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Introduction
Many studies have reported the association 
of long-term exposure with fine particulate 
matter (PM2.5) with mortality by following 
cohorts of subjects over time (Beelen et al. 
2008; Dockery et al. 1993; Jerrett et al. 2013; 
Krewski et  al. 2009; Lepeule et  al. 2012; 
Pope et al. 1995; Puett et al. 2009). Initial 
studies [the Harvard Six Cities (HSC) and 
the American Cancer Society (ACS) study] 
contrasted exposure across cities of residence 
(Dockery et al. 1993; Pope et al. 1995), and, 
more recently, land-use regression has been 
used to assign exposure, such as in the ACS 
Cancer Prevention II study (CPS-II) and the 
Nurses’ Health Study (NHS) (Jerrett et al. 
2013; Puett et al. 2009).

However, a number of issues remain 
unresolved. First, the cohorts were conve-
nience samples, which are not representative 
of the population as a whole and often under-
represent minorities. For example, both the 
ACS cohort and the NHS cohort examined 
populations with considerably higher levels 
of education than average (Pope et al. 1995; 
Puett et al. 2009). In addition, most cohorts 

(HSC, ACS, CPS-II, NHS) restricted the 
study population to city dwellers (Jerrett 
et  al. 2013; Krewski et  al. 2009; Lepeule 
et al. 2012; Puett et al. 2009), raising further 
issues about generalizability to the whole 
population. Second, temporal resolution of 
exposure has been limited. Because many 
land-use regression models rely on exten-
sive monitoring in a single year (Henderson 
et al. 2007; Hoek et al. 2008) to supplement 
routine monitoring, they are only capable of 
estimating exposure for 1 year, which is taken 
as typical. Hence, only spatial variations in 
exposure can be used. In other studies, which 
used routine monitoring (Lepeule et al. 2012; 
Miller et al. 2007; Pope et al. 2009), lack 
of monitoring for PM2.5 likewise limited 
exposure contrasts to geographic variations 
because the PM2.5 level at the nearest moni-
toring site was assigned, and often, only a few 
monitoring sites were available for each city. 
This limitation makes control for geographic 
confounders critical in all of these studies.

Further, the causal modeling approach 
has not been used to estimate the effects of 
long-term exposure to PM2.5 on mortality. 

To estimate causal effects, we need a counter
factual framework. Causal modeling seeks 
to estimate the difference in value of the 
expected mortality in the population under 
the exposure they received versus what it 
would have been had they received an alter-
native exposure. Because that counterfactual 
cannot be observed, various methods seek 
legitimate surrogates for the unobserved 
potential outcome. Randomized trials are one 
approach but are not feasible for environ-
mental exposures. Causal methods in obser-
vational epidemiology seek alternative ways 
to estimate a substitute for the counterfactual 
outcome (Baiocchi et al. 2014; Hernán et al. 
2008; Rubin 1997). One approach uses formal 
modeling techniques, such as inverse proba-
bility weighting and propensity scores, to make 
the exposure independent of all measured 
predictors and relies on the untestable assump-
tion of no unmeasured confounding (Cole 
and Hernán 2008; Stampf et  al. 2010). 
Another approach relies on natural experi-
ments or “random shocks,” which are used 
as instrumental variables. The variation in 
such an instrumental variable is a subset of 
the variation in exposure that is believed to 
be independent of measured and unmeasured 
confounders. However, the assumption that 
exposure variations caused by the instrumental 
variable are randomly assigned with respect 
to all measured or unmeasured confounders 
is untestable and often relies on external 
information for justification. When using 
natural experiments or random shocks, some 
studies made use of the temporal variation in 
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Background: Many studies have reported the associations between long-term exposure to PM2.5 
and increased risk of death. However, to our knowledge, none has used a causal modeling approach 
or controlled for long-term temperature exposure, and few have used a general population sample.

Objective: We estimated the causal effects of long-term PM2.5 exposure on mortality and tested 
the effect modifications by seasonal temperatures, census tract–level socioeconomic variables, and 
county-level health conditions.

Methods: We applied a variant of the difference-in-differences approach, which serves to approxi-
mate random assignment of exposure across the population and hence estimate a causal effect. 
Specifically, we estimated the association between long-term exposure to PM2.5 and mortality 
while controlling for geographical differences using dummy variables for each census tract in 
New Jersey, a state-wide time trend using dummy variables for each year from 2004 to 2009, and 
mean summer and winter temperatures for each tract in each year. This approach assumed that no 
variable changing differentially over time across space other than seasonal temperatures confounded 
the association.

Results: For each interquartile range (2 μg/m3) increase in annual PM2.5, there was a 3.0% [95% 
confidence interval (CI): 0.2, 5.9%] increase in all natural-cause mortality for the whole population, 
with similar results for people > 65 years old [3.5% (95% CI: 0.1, 6.9%)] and people ≤ 65 years old 
[3.1% (95% CI: –1.8, 8.2%)]. The mean summer temperature and the mean winter temperature 
in a census tract significantly modified the effects of long-term exposure to PM2.5 on mortality. We 
observed a higher percentage increase in mortality associated with PM2.5 in census tracts with more 
blacks, lower home value, or lower median income.

