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Introduction
Many studies have found associations between 
fine particulate matter [PM with aerodynamic 
diameter ≤ 2.5 μm (PM2.5)] and increased 
mortality (Dockery et  al. 1993; Franklin 
et al. 2007; Pope et al. 2002; Schwartz 1994; 
Zanobetti and Schwartz 2009). Biological 
evidence has been established for plausible 
mechanisms between PM2.5 and mortality, 
such as increased risk of ventricular arrhythmia 
and thrombotic processes, increased system 
inflammation and oxidative stress, increased 
blood pressure, decreased plaque stability, and 
reduced lung function, among others (Brook 
et al. 2009; Gauderman et al. 2004; Gurgueira 
et al. 2002; Suwa et al. 2002; Yue et al. 2007). 
Based on evidence from epidemiological and 
toxicological studies (Chen and Nadziejko 
2005; Furuyama et al. 2006; Ohtoshi et al. 
1998), National Ambient Air Quality 
Standards (NAAQS) were implemented for 
fine particulate matter. For example, the U.S. 
Environmental Protection Agency (EPA) 
revised the fine particle NAAQS in 1997, 
2006, and 2012 in order to protect public 

health (U.S. EPA 1997, 2006, 2013). Further 
changes in the standards require additional 
studies to elucidate whether health effects 
occur at levels below the current annual and 
daily U.S. EPA NAAQS of 12 and 35 μg/m3, 
respectively. The Clean Air Act Amendments 
of 1990 require the U.S.  EPA to review 
national air quality standards every 5 years to 
determine whether they should be retained 
or revised; thus, whether health effects can 
be observed below the current standards is of 
great interest and importance.

Previous studies have generally focused 
on either long-term (Hart et al. 2011; Jerrett 
et  al. 2005; Puett et  al. 2009; Schwartz 
2000) or short-term (Dominici et al. 2006; 
Katsouyanni et al. 1997; Samoli et al. 2008; 
Schwartz and Dockery 1992) exposures 
across the entire range of PM2.5 concentra-
tions. In the case of time series analyses of 
short-term exposures, the need to ensure the 
relevance of the monitoring data as well as 
the need to have a study population of a size 
for sufficent power has limited analyses to 
large cities; hence, exurbs, small cities, and 

rural areas are not generally represented in 
the literature, which may compromise the 
generalizability of the results. In addition, 
there is spatial variability in PM2.5 concen-
trations within cities that time series studies 
generally do not take into account, which 
can introduce exposure measurement error 
(Laden et al. 2006; Lepeule et al. 2012).

Chronic effects studies began using 
comparisons across cities of mortality experi-
ences of cohorts living in various communities 
and the monitored air pollutant concentra-
tions in those communities (Dockery et al. 
1993; Pope et al. 1995). Again, these studies 
suffered from exposure error due to failure 
to capture within-city spatial variability in 
exposure. Because the geographic exposure 
gradient is the exposure contrast in these 
studies, the failure to capture within-city 
contrasts leads to classical measurement error 
with expected downward bias. Studies with, 
for example, land use regression estimates of 
exposure have generally reported larger effect 
sizes (Miller et al. 2007; Puett et al. 2009). 
Previous cohort studies have not controlled 
for the acute effects of particles when esti-
mating chronic effects, raising the question of 
whether there are independent chronic effects 
that represent more than the cumulative 
effects of acute responses.

In general, existing study cohorts are not 
representative of the overall population. For 
example, the American Cancer Society (ACS) 
cohort has a higher level of education than 
the U.S. population as a whole (Stellman 
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Background: Both short- and long-term exposures to fine particulate matter (≤ 2.5 μm; PM2.5) 
are associated with mortality. However, whether the associations exist at levels below the new U.S. 
Environmental Protection Agency (EPA) standards (12 μg/m3 of annual average PM2.5, 35 μg/m3 
daily) is unclear. In addition, it is not clear whether results from previous time series studies (fit in 
larger cities) and cohort studies (fit in convenience samples) are generalizable.

