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Introduction
The ability to quickly profile and prioritize 
large numbers of compounds for potential 
hazards, including endocrine receptor binding 
activity, improved with the advent of predic-
tive in vitro high-throughput screening (HTS) 
methodologies such as ToxCast™ (Dix et al. 
2007; Kavlock et al. 2012). ToxCast™ uses 
a battery of HTS assays to develop activity 
signatures across a range of in vitro end points 
and chemistries. ToxCast™ Phase II included 
approximately 1,800 compounds screened in 
a subset of assays focusing on potential endo-
crine activity, which included both biochem-
ical and cell-based measures. Similarly, 
development of in  silico predictive QSAR 
models for toxicity estimations is continu-
ously advancing. Independent QSAR models 
are available for some of the end points in 
ToxCast™, such as estrogen receptor (ER) and 
androgen receptor (AR) binding, which were 

originally developed using smaller subsets 
of in vitro receptor binding data generated 
under other platforms. In the present study, 
we used the extensive ER and AR assay data 
published for ToxCast™ Phase II to assess the 
performance and thus to further delineate the 
validity of the 3D-QSAR model predictions 
of the ER and AR binding models imple-
mented in OASIS (Mekenyan et al. 2000). 
The predictions in terms of receptor binding 
potency are addressed for the ER model. The 
likelihood of using a tiered approach to flag 
in-domain compounds predicted as active by 
QSAR and demonstrated as strong binders in 
ToxCast™ (AC50 or concentration at which 
activity is 50% of its maximum < 1 μM) 
to identify compounds that would also be 
active in respective transactivation and the 
uterotrophic assay is addressed.

Assessment of the potential endocrine 
activity of compounds is an area of intense 

focus worldwide. In the United States, the 
Endocrine Disruptor Screening Program 
in the 21st Century (EDSP21) [U.S. 
Environmental Protection Agency (EPA) 
2015] has developed a tiered assessment and 
prioritization scheme to screen commercial 
compounds with the potential for consumer 
exposure. EDSP screening ranges from short-
term in  vitro assays to multigenerational 
studies in which eleven assays (five in vitro 
and six in vivo) are used as a first tier to deter-
mine whether compounds interact with three 
endocrine hormonal pathways—ER, AR 
and thyroid (U.S. EPA 2015). Compounds 
that bind to the ER or the AR might influ-
ence endocrine signaling by either blocking 
the binding of endogenous hormones, 
by activating receptor signaling, or by 
performing both actions (Katzenellenbogen 
1995; Katzenellenbogen et al. 2003). These 
compounds may also mimic the action of 
hormones because of their structural simi-
larity and may initiate similar downstream 
sequelae or alter the concentrations of 
hormones affecting their synthesis, transport, 
metabolism and excretion (Katzenellenbogen 
1995; Katzenellenbogen et al. 2003). The 
U.S. EPA ToxCast™ program has made 
in vitro HTS data publicly available for a 
broad range of cellular and biochemical 
targets that cover major protein superfamilies, 
key signaling pathways, and phenotypic end 
points. In addition, known nuclear receptor 
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Background: Integrative testing strategies (ITSs) for potential endocrine activity can use tiered 
in silico and in vitro models. Each component of an ITS should be thoroughly assessed.

Objectives: We used the data from three in vitro ToxCast™ binding assays to assess OASIS, a 
quantitative structure-activity relationship (QSAR) platform covering both estrogen receptor (ER) 
and androgen receptor (AR) binding. For stronger binders (described here as AC50 < 1 μM), we 
also examined the relationship of QSAR predictions of ER or AR binding to the results from 18 
ER and 10 AR transactivation assays, 72 ER-binding reference compounds, and the in vivo utero-
trophic assay.