Conclusions: Under the assumption of the difference-in-differences approach, we identified a 
causal effect of long-term PM2.5 exposure on mortality that was modified by seasonal temperatures 
and ecological socioeconomic status.
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exposure caused by the random shock. For 
example, Clancy et al. (2002) compared the 
mortality rates before (1984–1990) and after 
(1990–1996) the ban on coal sales in Dublin, 
Ireland (Clancy et al. 2002). The ban is an 
instrumental variable that was related to a 
substantial reduction in air pollution after its 
implementation. It is likely that the ban or a 
change in policy was independent of measured 
or unmeasured variables that confounded 
the association between air pollution and 
mortality. Other studies relied on the spatio-
temporal variation in exposure caused by the 
instrumental variable, an example of which 
is the difference-in-differences approach. For 
example, Card and Krueger evaluated the 
difference in fast-food employment in New 
Jersey between February 1992 (2  months 
before an increase in the minimum wage) 
and November 1992 (5  months after the 
increase) and compared it with the difference 
in fast-food employment between February 
and November 1992 in Pennsylvania, a 
neighboring state that did not change its 
minimum wage (Card and Krueger 1994). The 
increase in the minimum wage was a random 
shock. In other words, the authors estimated 
the difference in the change (difference) in 
employment over time between the two states. 
Measured or unmeasured factors that might 
have confounded the association between the 
minimum wage and fast-food employment 
at each point in time (e.g., education) might 
have varied between the two states, but as long 
as any temporal variation in such factors was 
comparable between the states, they would 
not confound the difference in the change in 
employment over time between the states. 
Therefore, if the untestable assumption that 
the change in the minimum wage was the only 
factor influencing the difference in the rate 
of change in fast-food employment between 
New Jersey and Pennsylvania was true, the 
difference in differences was unconfounded.

In this paper, we describe a variant of the 
differences-in-differences approach to estimate 
the causal relationship between annual average 
PM2.5 and mortality in > 1,900 census tracts 
within New Jersey during 2004–2009.

Methods

Mortality Data

Death certificates in New Jersey from 2004 
to 2009, including age, race, and the census 
tract of residence at the time of death for 
each individual, were obtained from the 
New Jersey Department of Health (NJDOH 
2013). We only considered all natural-cause 
deaths. People who died of external causes 
including injuries and poisoning were excluded 
[i.e., International Statistical Classification of 
Diseases, 10th Revision (ICD-10) codes S00 
through U99]. We regarded census tract as 

the unit of the analysis and aggregated annual 
natural-cause death in each of the census tracts.

Exposure Assessment
The exposure assessment was based on a 
previously published hybrid model incorpo-
rating daily satellite remote sensing data at 
1 km × 1 km spatial resolution (Kloog et al. 
2014a). Briefly, we made use of a new algo-
rithm developed by the National Aeronautics 
and Space Administration–Multi-Angle 
Implementation to Atmospheric Correction 
(NASA-MAIAC). The MAIAC algorithm 
provides aerosol optical depth (AOD) 
data that allow us to use high-resolution 
1  km  ×  1  km (versus currently available 
10  km) AOD data. PM2.5 was predicted 
using a mixed model with AOD and spatial 
and temporal predictors including meteoro
logy, land use, and point emission. For the 
whole prediction area, the northeastern 
United States, the mean out-of-sample R2 
values obtained from 10-fold cross-validation 
and slope of predictions were 0.88 and 0.99, 
respectively, suggesting excellent prediction 
ability. The annual PM2.5 of a census tract in 
a given year was computed by averaging the 
predicted daily PM2.5 over all 1 km × 1 km 
grids within that census tract in that year.

Temperature
The daily mean air temperature at each 
1 km × 1 km grid in New Jersey was estimated 
using a similar mixed, spatiotemporal-resolved, 
and satellite-based model with Moderate 
Resolution Imaging Spectroradiometer 
(MODIS)-measured surface temperature in 
1 km × 1 km spatial resolution (Kloog et al. 
2014b). For the whole prediction area, the 
northeastern United States, the mean out-of-
sample R2 value obtained from 10-fold cross-
validation was 0.95 when surface temperature 
was available and 0.94 when surface tempera-
ture was not, suggesting excellent prediction 
performance. Additional details have been 
published elsewhere (Kloog et al. 2014b). The 
mean summer temperature of a census tract 
in a given year was computed by averaging the 
daily predicted air temperature from June to 
August in that year over all 1 km× 1 km grids 
within that census tract, and the mean winter 
temperatures were the averages in January, 
February, and December. We controlled for 
the mean summer and winter temperatures 
when estimating the association between 
PM2.5 and mortality. These two variables were 
also tested as potential effect modifiers.

Socioeconomic and Behavioral 
Data
From the U.S. Census for 2000, summary 
file 3, we obtained census tract–level data 
on population, socioeconomic status (SES) 
including percentage of black residents, 

median household income, and median 
value of owner-occupied homes (U.S. 
Census Bureau 2000). We also obtained 
age-adjusted yearly prevalence estimates of 
diabetes and smoking at the county level from 
2004 to 2009 from the Centers for Disease 
Control and Prevention (CDC) Behavioral 
Risk Factor Surveillance System (BRFSS) 
(CDC 2013).