Objectives: We estimated the effects of low-concentration PM2.5 on mortality.

Methods: High resolution (1 km × 1 km) daily PM2.5 predictions, derived from satellite aerosol 
optical depth retrievals, were used. Poisson regressions were applied to a Medicare population 
(≥ 65 years of age) in New England to simultaneously estimate the acute and chronic effects of 
exposure to PM2.5, with mutual adjustment for short- and long-term exposure, as well as for 
area-based confounders. Models were also restricted to annual concentrations < 10 μg/m3 or daily 
concentrations < 30 μg/m3.

Results: PM2.5 was associated with increased mortality. In the study cohort, 2.14% (95% CI: 
1.38, 2.89%) and 7.52% (95% CI: 1.95, 13.40%) increases were estimated for each 10-μg/m3 
increase in short- (2 day) and long-term (1 year) exposure, respectively. The associations held for 
analyses restricted to low-concentration PM2.5 exposure, and the corresponding estimates were 
2.14% (95% CI: 1.34, 2.95%) and 9.28% (95% CI: 0.76, 18.52%). Penalized spline models of 
long-term exposure indicated a larger effect for mortality in association with exposures ≥ 6 μg/m3 

versus those < 6 μg/m3. In contrast, the association between short-term exposure and mortality 
appeared to be linear across the entire exposure distribution.

Conclusions: Using a mutually adjusted model, we estimated significant acute and chronic effects 
of PM2.5 exposure below the current U.S. EPA standards. These findings suggest that improving 
air quality with even lower PM2.5 than currently allowed by U.S. EPA standards may benefit 
public health.
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and Garfinkel 1986). Hence, few population-
based cohort studies have been conducted 
until recently (Kloog et al. 2013).

Several time series studies examined the 
concentration–response relationship between 
PM2.5 and mortality below concentrations of 
100 μg/m3; these studies generally reported 
a linear concentration–response relationship 
(Samoli et al. 2008; Schwartz and Zanobetti 
2000). However, there have been few studies 
focusing on exposures below the current daily 
U.S. EPA standard of 35 μg/m3.

Many studies have examined the shape of 
the concentration–response curve for long-
term exposure versus short-term exposure, but 
in general, they have not covered population-
based cohorts, or have only included very 
low exposures (Schwartz et al. 2008; Crouse 
et al. 2012).

We recently presented a new hybrid 
method of assessing temporally and spatially 
resolved PM2.5 exposure for epidemiological 
studies by combining 1 km × 1 km resolu-
tion satellite-retrieved aerosol optical depth 
(AOD) measurements with traditional land 
use terms, meteorological variables, and 
their interactions (Kloog et al. 2014a). This 
approach allows for predicting daily PM2.5 
concentrations at a 1 km × 1 km spatial reso-
lution throughout the New England area of 
the northeastern United States. We also vali-
dated our model’s performance in rural areas: 
10-fold cross-validation (CV) of our model 
in rural areas (using the IMPROVE stations) 

resulted in a CV R2 of 0.92. Further details 
have been published (Kloog et al. 2014a).

The present study aimed to simultane-
ously estimate acute and chronic health effects 
of PM2.5 in a population-based Medicare 
cohort (≥ 65 years of age) encompassing the 
New England region. We used high-spatial-
resolution exposure estimates based on satel-
lite measurements that are available across 
the region and not just in limited locations. 
To make this study relevant to future assess-
ments of current U.S. EPA standards, we 
repeated the analysis after restricting the data 
to long-term exposures (365-day moving 
average) < 10 μg/m3 and repeated the time 
series analysis of short-term exposures after 
restricting the data to 2-day average exposures 
< 30 μg/m3.

Methods
Study domain. The spatial domain of our 
study included the New England area, 
comprising the states of Connecticut, Maine, 
Massachusetts, New Hampshire, Rhode 
Island, and Vermont (Figure 1A).

