calculated average ozone levels in ver-
tical bins of the atmosphere and transposed this on the vari-
les at Birkenes, Norway in 3 air mass sector types derived from trajectories
MLB) average ozone at Mace Head for the various sectors around the site.
.



Fig. 6. Seasonality of trajectory types: a) Monthly % distribution of sectors for all 3565 back trajectories arriving in Barcelona over 5 years. b) Monthly distribution
of trajectory types representing various sectors (Russia, Europe, America, Arctic in various combinations) influencing the Barrow Arctic station over 15 years 67
and subsequently used for interpreting Black Carbon measurements.
a): Taken from Jorba et al. (2004) © American Meteorological Society. Reprinted with permission. b): Taken from Sharma et al. (2006).
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ous trajectory types that were observed during flights over
the north-east US in the INTEX-NA campaigns in 1993–2003.
An 80 km radius circle was drawn around each hourly point
on the trajectory and the NOx emissions from that area were
compared to the ozone level at the corresponding altitude bin.

Clustering of air mass composition from the MOZAIC data-
set (long-term composition measurements from an aircraft
network) using the FLEXPART trajectory model was com-
pared to a multivariate analysis technique that classifies
ozone-rich layers observed in tropospheric profiles according
to their origin by season (Colette et al., 2005). The ozonemul-
tivariate analysis technique was found to underestimate the
long-range transport that the trajectory studies identified.

Reverse Domain Filling (RDF) is a technique that defines
regions of similar airmass originwith the use of back trajecto-
ries and is used to plan flight paths through regions of
interest. This method followed on from a technique devel-
oped by Sutton et al. (1994) for producing high resolution
stratospheric N2O data from low resolution satellite data
using data assimilation of high resolution wind fields which
has subsequently been used in many studies for filling in the
spatial domain of tracer data from trajectories. Stohl et al.
(2001) constructed global ozone climatologies based on
MOZAIC aircraft data in both the troposphere and strato-
sphere by attributing measured ozone values to the entire
path of each of the 8 day back trajectories, which allowed a re-
gional identification of the origin of the different ozone levels.

Methven et al. (2003) used RDF trajectories arriving on a
high-resolution three-dimensional grid (RDF3D) to simulate
air mass structure accurately by colouring arrival grid points
according to the specific humidity (or potential vorticity) at
the origin of each trajectory. Back trajectories were calculated
from every point on the 3-D grid from a reference time near
the anticipated flight time and for each RDF forecast trajectories
were integrated backwards in time for 3 days, using a combina-
tion of ECMWF forecasts and interpolating specific humidity
from the forecasts to the origin of each trajectory. The flights
were targeted at regions where there were neighbouring air
masses with distinct origins. Chemical measurements during
the flights were overlaid onto the RDF maps and variations in
composition were compared with the pre-selected air mass
types to see if composition did vary within the different air
mass types. Hydrocarbon measurements during the IGAC
Lagrangian 2K4 experiment in July 2004 (Methven et al.,
2006) were analysed according to calculated back trajectories
and RDF was used to identify Lagrangian matches between
flight segments from different aircraft. Fig. 7 shows examples
of horizontal and vertical RDF plots used to plan flights that in-
tercept biomass burning plumes during this study. This was the
first experiment aiming to takemeasurements that were linked
by trajectories over intercontinental distances through the free
troposphere, where vertical motion is important and was de-
scribed as a “pseudo-Lagrangian experiment”. Results from
the FLEXPART model, run with CO tracers were also used to
confirm matches.

Following on from this form of analysis, Real et al. (2008)
isolated the chemistry of an anthropogenic pollutant plume
transported across the North Atlantic at low altitudes. Similar
use of flight data and back trajectories was used to track Alas-
kan wild fire plume transport during the ICARTT aircraft cam-
paign (Real et al., 2007) and study the evolution of the
composition and ozone formation a few days from emission.
Schmale et al. (2011) used the OFFLINE and LAGRANTO tra-
jectory models as well as the FLEXPART dispersion model
with EDGAR emissions to study the aerosol composition of
a variety of air masses over Greenland during the POLARCAT
(Polar Study using Aircraft, Remote Sensing, Surface Mea-
surements and Models, of Climate, Chemistry, Aerosols, and
Transport) summer campaign in Greenland.

During the AMMA campaign in West Africa RDF back tra-
jectories were used to split the area over which flights had
passed into boxes representing the 4 main regions of recent
(10 day) origin (Law et al., 2010). Vertical differences in com-
position and the occurrence of convection were included in
the separation and interpolation of the measured composi-
tion data.

4. Methods for deriving classifications of air mass path-
ways in association with composition at the receptor site

In order to analyse the association between trajectories
and concentrations of various species in air arriving at a
site, a multitude of methods to carry out trajectory classifica-
tions has been devised. These can generally be split into two
different methodological groups. The first is to sort air masses
by designated air mass sectors, representing a different



Fig. 7. Reverse Domain Filling (RDF) using FLEXPART plots used in planning the ICARTT flights over the Atlantic and the flight tracks marked in black (different
colours represent different source humidities, indicating varying source types).
Taken from Methven et al. (2006).
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influence on composition. Relationships between atmospher-
ic composition and air mass origin are often analysed this
way, by isolating the highest species concentrations or the
exceedance levels and finding the main sectors of influence
during those polluted periods. The second is to cluster the
trajectories using a mathematical technique and then to ana-
lyse the concentrations at the receptor site for each trajectory
classification to see whether each classification is chemically
distinct. These fall broadly into geographical sector classifica-
tion and statistical classification (cluster analysis) and are de-
scribed in detail in the following sections.

4.1. Geographical sector classification

The method of assigning trajectories according to regional
influence and comparing the composition in those regions
was developed by Ashbaugh (1983). The assignment of the
grid boxes is done either from prior knowledge of source re-
gions (e.g. for western US influences in Fig. 8a (Weiss-Penzias
et al., 2004) where the region with high CO from the MODIS
satellite was chosen to locate an Asian box) or by assigning
geographical limits (e.g. for Siberian and European air masses
(Paris et al., 2010) and (Salvador et al., 2008) respectively in
Fig. 8b and c) or as an objective division of the radius around
the site (e.g. such as that done for Svalbard (Solberg et al.,
1996) in Fig. 8d).

There are a wide variety of ways to combine the regional
history and residence times of the air masses with the com-
position measurements and an attempt to classify the main
types is shown below.

4.1.1. Residence time analysis
Residence time analysis is a qualitative source attribution

technique (Ashbaugh, 1983) which generates a probability
density function identifying the likelihood that an air mass
will traverse a given region en route to the site of interest
over a given time period. Air parcels that travel quickly
through a pollutant source region have less time to accumu-
late pollutants than air parcels which remain in the source re-
gion for a long time.

Many studies look at residence times of air masses passing
through polluted areas, such as measurements at the high
altitude station of Arosa in Switzerland, classifying them
according to the influence of European regional pollution
(Pochanart et al., 2001) and the same at the Jungfraujoch ob-
servatory where the 20 year O3 trend in the European air
masses shows a large increasing trend in winter concentra-
tions and a smaller increasing summer trend, compared to
air from other areas. The baseline air showed an increase for
the first 10 years and no trend thereafter (Cui et al., 2011).
Solberg et al. (2008) calculated residence times of air masses
over a central European domain arriving at many European
measurement stations and linked this with the potential to
form high ozone levels, such as the European heat-wave of
2003.