Methods: NovaScreen binding assay data for ER (human, bovine, and mouse) and AR (human, 
chimpanzee, and rat) were used to assess the sensitivity, specificity, concordance, and applicability 
domain of two OASIS QSAR models. The binding strength relative to the QSAR-predicted binding 
strength was examined for the ER data. The relationship of QSAR predictions of binding to trans
activation- and pathway-based assays, as well as to in vivo uterotrophic responses, was examined.

Results: The QSAR models had both high sensitivity (> 75%) and specificity (> 86%) for ER as 
well as both high sensitivity (92–100%) and specificity (70–81%) for AR. For compounds within 
the domains of the ER and AR QSAR models that bound with AC50 < 1 μM, the QSAR models 
accurately predicted the binding for the parent compounds. The parent compounds were active 
in all transactivation assays where metabolism was incorporated and, except for those compounds 
known to require metabolism to manifest activity, all assay platforms where metabolism was not 
incorporated. Compounds in-domain and predicted to bind by the ER QSAR model that were 
positive in ToxCast™ ER binding at AC50 < 1 μM were active in the uterotrophic assay.

Conclusions: We used the extensive ToxCast™ HTS binding data set to show that OASIS ER 
and AR QSAR models had high sensitivity and specificity when compounds were in-domain of 
the models. Based on this research, we recommend a tiered screening approach wherein a) QSAR 
is used to identify compounds in-domain of the ER or AR binding models and predicted to bind; 
b) those compounds are screened in vitro to assess binding potency; and c) the stronger binders 
(AC50 < 1 μM) are screened in vivo. This scheme prioritizes compounds for integrative testing and 
risk assessment. Importantly, compounds that are not in-domain, that are predicted either not to 
bind or to bind weakly, that are not active in in vitro, that require metabolism to manifest activity, 
or for which in vivo AR testing is in order, need to be assessed differently.
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(NR) targets, including steroid hormone 
receptors such as the ER and the AR, are 
included (Kavlock et al. 2012).

The ER and AR binding assays studied 
herein were implemented by NovaScreen 
(NVS), and covered cloned receptors were 
isolated from three different mammalian 
species. Other assays that include transactiva-
tion- and pathway-based assays were from the 
Odyssey Thera (OT), Attagene (ATG), ACEA 
and Tox21 platforms. Uterotrophic assay data 
were obtained from a curated data set (ER 
platform) as described recently (Browne et al. 
2015). To date, the AC50 value has been the 
most commonly used in vitro parameter under 
ToxCast™ and was used herein (Dix et al. 
2007; Kavlock et al. 2012). There are several 
available in silico models for predicting ER and 
AR activity; these models are summarized else-
where (Lo Piparo and Worth 2010). Recent 
manuscripts revealed various approaches such 
as structure-based (Steinmetz et al. 2015), 
docking-based (Kolšek et al. 2014), or math-
ematical models using in vitro data (Browne 
et  al. 2015; Judson et  al. 2015; McRobb 
et al. 2014; Zhang et al. 2013) to access ER 
binding. Here, we evaluated both the qualita-
tive and the quantitative predictivity of the 
OASIS QSAR model for ER and AR binding 
and transactivation using the ToxCast™ HTS 
screening data as the challenge data set. The 
predictions in OASIS are based on the combi-
nation of a toxicodynamic and toxicokinetic 
model in a single platform, where a mecha-
nistic QSAR model for ER and AR binding 
affinity is combined with metabolism models 
[referred to in the QSAR tool as Tissue 
Metabolism Simulator (TIMES)] to address 
binding of either the parent compound or 
its predicted metabolites (Mekenyan et al. 
2000). The Common Reactivity Pattern 
(COREPA) approach (Bradbury et al. 2000; 
Mekenyan et  al. 2000) is implemented in 
the software, which helps to identify stereo-
electronic characteristics associated with a 
chemical’s biological activity by incorporating 
dynamic conformational flexibility. For the 
ER model (trained on human and trout 
in vitro assay data), relative binding affinity 
(RBA) is predicted relative to 17β-estradiol 
(100% binding). Nucleophilicity, interatomic 
distance between electronegative heteroatoms, 
and electron donor capability of heteroatoms 
are all important model variables. Similarly, 
the AR binding affinity model is based on a set 
of stereoelectronic parameters that provide a 
maximal measure of pairwise similarity among 
the conformers of the most active steroidal 
and nonsteroidal ligands. The standard QSAR 
model assesses the binding affinity of the 
parent compounds only, unless the metabo-
lism is switched on or compounds are evalu-
ated with the metabolism simulator before 
running the models (Shelby et  al. 1996). 