Exposure data. A 3-stage statistical 
modeling approach for predicting daily PM2.5 
was previously reported incorporating AOD 
and land use data for the New England region 
(Kloog et al. 2011). Previous studies have 
shown that using actual physical measure-
ments in our prediction models improved 
predictive accuracy over that of compa-
rable land use or spatial smoothing models 

(Kloog et al. 2011). With AOD retrieved by 
the multi-angle implementation of atmo-
spheric correction (MAIAC) algorithm, a 
similar approach was applied for estimating 
daily PM2.5 exposures in New England at 
a spatial resolution of 1 km × 1 km (Kloog 
et al. 2014a). In this study, the same PM2.5 
exposure predictions were employed.

Briefly, we calibrated the AOD–PM2.5 
relationship on each day of the study period 
(2003–2008) using data from grid cells with 
both ground PM2.5 monitors and AOD 
measurements (stage 1), and we used inverse 
probability weighting to address selection bias 
due to nonrandom missingness patterns in 
the AOD measurements. We then used the 
AOD–PM2.5 relationship to predict PM2.5 
concentrations for grid cells that lacked 
monitors but had available AOD measure-
ment data (stage 2). Finally, we used a gener-
alized additive mixed model (GAMM) with 
spatial smoothing and a random intercept for 
each 1 km × 1 km grid cell to impute data for 
grid cells/days for which AOD measurements 
were not available (stage 3). The performance 
of the estimated PM2.5 was validated by 
10-fold cross-validation. High out-of-sample 
R2 (R2 = 0.89, year-to-year variation 0.88–
0.90 for the years 2003–2008) was found 
for days with available AOD data. Excellent 
performance held even in cells/days with no 
available AOD (R2 = 0.89, year-to-year varia-
tion 0.87–0.91 for the years 2003–2008). 
The 1-km model had better spatial (0.87) 

Figure 1. (A) Mean PM2.5 concentrations in 2004 at a high resolution (1 km × 1 km) across New England predicted by the AOD models. (B) Predicted PM2.5 concen-
trations at a 1 km × 1 km grid for 15 November 2003.
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and temporal (0.87) out-of-sample R2 than 
the previous 10-km model (0.78 and 0.84, 
respectively). Details of the PM2.5 prediction 
models are in Kloog et al. (2014a).

Figure  1A shows an example of mean 
PM2.5 concentrations in 2004 at a 1 km × 1 km 
spatial resolution across New England. By 
averaging the estimated daily exposures at each 
location, we generated long-term exposures.

Figure 1B (a subset of the study area) 
shows that spatial variability existed even for 
daily data and was not identical to the long-
term pattern shown in Figure 1A. That is, 
there was space–time variation in the PM2.5 
exposure captured in this analysis, but not in 
previous time-series analyses.

Because the deaths were coded at the ZIP 
code level, both long- and short-term predic-
tions were matched to ZIP codes by using 
ArcGIS (ESRI, Redlands, CA) and SAS (SAS 
Institute Inc., Cary, NC) to link the ZIP code 
centroid to the nearest PM2.5 grid.

Traditionally, studies of acute air pollution 
effects have controlled for temperature using 
values taken from the nearest airport. This 
approach is not feasible for the entire region 
because many residences are distant from 
airports. In addition, there is spatiotemporal 
variation in temperature. We have applied a 
similar 3-stage statistical modeling approach 
to estimate daily ambient temperature at 1 km 
× 1 km resolution in New England using 
satellite-derived surface temperature (Kloog 
et al. 2014b). To our knowledge, such fine 
control for temperature has not previously 
been used in air pollution epidemiology.