Back trajectories from Mount Bachelor and Cheeka Peak
Observatories on the west coast of the US have been run dur-
ing a variety of measurement periods to track how long each
trajectory particle spends in an “East Asian box” (see Fig. 8a)
in order to estimate the magnitude of pollution transport
from Asia (Weiss-Penzias et al., 2004, 2006; Wolfe et al.,
2007). The number of trajectories passing through the box
was weighted by the average amount of time each trajectory
spends in the box and the trace gas measurements at their
time of arrival showed the effect of long range transport of
Asian emissions to the west coast of America.

To deal with back trajectories that reside over two or more
defined regions influencing the Mediterranean (from aircraft
measurements), Traub et al. (2003) defined that the residence
time of the air parcel above their four defined regions had to be
above a critical residence time (2.75 days), by which time it
was thought that the air mass had adopted the chemical char-
acteristics of that region. Studies at the Zeppelin station in Sval-
bard (Solberg et al., 1996) allocated a transport sector to a
trajectory if at least 50% of the last 24 h of the trajectory were
closer than 850 km from the station as shown by the radius in
Fig. 8d and used this allocation to understand the origin of air
masses causing ozone depletion events. In a study of nitrogen
in precipitation and Particulate Matter measurements in
North Carolina's large agricultural corridor, Occhipinti et al.
(2008) used residence time analysis of back trajectories to
find air masses in which a minimum of 50% of the rainfall
would have transited either marine or agricultural source
regions.



Fig. 8. Regional emission zones and defining sector influences: a) Cheeka Peak Observatory (CPO), WA regions of influence used for classifying trajectory types.
b) Source regions assigned for allocating influences from dispersion modelling of Siberian influences for analysis of aircraft measurements. c) European and north
African potential emission zones used for classifying European and north African PM transport to Madrid, Spain. d) Zeppelin, Svalbard transport sectors with
which to allocate trajectories. Allocation to each sector is done if at least 50% of the last 24 h of the trajectory has travelled less than 850 km.
a): Taken from Weiss-Penzias et al. (2004). b): Taken from Paris et al. (2010). c): Taken from Salvador et al. (2008). d): Taken from Solberg et al. (1996).
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To understand the relationship between local and longer
range transport, two scales of regional divisions can be con-
structed. For the IMPROVE sites in various US National Parks
andwilderness areas source attribution of ammonium sulphate
concentrations was calculated by dividing the area around each
station into four quadrants and everything outside the site's US
state into one of six larger regions (Xu et al., 2006). Particulate
Matter levels from Saharan and non-Saharan air masses arriv-
ing at Castanya in Spain were analysed by dividing the Saharan
region into 11 source areas and the Iberian peninsula into 3 re-
ceptor regions and linking the source regionswith the 3 Spanish
receptor regions (Escudero et al., 2011).

An example of how residence time analysis is used for in-
vestigating long term air mass climatology (which could be
used to compare long term composition change) is shown
in a 40 year study of airflow trajectories and residence time
calculations for the lower peninsula of Michigan (Shadbolt
et al., 2006). Monthly air mass climatology anomalies were
plotted as standard deviations from the grid cell mean
value, where positive anomalies depicted airflow corridors
that had more trajectories than average, and negative values
had fewer trajectories than average, illustrating a large sea-
sonal variation.

4.1.2. Probability fields from residence time analysis
More advanced forms of residence time analysis superim-

pose grid cells over specific regions of interest and calculate a
probability function for each grid cell representing the prob-
ability of an air mass arriving at the receptor site, after having
been observed to reside in this specific geographical region.
Pioneering work by Ashbaugh et al. (1985) plotted the prob-
ability on a map, showing the influences on the air arriving at
Grand Canyon National Park as shown in Fig. 9a, indicating
which regions would potentially contribute to high sulphur
levels and Fig. 9b shows the actual source Contribution Func-
tion (CF, described in Eq. (3)), which are often different to
each other.

The seasonal variation and climatological pathway of air-
flow to various stations around the Atlantic Ocean were stud-
ied by Merrill (1994) in order to interpret their trace gas
measurements. The residence times in each regionally
gridded area for a given season were shown as a cumulative
probability field and the areas of high probability indicated
that trajectories which subsequently reached the site had
spent more time in that geographical area. The same tech-
nique was used to help interpret composition measurements
in the Pacific Exploratory Mission-West A (PEM-West A)
flight experiment (Merrill, 1996) and ozone profiles above
Bermuda (Merrill et al., 1996). Doddridge et al. (1994) car-
ried out flow climatology studies to show the probability of
the air over surrounding areas arriving at Mace Head and
assigned a probability contour plot to represent the flow
over a 3 month period over 2 years and revealed a change
from predominantly Atlantic airflow to European anticyclon-
ic Atlantic air between the years.

Two commonly used probabilities are the Potential Source
Contribution Function (PSCF) (see Fig. 10) and the Incremental
Probability (IP). The Incremental Probability (IP) is the difference
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between the sorted and the everyday residence time and iden-
tifies regions that are more or less likely to be traversed during
periods of high or low concentrations compared to an average
day. The Potential Source Contribution Function (PSCF) is the
ratio of the high concentration probability divided by the every-
day probability and identifies locationsmore likely to be upwind
if receptor concentrations are high, associating these upwind re-
gions with emissions that contribute to impacts at the site or
areas where secondary formation is enhanced. Scheifinger and
Kaiser (2007) explain and compare PSCF and the Concentration
Field (CF) andRedistributionConcentration Field (RCF)methods.

The terms Conditional Probability Function (CPF) and
PSCF are used interchangeably in the literature but CPF if
mostly used to define a directional source apportionment
technique and can be derived from wind direction data
alone, not just trajectory data. Wimolwattanapun et al.
(2011) used CPF on wind direction data to define the direc-
tion of PM from a variety of source types and PSCF on
Fig. 9. Conditional Probability maps: a) Conditional Probability Function (CPF) for t
Canyon National Park (highest from New Mexico and south California). b) The sour
most to high sulphur levels is southern California. c) Conditional Probability techn
used for Big Bend National Park, Texas (small triangle). Tracer release from 2 site
used to study the upper 20th percentile particulate sulphur sources to the Nationa
a): Taken from Ashbaugh et al. (1985). b): Taken from Ashbaugh et al. (1985). c):
trajectory data to derive maps of the areas bringing PM levels
from the same source types.

The Conditional Probability that a given factor contribu-
tion from a given wind direction will exceed a predetermined
threshold criterion is derived as:

CPF ¼ mθΔ
nθΔ

ð1Þ

where mΔθ is the number of occurrences from wind sector
Δθ where the source contributions are over a certain concen-
tration threshold, and nΔθ is the total number of occurrence
from this wind sector and Δθ is the size of the wind sector
(e.g. 45°).

The PSCF is as a Conditional Probability describing the
spatial distribution of probable geographical source locations
inferred by using trajectories arriving at the sampling site. A
trajectory endpoint lies in a single grid cell of latitude–longi-
he highest potential for contributing to high sulphur levels arriving at Grand
ce Contribution Function (CF) shows that the region that actually contributes
iques (residence time, Conditional Probability and Incremental Probability)
s (Eagle Pass and Big Brown) were combined with 5 day back trajectories
l Park.
Taken from Schichtel et al. (2006).