Principal metabolic transformations include 
oxidative reactions such as aromatic ring 
hydroxylation and O-dealkylation, which are 
generated by hepatic cytochrome P450 (CYP) 
enzymes. In this article, prediction results 
obtained from the use of ER and AR receptor 
binding 3D-QSAR models from OASIS-
TIMES relative to the ToxCast™ Phase II 
compounds are presented. The models herein 
were run without incorporation of the TIMES 
QSAR metabolism simulation because the 
ToxCast™ binding assays did not incorpo-
rate metabolism. In addition, the outcomes of 
respective transactivation assays and the utero-
trophic assay are presented for the subset of 
in-domain compounds predicted and shown 
to be active across all ToxCast™ binding plat-
forms with AC50 < 1 μM. The reliability of the 
QSAR estimate compared with the ToxCast™ 
assay result and the mechanistic explanation 
of the QSAR estimation for some compounds 
are discussed. The utility of ToxCast™ data for 
the refinement of existing QSAR models is 
also suggested.

Methods

Compounds and Assays

All compounds with data on in vitro ER and 
AR assays were obtained from the ToxCast™ 
Phase II public release on 5 December 2013 
(Dix et al. 2007). These assays span across 
different species, targets, genes, and so forth 
(see Table S1). Compounds without defined 
structures, for example, oils or mixtures such 
as milbemectin(containing milbemycin A4 
and milbemycin A3), were excluded from the 
evaluation. For compounds with more than 
one component, salts or acids were removed, 
and only the unique parent compound was 
predicted by the model. Because the bioac-
tivity (AC50) data of the parent and the salts 
were different, for comparison purposes, 
the original compound name and struc-
ture were kept the same as that provided 
by ToxCast™. The total chemical lists, CAS 
numbers, SMILES codes, corresponding 
ToxCast™ assay values, potency bins, and 
calculated RBA values are given in Excel File 
Table S2a. In addition, uterotrophic response 
data were obtained from a recent publication 
(Browne et al. 2015) for 42 compounds that 
comprised a subset of the ToxCast™ dataset. 
Seventy-two reference chemicals used in 
developing an integrated model for validating 
ToxCast™ ER assays (Judson et al. 2015) were 
also compared.

QSAR Modeling
OASIS (v.2.27.13) predictions for receptor-
mediated end points of ER and AR were 
calculated using estrogen binding affinity 
(v.03) and androgen binding affinity (v.03) 
3D-QSAR models (Mekenyan et al. 2000). 

The ER model was built with 823 compounds 
in the training set, which contained 650 
human ER and 173 trout ER relative binding 
affinity (RBA) data points (Katzenellenbogen 
et al. 2003; Serafimova et al. 2007). Similarly, 
the AR model was built with 202 compounds 
in the training set with observed RBA based 
on recombinant rat protein expressed in 
Escherichia coli, whose ligand-binding domain 
is considered to be similar to human AR (Fang 
et  al. 2003; Kelce et  al. 1994; Mekenyan 
et  al. 1997; Waller et  al. 1996). Both ER 
and AR models were based on cell-free 
competitive radio-labeled receptor binding 
in vitro assays. The training set compounds 
were also ranked for RBA for ER and AR. 
These models were applied in a batch mode 
to the compounds based on SMILES infor-
mation published by the U.S. EPA as part 
of the ToxCast™ data set (Dix et al. 2007; 
Kavlock et al. 2012). Each of the modeled end 
points was run individually, and the results 
were exported as a tab-delimited text file. 
The AM1 Hamiltonian method for MOPAC 
calculation and “Accurate” conformer genera-
tion were selected. The models were run using 
only OASIS without simulation of metabo-
lism by TIMES. The applicability domain of 
the models was studied based on the default 
values selected for total domain estimation as 
defined in the program. The total domain was 
a combination of structural-, mechanistic-, 
and parametric-based domains; compounds 
not satisfying the criteria in any of the 
sub-domains were out-of-domain in total.