Difference-in-Differences 
Approach
We begin with the potential outcomes frame-
work of the Rubin Causal Model (Rubin 
1991). Let Yc,t

A = a be the potential outcome 
(aggregated number of deaths) in the popula-
tion of census tract c if exposed to A = a in 
year t, and let Yc,t

A = á  be the potential outcome 
under the alternative exposure a´. We would 
like to estimate E(Yc,t

A = a)/E(Yc,t
A = á ). We assume 

that the potential outcome depends on 
predictors in the following manner:

ln(E(Ya
c,t)) = β0 + β1a + β2Zc  

	 + β3Ut + β4Wc,t  
	 + ln(Pc), 	 [1]

where Zc represents spatial confounders that 
vary among census tracts but not over the 
time period of the study (e.g., SES and diet), 
Ut represents temporal confounders that vary 
over time but not among census tracts, Wc,t 
represents confounders that vary over time 
and among census tracts, and ln(Pc) is an 
offset term representing the natural log of the 
population in census tract c.

Although Equation 1 uses the aggregated 
number of deaths in a census tract in a year 
(in an ecological form), it is closely related 
to an individual-level model. Ecological bias 
is a potential concern when nonlinear dose–
response relationships and within-area vari-
ability exist because an individual risk model 
may have a different form from the ecological 
model (Jackson et  al. 2006). However, as 
shown by Lu and Zeger (2007), a model of 
aggregated event counts can be derived from 
an individual risk model when the exposure 
is common across individuals (Lu and Zeger 
2007), as was the case for the present study, 
where PM2.5 for each individual during each 
year was assigned as the average value over 
all 1  km  ×  1  km geographic grids within 
their census tract in that year. Although 
such assignment introduces Berkson error 
in exposure assessment, it will not bias the 
effect estimates.

Specifically, for individual i in census 
tract c in year t, the risk of death (λ) could be 
modeled as follows:

λci(t, PMcit) = λ0ci(t)exp(β1 PMcit)  
	 = λ0ciexp(β1 PMcit + γcit), 	 [2]
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where λ0 represents the baseline risk of 
mortality, and γ represents the individual-
level confounders. Using the condition that 
PMcit = PMct,

λci(t, PMcit) = λ0ci exp(β1 PMct + γcit).	 [3]

This step introduces Berkson error. Then, we 
sum up both sides of Equation [3] over all of 
the subjects in tract c and year t,

μct	 = ∑iλ0ci exp(β1PMct + γcit)  
	 = exp(β1PMct) × ∑iλ0ciexp(γcit)  
	 = exp(β1PMct + ln(∑iλ0ciexp(γcit))), 
		  [4]

where μct is the expected mortality in tract 
c in year t. Because ln(Σiλ0ciexp(γcit)) is a 
function of t in tract c, we have

	 μct = exp(β1 PMct + fc(t)), 	 [5]

where fc(t) is a function of time for each 
census tract that could be decomposed into 
a tract-specific component that is constant 
over time (Zc), a time-varying component 
that is homogeneous over all tracts (Ut), and 
a component that varies over time and among 
census tracts (Wc,t), which is essentially the 
same as Equation 1.

Then, let us look at Equation 1 again. 
If we look at differences between adjoining 
years, where the exposure in the other year is 
a´, we have the following:

ln(E(Yc,t
a)) – ln(E(Y á

c,t – 1))  
	 = β1(a – a´) + β3(Ut – Ut – 1)  
		  + β4(Wc,t – Wc,t – 1),� [6] 

and Zc and β0 have disappeared. If we then 
take the difference of these differences 
between census tracts c and c´, we have

[ln(E(Yc,t
a)) – ln(E(Y á

c,t – 1))]  
 – [ln(E(Yć ,t

b )) – ln(E(Y b́
ć ,t – 1))]  

	 = β1[(a – a´) – (b – b́ )]  
		  + β4[(Wc,t – Wc,t – 1) – (Wć ,t – Wć ,t – 1)], 
� [7] 

where b and b´ are the exposures in tract c´ at 
times t and t – 1, respectively. If the change in 
Wc,t over a year is the same in both locations, 
then (Wc,t – Wc,t – 1) – (Wć ,t – Wć ,t – 1) is zero, 
and the difference between locations in these 
within-location differences will only depend 
on the difference in their exposure differ-
ences; hence, this estimate will be causal. It 
is also a marginal, not a conditional, estimate 
because it is not conditioned on Zc, Ut, and 
Wc,t. Alternatively, if differences in the rate 
of change of Wc,t are uncorrelated with differ-
ences in the rate of change of exposure in 

different locations, then the results are still 
causal. This is the key assumption of this 
approach. The advantage of this approach is 
that when this assumption holds, the ability 
to control for unmeasured confounders (Zc, 
Ut, and Wc,t) need not be observed because 
they cancel out.