Fig. 10. Potential Source Contribution Factor (PSCF) analysis. a) PSCF map for aerosol levels at Antalya, Turkey. The highest 40% of each of 4 Factor scores from
factor analysis for source apportionment of the aerosol were selected as polluted trajectories. b) PSCF map of potential sources of PM10 in Beijing.
a): Taken from Güllü et al. (2005). b): Taken from Zhu et al. (2011).
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tude coordinates, (i,j). The PSCF value is then defined as the
probability that an air parcel that passed through the ijth

cell had a high concentration (e.g. 90th percentile) upon ar-
rival at the trajectory endpoint:

PCSFij ¼
mij

nij
ð2aÞ

nij is the total number of air masses falling into the ijth cell,
and mij is the number of segment trajectory endpoints in
the ijth cell on the days that had a source contribution greater
than the criterion value.

Or PSCFij ¼
residence time of air parcel

Residence time of air parcel above threshold concentration

ð2bÞ

Sources of particulate sulphur measurements at Big
Bend National park, Texas were traced using PSCF analysis
and IP to segregate the 20th and 80th percentile sulphur
levels according to regions with the results from two tracer
release sites as shown in Fig. 10 and the mathematical steps
in the probability calculations are explained in detail in
Schichtel et al. (2006). Kaiser et al. (2007) calculated a
PSCF where they divided the sum of the residence times of
concentrations over the 75th percentile concentration in
each grid by the sum of those concentrations below the 25th
percentile. Han et al. (2005) used PSCF to attribute highMercury
levels at 3 rural sites in New York state to nearby coal-fired
power stations.

Poirot et al. (2001) stated that only qualitative indications
of predominant transport patterns can be obtained from
probability and residence time analyses as the techniques
can be highly sensitive to the subjective metrics used to de-
fine high pollution episodes or the scale of the gridded do-
main, but agreed that the resulting maps indicating source
regions can be a very powerful tool for understanding the
air quality influences on a station.

Polissar et al. (1999, 2001a) used PSCF analysis to study
the origin of aerosol in the Arctic and found that long-range
transport of anthropogenic aerosol to the Arctic is more
effective in winter and spring than in the summer. Geograph-
ical Information System (GIS) software has shown to be use-
ful for residence time analysis, such as the TrajStat software
that has been developed by Wang et al. (2009) to compute
PSCF analysis with back trajectories.

It could be seen that there are trajectory statistical methods
where residence time is not weighted by the concentration at
the receptor point (e.g. PSCF) and methods, which do that
(e.g. the Concentration Field) (Scheifinger and Kaiser, 2007).
Seibert et al. (1994) dealt with uncertainties in the CPF by cal-
culating a logarithmic mean concentration for each grid cell
and a corresponding confidence interval and then smoothing
the Concentration Field (CF) imposing the restriction that the
values must be kept within the confidence interval. Therefore
significant variations were preserved whilst the insignificant
oneswere removed. Various tests to check the statistical signif-
icance of attributing high CFC levels at Big Bend National park
(Vasconcelos et al., 1996) have also been carried out.

The Concentration Field (CF) represents the logarithmic
mean concentration for each grid cell is calculated according to

log C
P

ij

� �
¼ 1

∑M
l¼1τijl

þ∑M
n¼llog clð Þτijl ð3Þ

where i and j are the indices of the horizontal grid, l the index of
the trajectory,M the total number of trajectories, cl the concen-
tration observed on arrival of the trajectory l and τijl the time
spent in grid cell i,j by trajectory l. A high value of Cij means
that, on average, air parcels passing over cell i,j result in high
concentrations at the receptor site.

Potential source regions give an idea of which directions/
areas pollutants are coming from but when assigning source
regions by probability analysis the concentrations measured
at the receptor locations are attributed equally to all seg-
ments of the related trajectory, whilst in reality emissions
just take place in some segments. To account for this, an iter-
ative scheme was developed by Stohl (1996), redistributing
the measured concentrations along the trajectories according
to the estimated Concentration Field from the previous itera-
tion. The Redistribution Concentration Field method (RCF)
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(Stohl, 1996) aims at extracting more information from the
data, a step on from the Conditional Probability method
where the concentration measured at the receptor sites is at-
tributed with equal weight to all segments of the trajectory.
Pollution sources are usually concentrated in “hot spots” so
probes into concentrations at a smaller scale are needed.
The concentration values along each trajectory are iteratively
re-weighted according to the ratio of the concentration of
that grid cell to the mean concentration of all grid cells
along the path of that particular trajectory. The results are
reported on maps where each grid square is assigned a
weighted concentration of the component under study.

Kaiser et al. (2007) weighted the residence time of each
trajectory arriving at four Alpine stations with the deviation
of the actual concentration from the 3-monthly running
mean so to infer potential pollutant source regions. Lin et al.
(2004) used the Concentration Field to locate grids with
high SO2 emissions and describe a method from this com-
bined with emission inventories for locating the influential
pollution sources and estimating the contribution of the
source within a particular geophysical region, for a specific
category of emission inventory. Scheifinger and Kaiser
(2007) did a validation experiment where they compared
CF, RCF and PSCF methods using SO2 measurements and
emission inventories and found that on a small scale the tra-
jectory methods work well but on a European scale these
methods did not performing well.

Emission maps for NOy have been derived over Europe
from Redistributed Concentration Field (RCF) derivations
(Wotawa and Kroger, 1999) and are shown in Fig. 11b and
Wotawa et al. (2000) compared CPF and RCF for the 90th
percentile value of O3 for various stations in the Alps. Apadula
et al. (2003) used the RCF method (as a model they call the
Identification of Sources of greenhouse Gases Plus (ISOGASP)
source–receptor model) to identify the sources and sinks of
CO2 to Plateau Rosa, Monte Cimone and Zugspitze stations
and tested the reliability of the method by forcing sources
and sinks. Salvador et al. (2010) used the RCF method to
study transport pathways of Particulate Matter and aerosols
to various locations in Europe and extensive examples of
this method are also shown in Aalto et al.'s (2002)
Fig. 11. Footprint emission sensitivity maps: a) footprint emission sensitivity map of
20 day backward calculations (January 2005–March 2007). b) NOy emission (from 0
Field calculated from trajectory statistics and the EMEP emission inventory.
a): Taken from Stohl et al. (2009). b): Taken fromWotawa and Kroger (1999).
characterisation of the origin of CO2, O3, SO2 and aerosols ar-
riving at Pallas in Finland.

During the Rocky Mountain Atmospheric Nitrogen and
Sulphur Study (RoMANS), a Concentration Field type analysis
was done using the Trajectory Mass Balance (TrMB) Model
(Eq. (4)) was used to probe source–receptor relationships.

Cit ¼ ∑
j

J¼1
QijtTijtNjt ð4Þ

where the concentration, C and number of trajectory end-
points, N were known and QT (where the emission rate, Q
and factor used to account for chemical transformation, T)
was calculated. Hourly measured atmospheric NOx, SO2 and
NH3 concentrations were compared with residence times in
various regions to determine correlations between measured
and modelled chemistry and the transport within and into
Colorado (Gebhart et al., 2011).