Performance of QSAR Models
The performances of the ER and AR QSAR 
models for ToxCast™ compounds for indi-
vidual ER and AR assays related to the 
mammalian nuclear receptor (NR) targets 
were studied based on specificity, sensi-
tivity, and concordance. In addition, the 
potency of binding predictions for in vitro 
compounds was calculated based on the 
RBA compared with that of the positive 
control (estradiol for ER), converted into 
percentiles, and compared with the respec-
tive in  silico predictions. No potency-based 
prediction for AR binding was performed 
because we were unable to obtain AC50 
values for the positive control (i.e., R1881). 
The in  silico and in vitro predictions were 
assigned into four different bins for ER: RBA 
> 10% of positive control (denoted as high), 
0.1% ≤ 10% of positive control (medium), 
0.001% ≤ 0.1% of positive control (low) 
and from 0% < 0.001% (very low). If the 
OASIS prediction for a chemical was uncer-
tain and was assigned into two bins, the most 
conservative prediction bin (i.e., the highest 
predicted activity) was chosen. The impact 
on the probability of being positive a priori in 
the assay was also calculated using Bayesian 
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statistics. These calculations were performed 
for both the in-domain compounds and the 
total compounds.

Heat Maps for ER and AR Assays
Heat maps for ER- and AR-related assays 
were generated using TIBCO Spotfire (http://
spotfire.tibco.com/) to index the representa-
tive performance of individual assays for the 
subset of compounds that showed consistent 
agreement of ER or AR binding at AC50 
< 1 μM (strong binders). Colors were coded 
to indicate inactive and active with different 
ranges of in vitro potency.

Results

ER and AR QSAR Model 
Performance for the Binding 
Assays

The performance of the ER and AR QSAR 
models for predicting the binding activity 
of in-domain compounds (by the respec-
tive QSAR model) versus the ToxCast™ 
in vitro binding test results are summarized 
in Table 1. The top half of each table shows 
the results for ER compounds, and the lower 
half of each table shows the results for the AR 
compounds. Similar tables for all compounds 
are given in Table S2b.

For the ER QSAR model, 458 (24.8%) 
of 1,845 compounds were in-domain, 
and 1,365 (74%) were out-of-domain. 
The model assigned “No domain” for 17 
(0.9%) compounds, and no information 
was provided for 5 (0.3%) compounds. 
The ER QSAR model had both high sensi-
tivity (> 75%) and specificity (> 86%) for 
in-domain compounds. ER QSAR predic-
tions had low sensitivity (< 56%) but high 
specificity (>  95%) when the model was 
applied without distinction of domain 

boundar ie s .  Of  the  458 in-domain 
compounds, 87 (19.0%) were predicted to 
be active, and 371 (81.0%) were predicted 
to be inactive. For in-domain compounds, 
the overall concordance decreased by 
~5%, and sensitivity increased by 36–38% 
compared with predictions for the total 
compound data set.