We can generalize this equation to include 
many census tracts instead of two, and to 
include 6 years instead of 2, and to deal with 
nonlinear changes over time. Estimating 
differences between years (Equation [6]) 
removes confounding by variables that vary 
by census tract but not by time (Zc). In the 
context of multiple tracts, we can accom-
plish this by controlling for indicator vari-
ables for each tract. Estimating differences 
between census tracts (Equation [7]) removes 
confounding by covariates that vary over 
time but are constant between census tracts 
(Ut). Again, using indicator variables for each 
of the 6 years accomplishes the same thing 
even if the trend over time is not linear. More 
formally, from Equation 1, we have

ln(E(Yc,t
a)) = β0 + β1a + β2Zc  

		  + β3Ut + β4Wc,t + lnPc  

	 = β0 + β1a + ∑
c ≠ cR

β2ZcIc  

		  + ∑
t ≠ tR

β3UtIt + β4Wc,t + ln(Pc) 

	 = β0 + β1a + ∑
c ≠ cR

βcIc + ∑
t ≠ tR

βtIt  

		  + β4Wc,t + ln(Pc),� [8] 

where Ic and It (indicator variables for tract c 
and year t, respectively) effectively control for 
Zc and Ut under multi-tract and multi-year 
scenarios, in the same way that the differencing 
in Equations 6 and 7 controls for Zc and Ut 
when there are only two tracts and two years. 
βc is the time-invariant component for tract 
c, and βt is time trend for year t. We used cR 
to denote the reference census tract and tR to 
denote the reference year. In summary, spatial 
and temporal confounders are controlled 
because differences among census tracts and 
time trends are controlled by Ic and It, and 
there is no confounding by person-specific 
factors that vary within years and census tracts 
because all persons in a census tract during a 
given year have the same exposure.

For the above to be a causal estimate, 
we must also assume that differences in Wc,t 
from the tract-level mean (captured by the 
dummy variable for tract) and the state-
level trend are uncorrelated with the same 
differences in exposure. This is the untest-
able hypothesis, which must be judged on 
external information. How plausible is it? 
Factors such as SES and smoking rate vary 
across census tracts in New Jersey, and it is 
possible that these variations might be corre-
lated with air pollution. But all differences 

between census tracts in any such variables 
are removed by using a dummy variable for 
each tract. What remains is variation in, for 
example, smoking rates that varied differ-
entially among census tracts and over time. 
These variations would have to be correlated 
with variations in PM2.5 from the census 
tract average and mean yearly change in 
New Jersey for confounding to remain. This 
outcome seems highly implausible. Indeed, 
these tract-specific pollution changes mostly 
depend on EPA regulatory changes and on 
year-to-year variations in back trajectories 
(more- or less-polluted areas upwind), mixing 
height, and other meteorological factors that 
are unlikely to be related to smoking or to any 
other covariate over this 6-year time period, 
except temperature. Therefore, to account 
for potential confounding by temperature, 
we adjust for functions of temperatures as 
shown in Equation 9, where the difference-in-
differences approach is modeled using Poisson 
regression with overdispersion (Donohue 
and Ho 2007):

ln(E(Yc,t)) = β0 + β1PMc,t  

		 + ∑c ≠ cRβc Ic + ∑t ≠ tRβtIt  

		 + s(Tsc,t; ββTs) + s(Twc,t; ββTw)  

	 + ln(Pc),� [9] 

where PMc,t is the PM2.5 concentration in 
tract c at time t, Ic and It represent indicators 
for each census tract and year, and Tsc,t and 
Twc,t represent the mean summer and winter 
temperatures for each tract and year, which 
are modeled as linear splines (function s) with 
a single knot at their means to account for 
possible nonlinear associations of tempera-
ture with mortality. Seasonal temperatures 
are linked to mortality (Shi et  al. 2015) 
and may also be related to aerosol concen-
tration (Rosenfeld et al. 2014). Because an 
increase in temperature in the winter may 
have a different effect (and sign) on mortality 
than an increase in the summer, we chose 
to use the mean summer and mean winter 
temperature as two weather-related vari-
ables (as opposed to annual mean tempera-
ture) that may influence annual mortality 
rates (Shi et al. 2015). To summarize, the 
difference-in-differences approach controlled 
for a) geographical differences using dummy 
variables for each tract; b) a state-wide time 
trend using dummy variables for each year; 
and c) variables that varied differentially over 
time and across space that is correlated with 
PM2.5, which are seasonal temperatures. 
For the estimate to be causal, we assumed 
that no variable other than temperature that 
changed differentially across space and over 
time confounded the association between the 
exposure and the outcome.
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The difference-in-differences approach 
was applied to estimate the causal effects of 
long-term exposure to PM2.5 on mortality 
among people in New Jersey. We also esti-
mated the association for people > 65 years 
old and people ≤ 65 years old by stratifica-
tion. We tested if the association was modified 
by the mean summer temperature and by 
the mean winter temperature. We performed 
this test by adding into the model two sets 
of product terms: one set comprised the 
product terms between the spline of the mean 
summer temperature and PM2.5, and the other 
set comprised the product terms between the 
spline of the mean winter temperature and 
PM2.5. We also tested if the association was 
modified by ecological SES variables at the 
census tract level using Census 2000 data 
(the percentage of black residents, the median 
household income, and median home values) 
and by ecological health condition at the 
county level using BRFSS data from 2004–
2009 (age-adjusted prevalence of diabetes and 
smoking). These effect modifications were 
tested by adding a product term between 
PM2.5 and the modifier into the model. Not 
only did we test these effect modifications 
among the whole population, we also tested 
them in a subgroup analysis by restricting the 
study population to the white residents (70% 
of the total population) to determine whether 
the results were consistent within a race group. 