Mortality data. Individual mortality 
records were obtained from the U.S. Medicare 
program for all residents ≥ 65 years of age for 
all available years during 2003–2008 (CMS 
2013b). The Medicare cohort was used because 
of the availability of ZIP code of residence 
data, whereas National Center for Health 
Statistics mortality data are only available at 
the county level. Additionally, previous studies 
found that elderly people are highly suscep-
tible to the effects of particulate matter (Pope 
2000). The Medicare beneficiary denomi-
nator file from the Centers for Medicare and 
Medicaid services (CMS 2013a) lists all benefi-
ciaries enrolled in the Medicare fee-for-service 
(FFS) program and contains information on 
beneficiaries’ eligibility and enrollment in 
Medicare and the date of death. The Medicare 
Provider Analysis and Review (MEDPAR) file 
includes information on age, sex, race, ZIP 
code of residence, and one record for each 
hospital admission (CMS 2013c).

Daily mortality was first aggregated by 
ZIP code and then matched with the corre-
sponding PM2.5 exposure. We summarized the 
mortality data by ZIP code and day because 
that was the finest resolution we could obtain 
for addresses. Because the mortality data sets 

did not include changes of residence, we 
assumed that the subjects lived at their current 
address over the entire study period.

Covariates. We used daily 1-km tempera-
ture data estimated from surface temperature 
measured by satellites (Kloog et al. 2014b). 
All socioeconomic variables were obtained 
through the U.S. Census Bureau 2000 Census 
Summary File 3, which includes social, 
economic, and housing characteristics (U.S. 
Census Bureau 2000). ZIP code tabulation 
area–level socioeconomic variables, including 
race, education, and median household 
income, were used. The county-level percentage 
of people who currently smoke every day, 
obtained from the CDC Behavioral Risk Factor 
Surveillance survey for the entire country, was 
also adjusted (CDC 2013). Dummy variables 
were used to control for day of the week.

Statistical models. Conventionally, the 
acute effects of air pollution are estimated by 
Poisson log-linear models, and the chronic 
effects of air pollution are estimated by Cox 
proportional hazard models (Kloog et  al. 
2013; Laden et al. 2006). Laird and Olivier 
(1981) noted the equivalence of the likelihood 
of a proportional hazard model with piecewise 
constant hazard for each year of follow-up and 
a Poisson regression with a dummy variable 
for each year of follow-up. We have taken 
advantage of this equivalence to generalize 
from dummy variables for each year to a 
spline of time to represent the baseline hazard 
and to aggregate subjects into counts per 
person time at risk, and we obtained a mixed 
Poisson regression model (Kloog et al. 2012). 
This approach allows the rate of death as a 
function of both long- and short-term expo-
sures to be modeled simultaneously. By doing 
so, we achieved the equivalence of a separate 
time series analysis for each ZIP code, greatly 
reducing the exposure error in that part of 
the model, while simultaneously conducting 
a survival analysis on the participants, and we 
were also able to estimate the independent 
effects of both exposures.

Most time series studies have reported 
stronger associations with acute exposures 
when exposures were defined as the mean 
PM2.5 on the day of death and the previous 
day (lag01) than when they were defined as 
the mean PM2.5 on the current day only, or 
for exposures with longer lags (Schwartz et al. 
1996; Schwartz 2004). We used the lag01 
average for our main analysis but performed 
a sensitivity analysis on that choice. Long-
term exposure was calculated as the 365-day 
moving average ending on the date of death 
so that our results were comparable with 
those of previous studies (Lepeule et al. 2012; 
Schwartz et al. 2008). Short-term exposure 
was defined as the difference between the 
2-day average and the long-term average, 
ensuring that acute and chronic effects were 

independent. We subtracted the long-term 
average from the short-term average to avoid 
collinearity issues and to ensure that differ-
ences between ZIP codes in PM2.5 at a given 
time did not contribute to the short-term 
effect estimate. Thus, the short-term effect 
could not be confounded by variables that 
differed across ZIP codes.