The mean concentration of a particular species arriving at
the receptor corresponding to the various pathways and re-
gions it passed over is a useful diagnostic. Methven et al.
(2001) studied the back trajectories for air arriving at Mace
Head, Ireland using the technique of “Origin Averaging” by
calculating a climatological density of origin (the region
where the trajectories originate) and assigning a correspond-
ing composition concentration for each area of origin, identi-
fying chemical air masses associated with different ozone
levels. Potential source regions of dust and aerosols arriving
at Tenerife in the Canary Islands were studied using Median
Concentrations at Receptor (MCAR) plots which represent
the median aerosol concentrations at the Izaňa station,
when air masses passed above each grid box (Rodriguez
et al., 2011). Mean concentration loadings from surface
sources of Persistent Organic Pollutants for each grid cell
within the pathway of Kosetice in the Czech Republic were
calculated from the composition of the air masses that pass
over each grid (Dvorska et al., 2009). Centres of gravity in de-
fined sectors were determined to quantitatively compare
mean loads in particular countries and the relative contribu-
tion of these countries to air pollution at the site.
hydrofluorocarbons (in picoseconds per kilogramme) obtained from FLEXPART
to 100×10−10 kgm−2 s−1) map over Europe derived from the Concentration
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4.1.3. Footprint emission sensitivity
In situ greenhouse gas measurement data from three

global networks (from nine measurement sites) were com-
bined with back trajectories to extract emission information
from global observed concentration increases over a baseline
(that was objectively determined by the inversion algorithm)
(Stohl et al., 2009). The plot of footprint emission sensitivity
for this study is shown in Fig. 11a for 20 day backward runs,
showing the areas around the world that are most sampled
from this station network. An NOy emission map over Europe
has been derived from the Concentration Field calculated
from trajectory statistics and the EMEP emission inventory
(Wotawa and Kroger, 1999) and is shown in Fig. 11b.

The FLEXPARTmodel was used to analyse transport path-
ways from potential flux regions towards Siberia as shown in
Fig. 8b. Ten day back trajectories released along the aircraft
flight track were calculated and the data were grouped
according to common transport properties with cluster anal-
ysis and this was used to investigate to which extent foot-
prints can explain the air mass chemical composition (Paris
et al., 2010). The footprints (relative residence times below
300 m) were calculated using Potential Emission Sensitivity
(PES), complemented by 10-day averaged relative contribu-
tions from the stratosphere to explain the source of the at-
mospheric composition along the flight track. Halse et al.
(2011) used FLEXPART backward runs to plot the footprint
emission sensitivity (the residence time of air masses per
grid cell normalised by the volume) for persistent organic
pollutants (POPs) from passive air samplers at 86 European
background sites. This was also multiplied by emission in-
ventories to calculate emission contributions to the Europe-
an background.
Fig. 12. Source region classifications for Zeppelin, Spitzbergen. a) Regions for clusteri
trajectory types (AO: Arctic Ocean, NA: North America, WNE: Western Northern E
type distribution between 1990 and 2009.
Taken from (Hirdman et al. (2010a)
Average footprint emission sensitivities were calculated
around Arctic measurement stations using FLEXPART to
study the origin of higher levels of aerosols, black carbon
and ozone at Zeppelin, Alert, Barrow (Hirdman et al.,
2010a) and the same stations and Summit (Hirdman et al.,
2010b). The 10% highest and lowest measured species con-
centrations were selected to calculate the average emission
sensitivity for that data subset. The highest and lowest 10%
emission sensitivities (SP) and the total emission sensitivity
(ST) peak near the observatory (emission sensitivities de-
crease with distance from the station) so this bias was re-
moved by calculating a relative fraction, Rp:

Rp ¼ L=M�SP=ST ð5Þ

where M is the number of measured concentrations and
L=M/10 highest or lowest concentrations. If the measured
species were completely unrelated to air mass transport
then the data subset and full dataset would look the same
and the fraction would be 0.1 but if it was greater than 0.1,
the cell would be a potential source (Hirdman et al.,
2010b). The regions used in the footprint analysis, the aver-
age contribution of each region over a year and their annual
average variation over 20 years are shown in Fig. 12 (Hirdman
et al., 2010a).

FLEXPART backward runs at 5 different elevations were
used to assess the surface influence on CO2 measurements
from an aircraft over Spain (Font et al., 2011). The horizontal,
vertical and temporal extent of the Regional Potential Surface
Influence (RPSI) residence time on atmospheric CO2 mixing
ratios was calculated and a principal component analysis
ng of the footprint emission sensitivities, b) monthly mean distribution of the
urasian cluster, ENE: Eastern Northern Eurasian), c) annual mean trajectory
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was carried out on the resulting residence times. Kuhn et al.
(2010) looked at the transport of pollutant plumes from Rus-
sian and Alaskan forest fires by plotting the footprint emis-
sion sensitivities related to aerosol measurements at
Ellesmere Island in the Canadian high Arctic and also used
combined the footprint analysis with the EDGAR emissions
database to isolate the sources of high aerosols.

4.1.4. Combining trajectory studies with source apportionment
models

Many studies, as shown in Section 2.1 for wind measure-
ments, combine the regional divisions from trajectory studies
with the results from source apportionment models. Positive
Matrix Factorisation (PMF) is a multivariate mathematical
model that has been used for source–receptor modelling
that aims to determine the major sources of a sampled atmo-
spheric species. PMF analyses are used in regulatory studies
to assess pollution sources and divide the data into common
sources such as various industrial activities or different types
of fuel burning.

Chemical Mass Balance (CMB) source apportionment
studies are used when the number and nature of the sources
in the regions are known and the unknown is the mass con-
tribution of each source to each sample, which is estimated
using regression. Song et al. (2008) explains and compares
the use of CMB, PMF and UNMIX models for interpreting
VOC measurements in Beijing, Watson et al. (2008) for PM
in the US Supersites programme and Hopke et al. (2005)
for PM in Washington, DC and Phoenix, AZ). In most cases
there is a lack of source-specific emission information and
changes in the emitted species during transport and therefore
factor analysis assigns the sources by combining source contri-
butions with source profiles in matrix multiplication. PCA pulls
out a set of components that explain asmuch as possible of the
total variance of the atmospheric species. The EPA's UNMIX
model uses a computationally intensive algorithm to estimate
the number of sources that can be seen above the noise level
in the data and from the estimated number of sources, uses
PCA to reduce the dimensionality of the data space.

In an extensive study of the transport of Particulate Matter
to a station in Vermont (Poirot et al., 2001) used both PSCF
and residence time (Incremental Probability) analysis to help
a b

Fig. 13. Cluster analysis of trajectories: a) mean trajectory pathways for Alert in Jan
each cluster shown. b) Mean trajectory pathways for Zeppelin (5 day backwards)
3880 km; 4, 3200 km; 5, 4850 km; 6, 4330 km; 7, 4330 km and 8, 3880 km. c) Clu
the pre-monsoon season.
a): Taken from Huang et al. (2010). b): Taken from Eneroth et al. (2007). c): Taken
interpret and complement the results frommultivariate math-
ematical models (Positive Matrix Factorization and UNMIX)
which had identified seven common sources with different
corresponding PM levels. PMF and UNMIX are used when
source profiles are not known and are a form of factor analysis
that is different from the traditional Principal Component Anal-
ysis (PCA, see Section 4.2.3). Various maps showing the influ-
ence of nearly the whole of North America for different
sources of PM (e.g. coal, woodsmoke, oil, soil, smelting etc.)
were constructed and compared. Other examples of PMF stud-
ies that incorporate PSCF studies of actual sampled data are
shown in Pekney et al. (2006) and Kocak et al. (2009) for Par-
ticulate Matter in Pittsburgh and Turkey respectively, Du and
Rodenburg (2007) for PCBs in New Jersey, Dogan et al. (2008)
for aerosols in Turkey, Choi et al. (2010) for VOCs in Korea.
PSCF analysis of trajectories separated by the source apportion-
ment technique of varimax-rotated factor analysiswas used for
aerosol measurements at Antalya, Turkey (Güllü et al., 2005),
highlighting the areas that resulted in high aerosol levels at
the site and the map for one factor is shown in Fig. 10a.