Consistency could reflect whether the associa-
tion estimated using the whole population was 
confounded by individual-level race group. 
We did not repeat the analysis for other race 
groups owing to insufficient power to detect 
effect modifications. In addition, because these 
effect modifiers all reflected the SES of a census 
tract and were potentially related to each 
other, we fitted a model with simultaneous 
interactions of PM2.5 with percent of black 
residents, home value, household income, 
smoking rate, and diabetes rate to determine 
the most robust modifiers. We used backward 
elimination to select the modifiers. Specifically, 
we started with a model with all five inter
action terms. Then, the interaction term with 
the largest p-value was dropped, and a model 
without that interaction term was refitted. We 
repeated this procedure and stopped dropping 
variables until each of the remaining inter
action terms had a p-value < 0.05.

To compare the difference-in-differences 
approach with an estimate derived using only 
the within-tract variation of the exposure, 
we performed a sensitivity analysis fitting 
Poisson regression within each of the census 
tracts that regressed total mortality against 
PM2.5 and pooled the effect estimates using 
random-effects meta-analysis.

All statistical analyses were performed 
using R 3.1.2 (R Core Team 2014). Statistical 
significance was defined as p-value < 0.05.

Results
Using population counts from Census 2000 
data, we studied 1,938 census tracts in New 
Jersey during 2004–2009. In total, there were 
365,530 deaths from 2004 to 2009, among 
which 281,170 deaths were at ages >  65, 
representing 77% of the total. Table 1 and 
Table 2 summarize the spatial and temporal 
variation of mortality, PM2.5, and tempera-
ture. The spatial variation of mortality was 
calculated by first averaging the annual deaths 
from 2004 to 2009 in each of the census tracts 
and then summarizing the distribution using 
these death counts. The spatial distribution 
of mortality had a mean of 31.4 deaths per 
year per census tract. Much of the variation in 
deaths was due to variations in the age distri-
bution and size of the population in each tract. 
For example, the 5th–95th percentile range in 
the annual mortality rate of persons > 65 years 
old across census tracts was from 22.1 to 62.8 
per thousand. The 5th–95th percentile range 
of average annual PM2.5 over 6 years ranged 
from 9.9 to 12.9 μg/m3 across census tracts 
with a mean of 11.3 μg/m3. The 5th–95th 
percentile range of mean temperature varied 
from 17.2°C to 19.6°C in summer, and from 
4.6°C to 7.0°C in winter. The temporal trend 
is presented using the average of the variables 
over all of the census tracts in New Jersey in 
each year from 2004 to 2009. Mortality counts 
went down in 2006 and 2007 compared with 
2004 and 2005, but they went back up slightly 
in 2008 and 2009, indicative of nonlinear or 
random pattern in temporal variation.

On the basis of the difference-in-differences 
approach (Equation 9), we found a 3.0% [95% 
confidence interval (CI): 0.2, 5.9%] increase in 
all natural-cause mortality for each interquartile 
range (IQR) increase in PM2.5 (2  μg/m3) 
among all residents in 1,938 census tracts in 
New Jersey during 2004–2009. By comparison, 
the meta-analysis pooling all within-census-
tract effects showed a similar increase of 3.7% 
(95% CI: 2.9, 4.5%) in mortality per IQR 
increase in PM2.5. Restricting the study popula-
tion to age of death > 65 years, we obtained 
a similar effect estimate: there was a 3.5% 
(95% CI: 0.1, 6.9%) increase in mortality per 
IQR increase in PM2.5. For people ≤ 65 years 
old, the percent change in mortality was 
similar, 3.1% (95% CI: –1.8, 8.2%), albeit 
with a wider confidence interval.

Table 1. Distribution of census tract–specific mean values for 2004 through 2009 for annual all natural-
cause mortality, annual mean PM2.5, mean summer temperature, and mean winter temperature among 
1,938 census tracts in New Jersey.

Variable Mean
5th 

percentile
25th 

percentile Median
75th 

percentile
95th 

percentile
Death counts per census tract per year (all age groups) 31.4 7.7 17.8 27.0 39.8 70.0
Mortality rate (all age groups, per 1,000) 7.3 3.0 4.9 6.6 8.5 13.6
Population [all age groups, based on Census 2000 

data (U.S. Census Bureau 2000)] 4,412 1,853 3,152 4,181 5,562 7,527
Death counts per census tract per year (age > 65) 24.2 4.3 12.5 19.5 30.3 58.7
Mortality rate (age > 65, per 1,000) 40.1 22.1 31.2 38.5 47.2 62.8
Population [age > 65, based on Census 2000 data 

(U.S. Census Bureau 2000)] 598 175 350 525 756 1,207
Death counts per census tract per year (age ≤ 65) 7.2 2.0 4.5 6.7 9.3 14.8
Mortality rate (age ≤ 65, per 1,000) 2.1 0.8 1.3 1.8 2.4 4.2
Population [age ≤ 65, based on Census 2000 data 

(U.S. Census Bureau 2000)] 3,814 1,535 2,712 3,639 4,868 6,555
Annual PM2.5 (μg/m3) 11.3 9.9 10.8 11.2 11.9 12.9
Summer temperaturea (°C) 18.6 17.2 18.2 18.7 19.1 19.6
Winter temperaturea (°C) 5.9 4.6 5.6 5.9 6.2 7.0
aSummer (winter) temperature is an average of the predicted daily temperatures across all 1 km × 1 km grids in a given 
census tract during June, July, and August (January, February, and December) in a given year.