Specifically, we fit a Poisson survival 
analysis with a logarithmic link function and 
a log (population) offset term and modeled 
the expected daily death counts (μit) in the ith 
ZIP code on the tth day as follows:

log(μit) = λi + β1PMit + β2∆PMit  
	 + λ(t) + temporal covariates  
	 + spatial covariates + offset,	  [1]

where λi is a random intercept for each ZIP 
code, PMit is the 365-day moving average 
ending on day t in ZIP code i, ∆PMit is the 
deviation of the 2-day average from its long-
term average (PMit) in ZIP code i, λ(t) is a 
smooth function of time, temporal covari-
ates are temperature and day of the week, 
and spatial covariates are socioeconomic 
factors defined at the ZIP code level (percent 
of people without high school education, 
percent of white people, median household 
income) and smoking data at the county 
level. Additionally, a quasi-Poisson model was 
used to control for possible overdispersion 
(Ver Hoef and Boveng 2007).

We estimated λ(t) with a natural cubic 
spline with 5 degrees of freedom (df) per 
year to control for time and season trends. 
The specific temporal and spatial covariates 
that we used were a natural cubic spline for 
temperature with 3 df in total; a categorical 
variable for day of the week; linear variables 
for percent of people without high school 
education, percent of white people, median 
household income, and percent of people 
who currently smoke every day.

The number of deaths per ZIP code area 
over the study period (2003–2008) averaged 
319 with a standard deviation of 430. Because 
the outcome was counts, we could not adjust 
for age and sex as in a Cox model. Instead, we 
adjusted for variables that varied by ZIP code. 
The analyses were repeated without mutual 
adjustment for short- and long-term PM2.5.

We modeled the association between all-
cause mortality and PM2.5 at low doses in 
which the person-time at risk in each year of 
follow-up in each ZIP code was used as the 
offset. We also conducted effect modification 
by population size by choosing the median 
(4,628) of the ZIP code–level total population 
as the cutoff between urban and rural areas.

Estimating the effects of low-level PM2.5. 
For full cohort analyses with 10,938,852 
person-years of follow-up, all observed 
deaths were used. To estimate effects at low 
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levels of exposure, we performed restricted 
analyses: we conducted one analysis restricted 
to annual exposures < 10 μg/m3, below the 
current annual PM2.5 NAAQS of 12 μg/m3, 
and another restricted to observations with 
short-term exposure < 30 μg/m3, below the 
current daily PM2.5 NAAQS of 35 μg/m3. 
After these exclusions, the chronic analyses 
were restricted to 268,050 deaths out of 
551,024 deaths in total, and the acute 
analyses were restricted to 422,637 deaths.

Assessing the dose–response relationship. 
For both the acute and chronic analyses, 
we fit penalized regression splines in the 
restricted analyses to estimate the shape of the 
dose–response curve below current U.S. EPA 
standards. The degrees of freedom of the 
penalized splines for PM2.5 were estimated by 
generalized cross-validation (GCV).

Results
Table 1 presents a summary of the predicted 
exposures for both short- and long-term PM2.5 
exposure across all grid cells in the study area.

Table 2 presents the estimated percent 
change in all-cause mortality with 95% CIs for 
a 10-μg/m3 increase in both short- and long-
term PM2.5 in the restricted and full cohort. 
In the restricted population, we found an esti-
mated 9.28% increase in mortality (95% CI: 
0.76, 18.52%) for every 10-μg/m3 increase in 
long-term PM2.5 exposure. A 2.14% increase 
in mortality (95%  CI: 1.34,  2.95%) was 
observed for every 10-μg/m3 increase in short-
term PM2.5 exposure. For long-term exposure, 
the effect estimates were smaller when higher 
pollution days were included (7.52%; 95% CI: 
1.95,  13.40%), suggesting larger effects 
between low-concentration long-term PM2.5 
and mortality.

Without mutual adjustment, lower esti-
mates were found for both acute and chronic 

effects than for those with mutual adjustment. 
In full-cohort analyses, a 2.08% (95% CI: 
1.32,  2.84%) and a 6.46% (95%  CI: 
0.93, 12.30%) increase in mortality was found 
for each 10-μg/m3 increase in short- and long-
term PM2.5, respectively. In restricted analyses, 
the corresponding effect estimates were 2.07% 
(95% CI: 1.27, 2.89%) and 7.16% (95% CI: 
–1.23, 16.27%), respectively.