4.2. Cluster analysis techniques and other statistical techniques
to group air mass histories

Clusters are groups with similar distributions, in the case
of back trajectories, similar directions and lengths or a combi-
nation of trajectory pathways and composition. Cluster anal-
ysis provides an objective means of clustering trajectories
whilst giving information about the history of the air mass
and the air pollution climatology of a site, helping to deter-
mine source–receptor relationships.

Cluster analysis is a multivariate statistical technique that
groups individual trajectories of an ensemble into a smaller
number of clusters, meaning that the errors in the individual
trajectories tend to average out. Some examples of derived
mean trajectories with which to carry out composition com-
parisons are shown in Fig. 13 and a description of the tech-
niques of the various techniques used in this area of
research are described in the sections below.

Kassomenos et al. (2010) reviews three of the commonly
used cluster analysis techniques and their dependence on ar-
rival height, with examples of PM10 from trajectory clusters
c

uary (1990–2005), 10 days backwards with frequency of occurrence in % for
Trajectory lengths in the different clusters were 1, 3180 km; 2, 3920 km; 3
ster mean trajectories arriving at the mountain site of Dibrugarhin India in

from Gogoi et al. (2009).
,
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around Athens. These were a hierarchical, non-hierarchical
(k-means) and an artificial neural network known as Self
Organising Maps (SOM). They recommended that a range of
clustering techniques should be preferably used over one
type.

There are two different types of clustering algorithms,
namely hierarchical and non-hierarchical clustering.

4.2.1. Non-hierarchical clustering methods
Non-hierarchical clustering, sometimes known as parti-

tional clustering attempts to directly decompose the data
set into a set of disjoint clusters by minimising the measure
of dissimilarity in the trajectories within each cluster, whilst
maximising the dissimilarity of different clusters.

The k-means procedure is the most commonly used form
of non-hierarchical clustering for trajectory climatology stud-
ies. The k-means procedure is an iterative algorithm that uses
a specified number of clusters, k, to partition the data by
comparing each object to the arithmetic mean of all the
members of each of the k clusters (cluster centres). The selec-
tion of the optimal number of clusters that best describes the
different air flow patterns is performed by computing the
percentage change in within-cluster variance, as a function
of the number of clusters (Dorling et al., 1992). The assign-
ment of members (trajectories) to a given group (cluster) is
carried out by minimising the internal variability within the
group of trajectories and maximising the external variability
between different groups based on the trajectory co-ordinates.
It uses the Root Mean Square Deviation (RMSD) of all individu-
al clusters from their cluster mean trajectory against the num-
ber of clusters retained until a “break” is reached, indicating
that two clusters have been merged which are unacceptably
different. Alternatively, if a threshold percentage change in
RMSD is exceeded at any particular point in the clustering pro-
cess, this is also taken as an indication that an optimum num-
ber of clusters have been reached. The k-means clustering
method is often quoted as the Dorlingmethod in climatological
clustering research and is well suited for large databases be-
cause of its relatively small computational requirements (see
for example Dorling and Davies, 1995). Non-hierarchical clus-
tering requires that the number of clusters is already known
and that the objects are distributed between those. This algo-
rithm is widely used in cases where a priori information on
the nature of the measurements is available.

Examples of studies using the k-means algorithm include
clustering 15 years of Particulate Matter concentrations at
Alert (Huang et al., 2010) in Fig. 13a, monthly average ozone
andmercury to theArctic (Eneroth et al., 2007)where trajectory
clusters for Zeppelin and their average length over 5 days is
shown in Fig. 13b and comparing composition between the 6
main clusters for Alert and Barrow (Sharma et al., 2006).

Various methods for calculating the distance between the
clusters with which to define the final clusters have been
used in the literature, with RMSD and Euclidean distance
used most frequently. The Mahalanobis distance metric clus-
ters back trajectories by gathering the extreme trajectory po-
sitions belonging to a cluster and then enclosing and creating
the smallest convex hull with minimum volume covering the
backward trajectories of the clusters (Makra et al., 2010).

Fuzzymean c-clustering is a technique that is very similar to
k-means but each trajectory has a degree of belonging to several
clusters, as in fuzzy logic, rather than belonging completely to
one cluster. Fuzzy c-means uses an iterative algorithm to deter-
mine the grade ofmembership of each trajectory in each cluster,
with 0 being no membership and 1 indicating full membership
and in between is partial membership. Each trajectory was
assigned to a single cluster for which it has the largest value.
Xia et al. (2007) used this technique to derive seasonal clusters
of trajectories for air arriving in Beijing, China, which managed
to separate aerosol into physically distinct groups, explaining
47% of the variance. However, this method could not separate
fast from slowly moving trajectories.

Self Organising Maps (SOM) is considered an advanced ap-
proach of clustering (a type of Artificial Neural Network) that
can produce reliable segregation even in difficult cases (Karaca
and Camci, 2010). They operate similarly to k-means, but in-
stead of using a number of clusters they utilise a grid of nodes
with predetermined shape and size. This grid iteratively adjusts
to the data until it maps as close as possible their structure in
space. The obtained nodes (or clusters) are also organised in a
2-D grid so that similar clusters are placed near each other. In
that way, clustering is performed following a structured ap-
proach, in contrast with the unstructured k-means approach.

Two-stage clustering can further refine the clustering anal-
ysis. Borge et al. (2007) re-analysed the short trajectories from
3 European cities with unclear directionality that were derived
from an initial clustering that to create a further discrimination
between them. Davis et al. (2010) also used this 2-stage tech-
nique on a series of stations in Virginia, USA using the distances
between the horizontal and vertical trajectory endpoints and
the station. Polluted air masses over Athens (Markou and
Kassomenos, 2010) were studied by applying a second cluster-
ingmethod (using the Haversine formula, great-circle distance
between two points) to separate the clusters already obtained
by k-means clustering based on the length of their cluster-
mean trajectories, allowing them to distinguish between
short slow moving and long fast moving trajectories.

4.2.2. Hierarchical clustering methods
The purpose of the hierarchical clustering is to join objects

into successively larger clusters, using somemeasure of similar-
ity or distance, by constructing clusters within clusters. All the
classified objects are considered at each step of the hierarchical
clustering and the process is determined by the construction of
an agglomeration tree. This approach is usually used when the
number of clusters is unknown. Kalkstein et al. (1987) has com-
pared three hierarchical clustering procedures (Ward's, aver-
age-linkage and centroid) for climatological studies of back
trajectories and showed that the average-linkage method was
the most appropriate.