Table 2. Annual mean values (± SD) across 1,938 New Jersey census tracts for all natural-cause mortality, annual mean PM2.5, mean summer temperature, and 
mean winter temperature.

Variable 2004 2005 2006 2007 2008 2009
Death counts per census tract per year (all age groups) 34.3 ± 23.9 34.2 ± 23.7 29.2 ± 22.5 28.7 ± 21.6 30.2 ± 21.3 32.0 ± 22.6
Death counts per census tract per year (age > 65) 26.4 ± 21.2 26.5 ± 21.0 22.2 ± 19.8 22.2 ± 19.1 23.2 ± 19.1 24.6 ± 20.2
Death counts per census tract per year (age ≤ 65) 7.9 ± 5.4 7.7 ± 5.2 7.0 ± 5.1 6.6 ± 4.7 7.0 ± 4.6 7.4 ± 4.7
Annual PM2.5 (μg/m3) 12.3 ± 1.0 12.8 ± 1.2 11.7 ± 0.9 11.6 ± 1.0 10.6 ± 0.8 9.1 ± 0.7
Summer temperaturea (°C) 18.1 ± 0.6 20.3 ± 0.8 19.1 ± 0.7 18.4 ± 0.7 18.6 ± 0.8 17.3 ± 0.7
Winter temperaturea (°C) 4.3 ± 0.7 5.0 ± 0.7 7.8 ± 0.6 5.9 ± 0.7 6.7 ± 0.7 5.7 ± 0.8
aSummer (winter) temperature is an average of the predicted daily temperatures across all 1 km × 1 km grids in a given census tract during June, July, and August (January, February, 
and December) in a given year.
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The percent change in mortality with an 
IQR increase in PM2.5 was 1.8% (95% CI: 
–1.6, 5.2%) if the mean summer and winter 
temperatures were at the average across all 
tracts and years (Table 3). By comparison, 
the percent change in mortality with an 
IQR increase in PM2.5 was –1.6% (95% CI: 
–4.2, 1.1%) if the mean summer temperature 
was 1°C below the average across tracts and 
years and the mean winter temperature was 
at the average (interaction p-value < 0.01); 
the percent change was 1.6% (95%  CI: 
–0.6, 3.8%) if the mean summer tempera-
ture was 1°C above the average across tracts 
and years and the mean winter temperature 
was at the average (interaction p-value 0.73). 
The percent change in mortality was 1.6% 
(95% CI: –0.6, 3.9%) if the mean winter 
temperature was 1°C below the average 
across tracts and years and the mean summer 
temperature was at the average (interaction 
p-value 0.82); the percent change was 5.3% 
(95%  CI: 2.9,  7.8%) if the mean winter 
temperature was 1°C above the average 
across tracts and years and the mean summer 
temperature was at the average (interaction 
p-value < 0.01).

Figure 1 shows the estimated effects per 
IQR increase in PM2.5 on mortality rates in 
the upper and lower deciles of census tract–
level percent of black residents, median home 
value, and median household income from 
Census 2000 data and age-adjusted diabetes 
and smoking rates from BRFSS data during 
2004–2009. Among the whole population, 
the percent change in mortality associated with 
PM2.5 was modified by the percent of black 
residents (interaction p < 0.01), median income 
(interaction p < 0.01), and home values (inter
action p = 0.02). We did not find effect modi-
fications by smoking rate (interaction p = 0.60) 
or percent of persons with diabetes (interaction 
p = 0.06). Using backward elimination to select 
interaction terms from the simultaneous inter
action model, we found that median house-
hold income was the only robust modifier that 
finally remained in the model. We also tested 
the consistency of these results among white 
residents (70% of the total population). We 
found that PM2.5 significantly interacted with 
percent of black residents (interaction p < 0.01), 
age-adjusted diabetes (interaction p < 0.01), 
and median income (interaction p < 0.01), but 
not with smoking rate (interaction p = 0.63) or 
median home value (interaction p = 0.13).

Discussion
The present study used a variant of the 
difference-in-differences approach to estimate 
the causal effect of long-term exposure to PM2.5 
on mortality in a large and general population.

We estimated the association between 
PM2.5 and mortality using a counter
factual framework. We accounted for SES, 

behavioral, and other risk factors that vary 
among census tracts by modeling dummy 
variables for each tract. We limited poten-
tial changes over time in such risk factors by 
focusing on a short time period (6 years) and 
by adjusting for average changes from year to 
year in New Jersey as a whole. If our assump-
tion that yearly deviations from the state-wide 
yearly fluctuations in PM2.5 by tract (mostly 
resulting from regulatory and meteorological 
fluctuations) are unlikely to be associated 
with changes in other risk factors holds, we 
have identified a causal association.

The results add to the still relatively 
small body of literature that uses the general 
population, including both high and low SES 

individuals, all occupations, and both rural 
and urban residents.