Our results were robust to the choice of 
lag period for acute exposure. We analyzed 
different averaging periods (Figure 2): for 
example, lag0 (day of death exposure) and 
lag04 (a moving average of day of death 
exposure and previous 4-day exposure). For 
the acute effects, we found a significant but 
smaller association for lag0 PM2.5 (1.71%; 
95%  CI: 1.09,  2.34%) and lag04 PM2.5 
(1.76%; 95% CI: 0.72, 2.81%) than for lag01 
analysis. The lag period used for short-term 
exposure did not affect estimates of chronic 
effects. For example, estimated increases 
in mortality with a 10-μg/m3 increase in 
long-term PM2.5 were 7.35% (95%  CI: 
1.79,  13.21%) and 7.25% (95%  CI: 
1.69, 13.12%) when short-term PM2.5 was 
classified using lag0 or lag04, respectively.

We also examined effect modifica-
tion by population size. In the full cohort, a 
significant interaction was found for chronic 
effects (p <  0.01), with a larger effect of 
12.56% (95% CI: 5.71, 19.85%) in urban 
areas compared with 3.21% (95%  CI: 
–2.92, 9.72%) in rural areas. Such a significant 
interaction, however, was not observed in the 
restricted analysis (p = 0.16). Estimates were 
14.27% (95% CI: 3.19, 26.53%) and 5.48% 
(95% CI: –4.21, 16.16%) in urban and rural 
areas, respectively. For short-term exposure, 
population size did not modify the acute 
effects in either the full cohort or the restricted 
analysis (p = 0.74 and 0.46, respectively).

In our penalized spline model for long-
term exposure below the cutoff of 10 μg/m3 
(Figure 3A), we found a nonlinear relation-
ship between long-term PM2.5 and mortality. 
The association was linear with evidence of 
a smaller effect < 6 μg/m3. However, a large 
confidence interval was observed; hence, we 
could not be confident whether the slope of 
the dose–response curve changed for long-
term exposures < 6 μg/m3. When examining 
the shape of the dose–response curve for 
chronic effects, both a linear term for short-
term exposure (the difference) and a penalized 
spline for long-term average exposure were 
included in the model, resulting in a penal-
ized spline with a df of 1.71. In contrast, we 
only included the 2-day average in the penal-
ized spline model of acute effects in order 
to provide an interpretable dose–response 
relationship (Figure 3B). The results of this 
analysis indicated a linear association across 
the exposure distribution, but we could not 
be certain about the shape of the slope for 
acute effects < 3 μg/m3.

Discussion
When we applied the predicted daily PM2.5 
with 1-km spatial resolution from our 
novel hybrid models, we observed that both 
short- and long-term PM2.5 exposure were 
significantly associated with all-cause mortality 
among residents of New England ≥ 65 years 
of age, even when restricted to ZIP codes 
and times with annual exposures < 10 μg/m3 
or with daily exposure < 30 μg/m3. Hence, 
the association of particle exposure with 
mortality exists for concentrations below the 
current standards established by the United 
States, the World Health Organization 
(WHO) (10 μg/m3 of annual average PM2.5, 
25 μg/m3 daily), and the European Union 
(EU) (25 μg/m3 of annual average PM2.5) (EU 
2013; WHO 2013). Notably, this analysis 
includes all areas in New England and all 
Medicare enrollees ≥ 65 years of age in this 
region, and it provides chronic effect estimates 
that are independent of acute effects. Based 

Table 1. Descriptive statistics for PM2.5 exposure and temperature in New England, 2003–2008.