For the AR QSAR model, 213 (12.1%) 
of 1,758 compounds were in-domain, and 
1,516 (86.2%) were out-of-domain. The 
model assigned “No domain” for 17 (0.9%) 
compounds, and no information was provided 
for 12 (0.7%) compounds. The AR QSAR 
model had both high sensitivity (92–100%) 
and specificity (70–81%) for in-domain 
compounds. AR QSAR model predictions 
had low sensitivity (< 41%) but high speci-
ficity (84–89%) when the model was applied 
without distinction of domain boundaries. Of 
the 213 in-domain compounds, 69 (32.4%) 
were predicted to be active, and 144 (67.6%) 
were predicted to be inactive. For in-domain 
compounds, the overall concordance decreased 
by ~10%, and sensitivity increased by 53–64% 
compared with predictions for the total 
compound dataset.

Consideration of Stronger ER and 
AR Binders
For both the ER and AR QSAR models, 
when the HTS results for all three mammalian 
nuclear receptor binding assays were restricted 
to those showing consistent agreement of 
binding at AC50 < 1 μM, the QSAR models 
accurately predicted binding for the parents 
or known hydroxylated metabolites 100% of 
the time. There were 20 compounds for ER 
(Table 2) and 11 for AR (Table 3) for which 
the HTS results for all three binding assays 
showed consistent agreement for binding at 
AC50 < 1 μM. For the ER QSAR model, 3 

compounds (clomiphene, tamoxifen and 
tamoxifen citrate; Figure  1) were out of 
the domain of the model, but their known 
mammalian 4-hydroxyphenyl metabolites 
satisfied the structural domain boundary 
requirements. Clearly, the domain of ER 
model is constrained to phenols, which is 
consistent with the fact that 4-hydroxy-
tamoxifen was in-domain and ~10 times 
more potent a binder than either tamoxifen 
or its citrate salt, which were considered 
out-of-domain by the model. Thus, for the 
ER model, considering not only the parent 
compounds but their hydroxylated metabolites 
was necessary to obtain the 100% prediction. 
Both parent compounds and hydroxylated 
metabolites bound strongly (AC50 < 1 μM) in 
the ToxCast™ assays. Two other compounds 
(raloxifene hydrochloride and phenolphtha-
lein) were also strong binders in  vitro but 
were predicted to be out-of-domain by the 
ER QSAR model. Thus, such data could be 
used to improve the QSAR model. For the 
AR QSAR model, all 11 compounds were 
predicted to be active and in-domain 100% 
of the time except for mifepristone, which was 
not predicted and was out-of-domain.

Heat Maps for ER and AR Assays
Heat maps were generated for the subset of 
compounds that showed consistent agree-
ment of ER or AR binding at ToxCast™ 
AC50 < 1 μM and where the QSAR models 
predicted in-domain binding for the parents 
or known hydroxylated metabolites 100% of 
the time. The heat maps (Figure 2) show the 
distribution of ToxCast™ in vitro activity for 
each assay and are color-coded by potency. 
This subset of compounds was active in all 
ER and AR transactivation assays where 
metabolism was incorporated with addition 
of an exogenous S9 fraction (OT platform). 

Table 1. Summary performance of quantitative structure-activity relationship model predictions for ToxCast™ Phase II compounds against individual mammalian 
in vitro assays: 458 in-domain compounds for estrogen receptor (ER) binding model v.03 (top) and 213 (134 for chimpanzee) in-domain compounds for androgen 
receptor (AR) binding model v.03 (bottom).

ER binding

Human Bovine Mouse

Positive Negative Total Positive Negative Total Positive Negative Total
Positive 44 13 57 31 3 34 31 10 41
Negative 43 358 401 56 368 424 56 361 417
Total 87 371 458 87 371 458 87 371 458
Sensitivity (%) 44/57 = 77.2 31/34 = 91.2 31/41 = 75.6
Specificity (%) 358/401 = 89.3 368/424 = 86.8 361/417 = 86.6
Concordance (%) (44 + 358)/458 = 87.8 (31 + 368)/458 = 87.1 (31 + 361)/458 = 85.6
Coverage [(44 + 358)/1,845] × 100 = 21.8% [(31 + 368)/1,845] × 100 = 21.6% [(31 + 361)/1,845] × 100 = 21.2%