We have identified interactions between 
PM2.5 and seasonal temperature. Very few 
studies have looked at the health effects of 
long-term temperature. An increase in the 
mean summer temperature, a decrease in 
the mean winter temperature, or an increase 
in the variability of summer or winter 
temperature was associated with a decrease 
in the risk of death among Medicare benefi-
ciaries in New England during 2000–2008 
(Shi et  al. 2015). There are also very few 
studies that have investigated the inter
action between long-term temperature and 
long-term PM2.5. A survival analysis among 

Table 3. Percent change (95% confidence interval) in mortality per interquartile range increase (2 μg/m3) 
increase in PM2.5 at given summer and winter temperatures.

Mean summer  
temperature (˚C)

Mean winter  
temperature (˚C)

Percent change (95% CI) in mortality 
per IQR increase in PM2.5

18.6a (Average) 5.9b (Average) 1.8% (–1.6, 5.2%)
17.6 (Average – 1) 5.9 (Average) –1.6% (–4.2, 1.1%)
19.6 (Average + 1) 5.9 (Average) 1.6% (–0.6, 3.8%)
18.6 (Average) 4.9 (Average – 1) 1.6% (–0.6, 3.9%)
18.6 (Average) 6.9 (Average + 1) 5.3% (2.9, 7.8%)

Abbreviations: CI, confidence interval; IQR, interquartile range
aAverage of the census tract–specific mean summer temperature across 1,938 census tracts during 2004–2009.
bAverage of the census tract–specific mean winter temperature across 1,938 census tracts during 2004–2009.

Figure 1. Percent change in mortality with 95% confidence intervals for each interquartile range 
(2.0 μg/m3) increase in PM2.5 at the upper and lower decile of each modifier: percent of black residents 
(10th percentile = 0.2%, 90th percentile = 52.0%), percent of persons with diabetes (10th percentile = 6.1%, 
90th percentile = 9.2%), smoking rate (10th percentile = 7.8%, 90th percentile = 15.9%), median home value 
(10th percentile = 189,300, 90th percentile = 578,600 USD), and median household income (10th percentile 
= 35,625, 90th percentile = 115,049 USD) among (A) the whole population and (B) the white residents in 
New Jersey. Census tract–specific percent of black residents, median home value, and median household 
income came from Census 2000 data (U.S. Census Bureau 2000). County-level percent diabetics and 
smoking rate came from BRFSS data from 2004 to 2009 (CDC 2013).
*Indicates interaction p < 0.05.

●●
●●

●● ●● ●●

***

*

* *

●●

●●
●● ●●

●●

−5

0

5

10

15

−5

0

5

10

15

Pe
rc

en
t C

ha
ng

e 
in

 M
or

ta
lit

y

● 10th
90th

Black Diabetes Smokers IncomeHome Value



Causal effects of long-term PM2.5 on mortality

Environmental Health Perspectives  •  volume 124 | number 8 | August 2016	 1187

> 35 million Medicare beneficiaries residing 
in 207 U.S. cities during 2000–2010 found 
that an increase in annual, summer, or winter 
temperature was associated with an increase 
in the hazard ratio of death associated with 
PM2.5 (Kioumourtzoglou et al. 2016). We 
consistently found that an increase in the 
mean winter temperature was associated 
with an increase in the effects of PM2.5 on 
mortality. With regard to summer, the asso-
ciation between an IQR increase in PM2.5 
and mortality in tracts with mean summer 
temperatures that were higher than the 
average was similar to the overall association. 
Here, the interaction was driven by a reduced 
risk of mortality in association with PM2.5 
when mean summer temperatures were lower 
than the average. Under changing climate 
conditions, a rise in temperature not only 
would increase mortality through the direct 
effects of temperature but also would increase 
the effects of long-term PM2.5 exposure 
on mortality.

By analyzing the population of an entire 
state, we had sufficient power to test inter
action and found that the effects of PM2.5 
were greater in census tracts with a higher 
percentage of black residents, lower median 
home value, or lower median home income. 
Median household income was the most 
robust variable among these three SES vari-
ables. All of these analyses consistently 
suggested that the effects of PM2.5 were greater 
in tracts with lower SES. Consistent with our 
findings, in a recent study, Kioumourtzoglou 
et al. (2016) also found that a unit increase 
in PM2.5 in cities with higher percentages of 
black residents or lower household incomes 
was associated with a larger percent increase 
in mortality among > 35 million Medicare 
beneficiaries residing in 207 U.S. cities during 
2000–2010 (Kioumourtzoglou et al. 2016). 
When restricting the analysis to white resi-
dents, we found that the interactions were basi-
cally consistent with the analyses for the whole 
population. This finding suggests that the esti-
mates obtained using the whole population 
for PM2.5 were not confounded by individual-
level race. The consistency between these two 
analyses also suggested that the SES of the 
neighborhood (or other people) would be asso-
ciated with an individual’s susceptibility, which 
is a contextual effect.

We identified this association in a 
location and during a time period with low 
concentrations of PM2.5. The average PM2.5 
over the period of study was 11.3 μg/m3, 
and the range across the census tracts was 
from 8.2  μg/m3 to 13.7  μg/m3. Hence, 
this association was estimated at PM2.5 
levels completely below the old EPA annual 
standard of 15 μg/m3 (U.S. EPA 1997) and 
predominantly below the current standard of 
12 μg/m3 (U.S. EPA 2013).