Hierarchical clustering partitions data following a series of
steps either by grouping or by separating the objects one by
one in each step. The two closest clusters are merged in
each step, starting the procedure with singleton clusters
and ending with a single cluster that contains all the objects.
There are a number of different techniques to measure the
distance (or the similarity) between the clusters, which
may lead to different subsets.

Ozone measurements at Mace Head (Cape et al., 2000) for
3 years were divided into four 3-month periods and the de-
rived trajectory clusters were used to classify the ozone
(these are shown in Fig. 3b as examples of linear trajectories).
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The squared distances (kilometres north and east and elevation
from ground level (as pressure)) for each arrival timewere cal-
culated between pairs of trajectories, one trajectory from each
cluster. Starting with each trajectory as a cluster, all possible
pairs are evaluated and the two clusterswith the smallest aver-
age distance between their members were joined. The proce-
dure is designed to minimise within cluster variance and
maximise between cluster variance. Fig. 14 from Cape et al.
(2000) shows how the R2, RouteMean Squared (RMS) distance
and number of clusters changes as the number of clusters by it-
erations increases, a method commonly used to calculate the
optimum number of clusters. Robinson et al. (2011) used a
similar cluster analysis method to cluster the trajectories arriv-
ing at the Bukit Atur site in Borneo during 2month long periods
in 2008 and found corresponding aerosol, halocarbon levels in
each cluster and this was backed up with residence time anal-
ysis of the source regions, showing different signatures in ter-
restrial and marine sectors.

Aerosol Optical Depth measurements in Northern India
were analysed using Cluster Spatial Variance (SPVAR) and
their frequency of occurrence is shown in Fig. 13c (Gogoi
et al., 2009). SPVAR is the sum of the squared distances be-
tween the endpoints of the cluster's component trajectories
and the mean of the trajectories in that cluster. A combina-
tion of trajectory pairs was used to calculate the SPVAR and
the 4 derived clusters. The Total Spatial Variance (TSV), the
sum of all the SPVAR, is calculated and the pairs of clusters
were combined (with the lowest increase in TSV (which is
initially zero)). At each iteration, one more trajectory is
joined to a cluster. The iterations are continued until the
last two clusters are combined. The iterative step just before
the large increase in the change of TSV gives the final number
of clusters. Trajectories arriving in Hong Kong have been
clustered using this method for analysis with CO and O3 mea-
surements (Wang et al., 2004) as well as trajectories arriving
into Lamas d'Olo in Portugal (Carvalho et al., 2010).

Ward's method is a type of hierarchical cluster analysis that
uses the sum of squares of the distance of each trajectory from
the cluster's mean trajectory and has been used for
classifying trajectory types at various Atlantic Ocean sites
(Moody et al., 1989) and to study 10 years of tracer levels at
Svalbard (Eneroth et al., 2003). The distances between each
Fig. 14. Changes in the normalised RMS distance between clusters, and the total vari
at Mace Head 1995 to 1997. Step changes in these statistics represent logical points
case, 5 major trajectory clusters.
Taken from Cape et al. (2000).
5 day trajectory at every hourly time step along the trajectories
were calculated and the spatial variance between two trajecto-
ries was quantified as the sum of all squared distances. The
smaller the distances, the more similar were the trajectories
and they were grouped together until the spatial variance in-
creases rapidly.

4.2.3. Principal component analysis
For the purposes of data dimension reduction in large

datasets, Principal Component Analysis (PCA) has been used
to group trajectories. Riccio et al. (2007) examined the role
exerted by meteorology on air quality through the classifica-
tion of atmospheric circulation patterns as a function of air
mass origin for 10 years of back trajectories arriving into Na-
ples. They used 116,896 trajectories, embedded in a 144
dimensional space. It was found that the first eight compo-
nents, i.e. the reduction of the (116896×144) data matrix
to a (116896×8) matrix, explained almost the total (N98%)
portion of initial variance, without sacrificing accuracy and
without significantly affecting the classification procedure,
but with a large speed-up in computation.

4.2.4. Significance tests between air mass types and composition
Once clusters have been determined, the average compo-

sition seen at the receptor site corresponding to these trajec-
tories needs to be investigated. There are a number of ways of
statistically testing whether the clusters have distinct compo-
sition and are different from one cluster to the other.

For nonparametric data, the Kruskal–Wallis test (Miller,
1981) has been used in many studies e.g. Salvador et al.
(2008) and Sharma et al. (2006, 2004) for non-normally dis-
tributed data to identify whether the median species concen-
trations were different between all the air mass sectors. If the
Kruskal–Wallis test leads to the rejection of the null hypoth-
esis and, thus, to the conclusion that not all samples are iden-
tical, it is appropriate to use a multiple comparison procedure
to find out which clusters were different from the others. For
example, the Dunn test was used as a multiple comparison
procedure after the Kruskal–Wallis test in a study of ozone
levels in few stations in Northeast USA (Brankov et al.,
1998). The Spearman rank-order correlation coefficients
were used in Han et al. (2005) and the Kendall τ and Pear-
ance (R2) as a function of the number of clusters for the daily back trajectories
for defining an optimum number of clusters to retain in the analysis, in this
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son's correlation coefficient were used in Paris et al. (2010) to
test for significant differences in the chemistry between the
clusters or between trajectory and dispersion model clusters
as in Han et al. (2005).

For normally-distributed data Analysis of Variance
(ANOVA) has been used extensively to detect whether the
mean composition is significantly different between the clus-
ters. Borge et al. (2007) used an analysis of variance analysis
on 24 hour mean NOx and PM10 to test if the cluster averaged
concentrations for each pollutant were statistically signifi-
cant. Occhipinti et al. (2008) used ANOVA statistics to study
the influence of agricultural areas on PM and nitrogen depo-
sition and Makra et al. (2006) and Xia et al. (2007) used
ANOVA analysis to test for differences in composition between
various air mass clusters in the Carpathian basin and Beijing
China respectively.

It is useful to display the composition in each cluster with a
box andwhisker plot, with themean, percentiles and confidence
limits. The confidence limits for the average composition of each
trajectory cluster are often very large and overlap between the
clusters but when other source apportionment techniques are
carried out alongside this, such as time-lagged correlation (Bran-
kov et al., 1998), the difference in the average composition levels
is shown to be distinct. Moy et al. (1994) carried out the student
Fig. 15. The Weybourne Atm
t-test on O3, CO and NOy data for trajectory clusters arriving in
Virginia to find statistically significant differences between the
mean composition levels in several of the clusters.

4.2.5. Cluster analysis on dispersion models
Cluster analysis has been carried out on dispersion models

on a number of occasions. One such study used a k-means clus-
ter technique based on FLEXPART dispersion model footprints
where regions were chosen prior to clustering analysis (regions
of specific sources or sinks relevant to the site) (Paris et al.,
2010) as shown in Fig. 8c. Stohl et al. (2002) used Mace Head
FLEXPART runs to compare the accuracy of classical trajectory
techniques against dispersionmodels by comparing representa-
tive single trajectories and trajectory clusters (retroplumes).
Particles were released in each dispersion run and their position
data was used for deriving a condensed model output. Cluster
analysis was used as a semi-objective method applied to best
characterise the position and shape of the entire retroplume,
by calculating the retroplume centroid, followed by on-line clus-
ter analyses of the particle positions at selectable time intervals
that minimises the root-mean-square distance between the
particles of each of the clusters and their respective retroplume
cluster centroids, andmaximises the distance between the clus-
ter centroids. As the clustering is performed independently each
ospheric Observatory.
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time, subsequent retroplume cluster centroids do not lie on a
trajectory and thus cannot be connected by a line in a trajectory
plot.