Covariate Mean SD Minimum Median Maximum Range Q1 Q3 IQR
Lag01 PM2.5 (μg/m3) 8.21 5.10 0.00 7.10 53.98 53.98 4.60 10.65 6.05
1-year PM2.5 (μg/m3) 8.12 2.28 0.08 8.15 20.22 20.14 6.22 10.00 3.78
Temperature (˚C) 9.24 6.50 –36.79 9.81 41.51 78.30 4.90 14.39 9.49

Table 2. Percent increase in mortality (95% CI) for a 10-μg/m3 increase for both short-term and long-term 
PM2.5.

PM2.5 exposure Model Percent increase p-Value
With mutual adjustment
Short-term PM2.5 Low daily exposurea 2.14 ± 0.81 < 0.001

Full cohort 2.14 ± 0.75 < 0.001
Long-term PM2.5 Low chronic exposureb 9.28 ± 8.88 0.032

Full cohort 7.52 ± 5.73 0.007
Without mutual adjustment
Short-term PM2.5 Low daily exposurea 2.07 ± 0.80 < 0.001

Full cohort 2.08 ± 0.76 < 0.001
Long-term PM2.5 Low chronic exposureb 7.16 ± 8.75 0.109

Full cohort 6.46 ± 5.69 0.026

The full cohort analysis had 551,024 deaths. 
aThe analysis was restricted only to person time with daily PM2.5 < 30 μg/m3 (422,637 deaths). bThe analysis was restricted 
only to person time with chronic PM2.5 < 10 μg/m3 (268,050 deaths). 
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on a penalized spline model, the positive 
dose–response relationship between chronic 
exposure and mortality appears to be linear 
for PM2.5 concentrations ≥ 6 μg/m3, with 
a positive (though smaller and less precise) 
dose–response slope continuing below this 
level. This lack of power is likely due to the 
small exposed population in areas with annual 
PM2.5 < 6 μg/m3, which were quite rural.

For acute effects, we found a 2.14% 
(95% CI: 1.38, 2.89%) increase in all-cause 
mortality per 10-μg/m3 increment in PM2.5 
for the full cohort of our study, which is 
higher than the effect size of most studies 
using city averages obtained from monitors. 
For instance, in a U.S. national study by 
Zanobetti and Schwartz (2009), the effect size 
was 0.98% (95% CI: 0.75, 1.22%). Similar 
results were also obtained in a systematic 
review, where researchers determined that 
the overall summary estimate was 1.04% 
(95% CI: 0.52, 1.56%) per 10-μg/m3 incre-
ment in PM2.5 (Atkinson et al. 2014). The 
exposure data used in most previous studies 
had low spatial resolution (citywide average, 
not ZIP code), which introduced exposure 
measurement error and likely resulted in a 
downward bias in estimates; our results (for 
the acute effect) are consistent with such a 
phenomenon. Our restricted study estimated 
a 2.14% (95% CI: 1.34, 2.95%) increase in 
all-cause mortality per 10-μg/m3 increment 
in PM2.5, which was close to the effect size 
of the full cohort study, possibly because the 
sample size of the restricted study for acute 
effects was close to that of the full cohort. 
Furthermore, the U.S. EPA daily standard 
(35 μg/m3) was almost never exceeded in 
this study. In addition, lower effect estimates 
for short-term exposure were observed with 
mutual adjustment for both full cohort and 
restricted analyses. This finding has important 
implications for the interpretation of previous 
studies without such mutual adjustment.

For chronic effects, the effect estimate 
in our full cohort study was consistent with 
findings of previous studies with comparable 
sample sizes (Hoek et al. 2013; Laden et al. 
2006; Lepeule et al. 2012). For example, an 
ACS study comprising 500,000 adults from 
51 U.S. cities reported a 6% (95%  CI: 
2, 11%) increase in all-cause mortality for each 
10-μg/m3 increment in PM2.5 (Pope et  al. 
2002). A study of 13.2 million elderly Medicare 
recipients across the eastern United States 
found a 6.8% (95% CI: 4.9, 8.7%) increase 
in all-cause mortality for each 10-μg/m3 incre-
ment in PM2.5 (Zeger et  al. 2008). When 
we restricted our analysis to annual concen-
trations < 10 μg/m3, a larger slope of 9.28% 
(95% CI: 0.76, 18.52%) increase per 10 μg/m3 
was observed. Our findings suggest a larger 
effect at low concentrations among those 
≥ 65 years of age, which may also reflect particle 