For comparison with previous studies, we 
converted the percent change in mortality from 
our study to reflect a 10 μg/m3 increase. We 
found a 15.5% (95% CI: 0.8, 32.3%) increase 
in all natural-cause mortality for the entire 
population of New Jersey. By comparison, 
the HSC study reported an estimate of 13% 
(95% CI: 4, 23%), and its extended study 
reported a 14% (95% CI: 7, 22%) increase in 
mortality (Dockery et al. 1993; Lepeule et al. 
2012). The ACS cohort, which examined the 
association among 500,000 residents of 51 
cities found a 6% (95% CI: 2, 10%) increase in 
mortality (Pope et al. 1995, 2002). The NHS 
cohort, which examined the association with 
all-cause mortality among women, reported 
an increase of 26% (95% CI: 2, 54%) (Puett 
et al. 2009). Our results were at the higher end 
of the range compared with those of the cohort 
studies, possibly because we used a spatially 
resolved exposure model. The NHS study, 
which used geographically resolved exposure 
assessment, also tended to show a large effect 
size (Puett et al. 2009). Further, our model 
had a higher cross-validation R2 than most 
land-use regression models. Hoek et al. (2008) 
summarized a number of land-use regressions. 
The highest R2 of the model (typically higher 
than the cross-validation R2) was 0.82 (Hoek 
et al. 2008). It is typical for most models to 
have an R2 value < 0.7 (Hoek et al. 2008). The 
land-use regression used in the NHS study 
had cross-validation R2 values of 0.77 and 
0.69 for post- and pre-1999 periods, respec-
tively (Yanosky et al. 2009). By comparison, 
our model had a cross-validation R2 of 0.88, 
which produced exposure predictions with less 
measurement error. We found that the percent 
change in mortality among people > 65 years 
of age in New Jersey was 18.1% (95% CI: 
0.6, 38.6%) for each 10 μg/m3 increase in long-
term PM2.5. This estimate is larger than the 
estimated 4% (95% CI: 3, 6%) increase in all-
cause mortality among Medicare beneficiaries 
residing in 4,568 ZIP codes (people ≥ 65 years 
old) during 2000–2005 (Zeger et al. 2008), 
which was calculated by using average PM2.5 
concentrations measured by monitors within 
6 mi of a ZIP code to approximate exposure. 
A lower exposure measurement error may be 
one of the reasons why our study found a larger 
effect of PM2.5. The sensitivity analysis (meta-
analysis pooling within-census-tract effects) 
found a 3.7% (95% CI: 2.9, 4.5%) increase in 
mortality per IQR increase in PM2.5, suggesting 
that our result was close to the result obtained 
using the within-census-tract analysis.

We acknowledge that our study has limi-
tations. First, we did not control for some 
of the differential changes over time across 
census tracts. Although temperature may 
be the strongest confounder between PM2.5 
and mortality, the change over time in other 
variables such as the employment rate may 

also confound the relationship. Second, we 
did not measure individual-level predictors of 
mortality. Variations in these predictors within 
a census tract, however, cannot confound 
PM2.5 because they are not correlated with 
exposure (everyone in the tract has the same 
exposure in the same year). Nor can these vari-
ations confound associations between census 
tracts because there is no exposure contrast 
between tracts (because of the dummy vari-
ables for each tract). Furthermore, they cannot 
confound over time because the dummy vari-
ables for each year remove that pattern from 
outcome and exposure. For these variations 
to confound, their difference from the general 
trend by tract would have to be correlated with 
the differences around the trend in PM2.5, and 
we can see no mechanism that would produce 
this correlation. Although variations in the 
individual-level predictors cannot confound 
the association, we acknowledge that exposure 
misclassification can occur from assigning the 
same yearly averaged PM2.5 in census tracts 
for all residents. This variation in exposure for 
each individual around a small area should 
be Berksonian, which should not bias our 
estimates but would increase the confidence 
intervals. By comparison, cohort studies 
assigning exposure for each subject according 
to the date of death will not suffer from this 
problem if they have address-specific exposure. 
Moreover, our model is not susceptible to the 
typical ecological bias in which those who 
are exposed may not be those who develop 
the outcome; here, everyone within a census 
tract was assigned to the same geographi-
cally averaged exposure. Third, using PM2.5 
at the census-tract level to assess exposure is 
still not as accurate as using PM2.5 predictions 
at the address level. Fourth, in our analysis, 
the strong control for spatial confounding and 
temporal trend using dummy variables for each 
census tract and each year substantially lowered 
the exposure contrast across tracts and over 
time, which potentially increased the standard 
error of effect of PM2.5. Fifth, the population 
in each census tract was likely to have changed 
from 2004 to 2009. Our analyses used popula-
tion data from Census 2000 to approximate 
the population in 2004–2009, which may have 
reduced the accuracy of the estimates.

Conclusions
Under the assumption that no variable 
changing differentially over time across census 
tracts other than seasonal temperatures could 
confound the association, we found causal 
associations between PM2.5 and all natural-
cause mortality. The effect estimates of PM2.5 
from our analyses were comparable to those 
of previous cohort studies, but on the higher 
end of the range. The association was modified 
by seasonal temperatures and by ecological 
SES variables.
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