PSCF multi-receptor (MURA) residence time probability
analysis has been used to simulate sulphur concentrations
in the South West US (Lee and Ashbaugh, 2007a) on HYSPLIT
4 backwards runs with puffs of particles rather than individ-
ual particles. Back trajectory Conditional Probability analysis
uses a single receptor at a time (see Section 4.1.3) whereas
the MURA method uses several receptors at once in order to
detect sources with greater accuracy. The MURA method
designates potential source regions by counting trajectories
for each grid cell and then examines them to see how
often each region affects each receptor. Lee and Ashbaugh
(2007b) developed the single receptor forward Conditional
Probability (SIRA) method, which is a Conditional Probability
method with the second step of the MURA method added to
it. A high CP indicates a higher probability that that location
contains a source or is on the pathway to the source. To cal-
culate the SIRA back trajectories are divided into 1 hour seg-
ments and a grid is superimposed on the area of interest and
the number of trajectory segment points located in each grid
cell was counted for both sample days and high incident
days. Lee and Ashbaugh (2007c) looked at the impact of run-
ning trajectories at various elevations on the MURA method
and found that it was best to run ensembles of trajectories
in the MURA method so as to average out most of the biases
found from different trajectory starting heights.
5. Case study: using the NAME model for classification of
air mass types and corresponding composition variations
at a site

In order to illustrate the use of dispersion models to un-
tangle the regional influences of an atmospheric observatory,
a step by step description of a new methodology that has
been developed using the NAME model output is detailed
for an observatory on the UK North Sea coast as the case
study.

The Weybourne Atmospheric Observatory (52°57′N 1°07′
E) on the North Sea coast (Fig. 15) is at a strategic location for
receiving a variety of Atlantic, Arctic, European, UK and North
Sea air masses. In previous work, air masses have been divid-
ed according to wind direction or manually classified trajec-
tories (Cardenas et al., 1998; Penkett et al., 2007) but
because of the rapidly changing wind directions and the
variety of influences close by, a more detailed technique is
required.

In this case study the NAME model was run in backwards
mode, 10 days backwards in time at 3 hourly intervals (relat-
ed to the timescale of the Unified Model meteorological
fields) for 4 years of Weybourne station data (2006–2009).
The particles were released from the height of the station's
tower where the instruments sample (10 m). All instances
when the particles were near to the ground (0–100 m)
were recorded to indicate when surface emissions from dif-
ferent geographical regions (marine or land) will have been
picked up by the air mass and transported to the observation
station. The horizontal spatial resolution was 0.25°×0.25° for
the 10 day regional domain used.
Fig. 16 shows how single run outputs can be combined to
produce integrated plots (monthly and annual) that illustrate
the seasonality of the site footprints. Monthly averaged foot-
print plots for 2008 for Weybourne show seasonal changes in
the air masses histories. The 12 monthly Weybourne foot-
prints show how there is a subtle seasonal pattern of more
Arctic air in the spring and summer months and a wider
range of the footprint in winter.

For the station of interest, the domain of influence of the
NAME run is split subjectively into the main geographical
areas that have differing source characteristics, especially dif-
ferentiating between land andmarine sectors. This geograph-
ical sector map for Weybourne is shown in Fig. 17.

The NAME output represents the 10,000 inert tracer parti-
cles released during each 3 hourly period and where they are
likely to have travelled on their way to the site and the out-
put is an integration of the number of particles per grid cell
over the 10 day period and represents a probability that the
air passed over that area near to the ground, similar to the
emission sensitivities in FLEXPART (Hirdman et al., 2010b).
The particle distribution output from NAME is used to extract
the information about how many particles have passed over
each sector during the 10 days of travel for each 3 hour peri-
od by counting the total number of particles that pass over
each grid box in each geographical area. The distribution of
air particles passing over each sector can be shown as a per-
centage of the total number of particles in the domain from
each 3 hour release period (Fig. 18). The first plot in Fig. 18
shows 4 years of distributions (2006–2009) and the second
shows a smaller time period where the frequency and size
of the variations of influence are clearer and can be used to
visually isolate events and changes in air mass sector influ-
ences. Nearly all trajectories pass over multiple geographical
areas. The monthly averaged regional distribution of air
masses arriving at Weybourne illustrates the seasonality of
the Arctic and North Sea air masses that are more frequent
in spring as shown in Fig. 19a. Fig. 19b shows a similar plot
for the Cape Verde observatory, showing how this method
can pick up the seasonality of the regions that influence a
site (the synoptic climatology), with much greater Saharan
influence in winter (Carpenter et al., in press). These are sim-
ilar to the seasonal distribution of trajectory types in the
studies shown in Figs. 6 and 12.

To account for the fact that each trajectory in its ten day
passage to the station will have passed over more than one
geographical area, various permutations of combinations of
these regions have been fitted into convenient classifications.
Seven subjective air-mass classifications were defined for
Weybourne and are shown in Fig. 20. They are denoted as
Arctic only, Arctic and Europe, Atlantic, European, Local (UK
and North Sea), Scandinavian and Greenland, America (no
European).

The time integrated particle concentration or dosage (gs/
m3) in each sector shows a wide variation, with sporadic
peaks. Various tests were carried out to test for themost statis-
tically robust method for assigning a threshold for the amount
of particles in a sector that would make that sector contribute
significant influence on the air mass arriving at the station.
The final chosen method was to select a threshold of 10% of
the maximum dosage for each sector. Obviously, being closer
to the station, there were more particles in the UK sector than



Fig. 16. Weybourne 10 day 2008 integrated footprints: a) monthly b) annual.
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the American so that made the concentration threshold for
assigning the American sector as significant more sensitive.

Thresholds for each sector were derived for assigning
each trajectory the sectors it passed through. These thresh-
olds were chosen by plotting dosage (in gs/m3) against %
time in that region and finding the % thresholds for a given
sector at a dosage of 0.001 gs/m3 (for the UK and North Sea
the threshold dosage was chosen to be higher at 0.002 and for
the American sector a lower threshold dosage of 0.0003 was
chosen). These thresholds came to: Arctic (10%), Scandinavia
(10%), Europe (10%), Atlantic (13%), Greenland and Iceland
(5%), America (3%), UK (24%) and North Sea (17%). This form
of classification flags up the more distant sectors like America
as being labelled as importantwhen the same % in other sectors
Fig. 17. Regional grid divisions for Weybourne for 10 day domain.
would not have been significant. The local UK sector was only
flagged as particularly important when the trajectory spent
over 24% of the time over the UK.

Permutations of the seven sectors were combined to de-
rive a trajectory classification (as shown in Fig. 20) for the en-
tire time series, in this case as three hourly time series. The
final result is a time series with flags assigned to trajectory
types numbered 1 to 7.