composition. The sources and composition of 
the particles may differ between low-pollution 
days and high-pollution days, which are likely 
more affected by secondary aerosols. Compared 
with the effect estimate for the full cohort, the 
effect estimate from the restricted analysis was 
closer to estimates published in the literature 
that reported larger effect estimates, such as 
those reported by the ESCAPE (European 
Study of Cohorts for Air Pollution Effects) 
study, the Harvard Six Cities study, and the 
Women’s Health Initiative study (Beelen et al. 
2014; Puett et al. 2008). Smaller effect esti-
mates were also observed for chronic effects 
without mutual adjustment.

To the best of our knowledge, this study 
is the first of its kind to restrict exposure and 
to explore the dose–response relationship 
between PM2.5 below the current U.S. EPA 
standards (12 μg/m3 of annual average PM2.5, 
35 μg/m3 daily) and mortality. Moreover, 
the use of the Medicare cohort means that 
we studied the entire population of Medicare 
enrollees ≥ 65 years of age and not a conve-
nience sample. In addition, temperature was 
controlled on a 1 km × 1 km fine geographic 
scale. The acute and chronic effects observed 
in analyses restricted to low PM2.5 exposure 
were similar to or even higher than those of 
the full cohort analyses. These results indicate 
that the adverse health effects of PM2.5 are 
at least retained, if not strengthened, at low 
levels of exposure. However, the findings 
from the penalized spline model did not 
support a strong association at the lowest 
range of PM2.5 concentrations. This finding 
provides epidemiological evidence for the 
reevaluation of U.S. EPA guidelines and stan-
dards, although more evidence is needed to 
confirm the association < 6 μg/m3.

The Poisson survival analysis applied in 
this study provided a novel method of simul-
taneously assessing acute and chronic effects. 
As shown in our analysis, the chronic effect 
estimate was much larger than the acute 
effect estimate after controlling for the acute 

estimate, indicating that there were chronic 
effects of PM2.5, which cannot be solely 
explained by the short-term exposure.

Another key component of this study 
is that the application of high spatial 
(1 km × 1 km) and temporal (daily) resolution 
of PM2.5 concentrations reduced exposure 
error to a certain extent. The out-of-sample R2 
was higher than that for the predictions with 
10 km × 10 km spatial resolution.

A potential limitation is the limited 
availability of individual-level confounders, 
such as smoking status, which could bias 
the health effect estimates. We were able to 
control for ZIP code–level education, median 
income, race, and county-level smoking data. 
However, Brochu et  al. (2011) reported 
that census tract–level socioeconomic indi-
cators were uncorrelated with PM2.5 on the 
subregional and local scale, providing some 
assurance that confounding by socioeco-
nomic status may not be much of an issue. 
The results reported by Brochu et al. (2011) 
suggest that those variables may not confound 
the association, but the inability to control 
for them remains an issue. Another limitation 
is that we did not examine other pollutants 
such as ozone (O3) or nitrogen dioxide (NO2) 
owing to a lack of data at the same spatial 
level as that of PM2.5.

Conclusions
In conclusion, the acute and chronic effects of 
low-concentration PM2.5 were examined for a 
Medicare population using a comprehensive 
exposure data set obtained from a satellite-based 
prediction model. Our findings show that both 
short- and long-term exposure to PM2.5 were 
associated with all-cause mortality, even for 
exposure levels not exceeding the newly revised 
U.S. EPA standards, suggesting that adverse 
health effects occur at low levels of fine parti-
cles. The policy implication of these findings 
is that improving the air quality at even lower 
levels of PM2.5 than presently allowed by the 
U.S. EPA standards can yield health benefits.
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