AR binding

Human Chimpanzee Rat

Positive Negative Total Positive Negative Total Positive Negative Total
Positive 36 2 38 25 0 25 23 2 25
Negative 33 142 175 32 77 109 46 142 188
Total 69 144 213 57 77 134 69 144 213
Sensitivity (%) 36/38 = 94.7 25/25 = 100 23/25 = 92
Specificity (%) 142/175 = 81.1 77/109 = 70.6 142/188 = 75.5
Concordance (%) (36 + 142)/213 = 83.6 (25 + 77)/134 = 76.1 (23 + 142)/213 = 77.5
Coverage [(36 + 142)/1,758] × 100 = 10.1% [(25 + 77)/958] × 100 = 10.6% [(23 + 142)/1,758] × 100 = 9.38%
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For those compounds in this subset known 
to require metabolism to manifest activity, 
the transactivation response appears to be 
less promiscuous than binding because of the 
mixed nature of the response in these assays, 

which may reflect some degree of constitutive 
metabolism depending on cell type.

For ER, the heat map (Figure 2) shows the 
18 assays that were selected by the U.S. EPA 
(Judson et al. 2015) to derive an integrated 

model for ER pathway perturbation and 
were also included as component assays of 
the EDSP21 Dashboard (U.S. EPA 2015). 
Figure 2 shows that the ER compounds were 
inactive in the antagonist assays, Era_BLA_
Antagonist and Era_LUC_BG1_Antagonist, 
except for 4-hydroxytamoxifen and raloxifene, 
which are known selective ER modulators 
(SERMs). Four of the compounds known to 
undergo further metabolism in relation to ER 
activity (tamoxifen and its citrate salt, clomi-
phene citrate and raloxifene hydrochloride) 
were inactive in half of the ER assays that did 
not include metabolism but were active in 
those that did. Notably, 4-OH tamoxifen 
was inactive in the assays that did not include 
metabolism and was active in those that did; 
this was an interesting observation in view of 
its known ER binding.

Similarly, for AR, all selected compounds 
were active in all assays except for two, 
Tox21_AR_LUC_MDAKB2_Antagonist 
and Tox21_AR_BLA_Antagonist_ratio, 
which was expected because the compounds 
were agonists. The ATG_AR_TRANS assay 
exhibited differential activation to some 
known progesterone receptor agonists (such 
as spironolactone, mifepristone, cyproterone) 
but not to all (norethindrone and norg-
estrel) (Figure 3). Our findings highlight the 
ability to use QSAR models to predict those 
compounds that were uniformly active in 
all respective ToxCast™ assay platforms with 
the caveat of needing to account for some 
metabolic activation.

ER QSAR Model Performance for 
the Uterotrophic Assay
We further examined the ability of the ER 
QSAR model to predict the activity of in vivo 
responses in a curated uterotrophic data 
set (Browne et al. 2015). The sensitivity of 
the QSAR predictions averaged > 80% for 
those compounds in-domain of the model 
(see Table S3a). When the compounds in 
this group were restricted to the subset of 
strong binders (AC50 < 1 μM), the results 
showed that a QSAR prediction of receptor 

Table 3. Eleven compounds with androgen receptor (AR) binding at AC50 < 1 μM for all three mammalian 
nuclear receptor binding assays. The in silico prediction results including the total domain information 
and the in vitro assay data are given. 