The station composition data time series was averaged
into 3 hourly intervals so as to be comparable with the 3
hourly air mass trajectory type time series from the NAME-
based classification. Fig. 21 shows how the chemistry can vary
when the regions that the air masses pass over before reaching
the station change, showinghowozone andNO2 increase during
the period of a high European and UK influence (e.g. 25th–28th
July and 30th July-–1st August). The average values for each of
the air mass trajectory type were calculated as well as the stan-
dard deviation and mean for winter (DJF), summer (JJA), spring
(MAM) and autumn (SON) data for January 2006-September
2009. Fig. 22 shows the three year seasonally averaged compo-
sition in each air mass type. SO2 was highest in the local sector
and lowest in Arctic air masses and O3 was highest in European,
local and Scandinavian air masses in summer but highest in
American and Arctic air masses in winter.

The methodology of using NAME to classify composi-
tion time series can be analysed on various timescales
other than as shown in Fig. 22 for the 4 year average of
each air mass type. It would be of interest to calculate year-
ly averages so as to follow annual trends in composition for
each air mass type. Alternatively, this technique is useful
for focussing in on particular periods of interest to
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Fig. 18. Division of Weybourne sector influences for each 3 hourly period (January 2006–September 2009) and zoomed in section to show the small scale changes
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understand sudden changes in composition or to isolate
the origin of pollution spikes. This described methodology
illustrates the use of dispersion models for building up a data-
base of station footprints which can be used in a number ofways
to extract the regional influences on average levels of a variety of
atmospheric species at any timescale fromhours to years. Trends
inmeteorological and synoptic scale influences on a site of inter-
est can also be trackedwith this method, to track seasonal varia-
tions in air mass origin and assess long term variations.
Comparing the use of the NAME dispersionmodel to other tech-
niques described in this review, it is most similar to the regional
assignment of trajectories as passing through particular geo-
graphical sectors discussed in Section 4.1 and Fig. 8 (especially
the FLEXPART dispersion model in Fig. 8b). However, owing to
the spread of influence in the NAME dispersion model from tur-
bulence, the distribution over multiple regions is easier to track
than with a single line trajectory. Using the NAME model in
this way is very similar to the FLEXPART regional assignment
and relative residence times calculated by Halse et al. (2011)
and particularly Hirdman et al. (2010a) (Fig. 12) and Hirdman
et al. (2010b).
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6. Conclusions

Interpreting air mass history and the role of transport re-
mains an important tool for interpreting observed atmo-
spheric composition which, owing to meteorology, is
influenced by a variety of local and long range transport pro-
cesses. Local wind direction and speed have been mostly
replaced by a number of computational techniques (e.g. tra-
jectory and dispersion models) that quantify the far field in-
fluence. The increase in the accuracy of trajectory and
dispersion models is related to improvements in the resolu-
tion of available meteorological fields, which leads to a better
resolution of the atmospheric physics and the ability to inter-
pret the movement, mixing and transport of atmospheric
constituents.

This review paper has detailed the evolution of methodolo-
gies to interpret atmospheric composition measurements
according to air mass history. In situ wind measurements or
the use of agglomerated meteorological fields in trajectory or
dispersionmodels can be used to assess the influence of chang-
ing air masses history on composition with varying degrees of
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Fig. 20. Examples of the 7 Weybourne air mass classifications (3 hourly trajectories).
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success. The various uses of thesewindmeasurements and tra-
jectory and dispersion models for the interpretation of ground
based and aircraft data have been illustrated with examples.
80

60

40

20

0

%
 d

is
tr

ib
ut

io
n 

of
 s

ec
to

rs

16
/0

7/
20

08

21
/0

7/
20

08

26
/0

7/
20

08

31
/0

7/
20

08

140

120

100

80

60

40

20

0

O
3 

/ p
pb

Fig. 21. Weybourne composition variations with regional distribution of air mass h
well as NO2.
The historical use of local wind direction or daily meteoro-
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the synoptic scale transport captured in trajectory and disper-
sion models. The pros and cons of trajectory and dispersion
models have been explained and it is evident that the output
of both types of models and indeed also of wind direction mea-
surements is being combined with increasingly powerful com-
putational techniques to interpret the data. Trajectory analysis
remains a powerful method for tracking air mass pathways
and can often be run quickly using freely available software
within minutes, but it does not take into account the turbulence
in the atmosphere, an important feature of the atmosphere that
is incorporated into dispersionmodels. Dispersionmodels show
the spread of particle movement backwards from a point, illus-
trating the effect of turbulence on scattering air mass particles
over a large area. Dispersionmodels take into account the prob-
ability of air masses passing over discrete areas, by showing the
varying concentrations in each area, something that is much
more useful than the linear point to point air mass position of
back trajectories.

Residence time analysis links trajectories and dispersion
models with geographical sectors that have been specifically
delineated (e.g. the European continent, the Asian high emis-
sion zone, marine areas, the Sahara or country boundaries or
sectors within a fixed radius of the site). The residence time
techniques that relate measured concentrations to sectors
have been explained with examples and include Concentra-
tion Field (CF) and Redistributed Concentration Field (RCF)
and Reverse Domain Filling (RDF). Conditional Probability
Function (CPF) and Potential Source Contribution Function
(PSCF) relate the ratio of high concentrations (or exceedance
values) to average concentrations and Incremental Probabili-
ty (IP) relates the difference between high residence times
and average ones during high concentration episodes. The
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technique aims to pinpoint the areas that influence the site
when particular atmospheric species concentrations are
high, as do Footprint Emission Sensitivity maps which use
trajectories or dispersion models to extract regional or global
emission information from observed concentration increases
over a baseline. Many of these studies were complemented
with further source apportionment studies (e.g. Positive
Matrix Factorisation (PMF), Chemical Mass Balance (CMB)
and Principal Component Analysis (PCA)) that extract the
source of the emissions to more than just a region but to a
particular type of natural or anthropogenic emissions.

Another method for classifying trajectories into groups
according to similar characteristics is by using cluster analysis.
The various hierarchical and non-hierarchical techniques used
for clustering regional and synoptic influences on a site are
explained aswell as the statisticalmethods for comparing com-
position measurements between the various cluster types.

A step by step example of the procedures used to interpret
composition measurements with corresponding backward tra-
jectories or dispersion models is detailed by demonstrating a
new methodology (using the NAME atmospheric dispersion
model) for assessing the effect of air mass origin on the atmo-
spheric composition at a long term measurement station. The
case study for four years for theWeybourneAtmospheric Obser-
vatory illustrates how atmospheric composition measurements
can be exploited and how this is an especially effective tech-
nique for stations with a variety of composition influences (e.g.
a combination ofmarine and continental influences or clean and
polluted sectors). The NAMEmodel has been used to calculate a
multi-year time series of trajectory types and sectors of influ-
ence. This methodology can provide a long term view of the
type of air masses and conditions that affect each site and the
inter-annual and intra-annual variability of the air mass types
reaching the site as well as the composition of those air masses.

With the vast amount of studies that have been carried out
since the 1980s in this area of combining climatology studies
with composition measurements, there have still not been
many studies that have looked atmore than 2 or 3 years ofmea-
surements, not enough to discernwhether composition changes
are due to long term synoptic changes (changing regional influ-
ences) or changes in the composition within each region. Most
studies segregate air masses by regional influence, but few
look at the time lag between leaving that region and reaching
the site and combine thatwith species lifetimes.With the excep-
tion of aircraft experiments or for high altitude measurement
stations studies, there have been few studies to segregate the
vertical influences as well as the surface regional influences.

Understanding and being unable to unpick the history of
air-masses in the atmosphere remains an important tool for
assessing influence of emissions and change in the atmosphere.
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