Compound name
Predicted 

result Total domain NVS_NR_cAR NVS_NR_hAR NVS_NR_rAR
17α-Estradiol Active In domain 0.024 0.0057 0.242
17β-Estradiol Active In domain 0.0167 0.00293 0.12
17β-Trenbolone Active In domain 0.00744 0.000201 0.0179
17-Methyltestosterone Active In domain 0.00614 0.00144 0.0802
5α-Dihydrotestosterone Active In domain 0.00763 0.000566 0.022
Cyproterone acetatea Active In domain (belongs 

to training set)
0.0326 0.00763 0.258

Mifepristone Cannot predict Out of Domain 0.0388 0.0282 0.0621
Norethindrone Active In domain 0.00396 0.000505 0.147
Norgestrel Active In domain 0.00538 0.00131 0.093
Progesterone Active In domain 0.163 0.00763 0.414
Spironolactone Active In domain 0.0136 0.00303 0.254
aThe salt or the acid component is removed for quantitative structure-activity relationship (QSAR) modeling.

Figure 1. Tamoxifen, clomiphene (which are triphenylethylenes), and raloxifene (which is a benzothiophene) are common estrogen receptor binders used in 
clinical practice for treatment of breast cancer, induction of ovulation in subfertile women, and prevention of postmenopausal osteoporosis, respectively. 
Phenolphthalein, used in nonprescription laxative preparations, also has a weak estrogenic action (Ravdin et al. 1987). The site of 4-hydroxylation for tamoxifen 
and clomiphene is indicated with an asterisk.

Table 2. Twenty compounds with estrogen receptor (ER) binding at AC50 < 1 μM for all three mammalian 
nuclear receptor binding assays. The in silico prediction results including the total domain information 
and the in vitro assay data are given. 

Compound name
Predicted 

result Total domain NVS_NR_bER NVS_NR_hER NVS_NR_mERa
Clomiphene citratea Not active Out of Domain 0.0317 0.00975 0.187
17α-Estradiol Active In domain 0.000493 0.0000595 0.0229
17β-Estradiol Active In domain 0.000174 0.0229 0.00164
4-Hydroxytamoxifen Active In domain 0.00186 0.0025 0.0723
Diethylstilbestrol Active In domain 0.0229 0.0229 0.00632
17α-Ethinylestradiol Active In domain 0.000245 0.0000541 0.00185
Bisphenol A Active In domain 0.389 0.131 0.15
Bisphenol AF Active In domain 0.096 0.0449 0.0242
Bisphenol B Active In domain 0.149 0.0291 0.022
2,2’,4,4’-Tetrahydroxybenzophenone Active In domain 0.268 0.0534 0.176
Daidzein Active In domain 0.481 0.116 0.173
Estriol Active In domain 0.00763 0.0229 0.0421
Estrone Active In domain 0.104 0.000795 0.00763
meso-Hexestrol Active In domain 0.000277 0.0229 0.0229
1,1,1-Trichloro-2,2-bis(4-
hydroxyphenyl)ethane

Active In domain 0.0176 0.0392 0.00985

Genistein Active In domain 0.0983 0.0167 0.0901
Raloxifene hydrochloridea Not active Out of Domain 0.00763 0.0000476 0.0253
Phenolphthalein Active Out of Domain 0.658 0.887 0.228
Tamoxifen Not active Out of Domain 0.0834 0.0349 0.133
Tamoxifen citratea Not active Out of Domain 0.106 0.0246 0.223
aThe salt or the acid component is removed for quantitative structure-activity relationship (QSAR) modeling.
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binding for in-domain compounds identi-
fied active compounds of other in vitro ER 
assays and those in the in vivo uterotrophic 
assay. Notably, all of the compounds in this 
restricted group were identified as actives used 
in the training set of the ER QSAR model 
(see Table S3b).

Application of ER QSAR to 
72 Reference Compounds
The selected ToxCast™ ER-related 18 assays 
and 72 reference compounds were studied in a 
recent publication (Judson et al. 2015). These 
72 compounds were a subset of ToxCast™ 
compounds and were chosen to validate the ER 

assays. We assessed these compounds and assays 
using the OASIS QSAR model in the present 
study. There were 27 reference compounds 
with AC50 <  1  μM, of which all except 
phenolphthalein were strong binders (i.e., 
AC50 < 1 μM) in the ER ToxCast™ assay list. 
When the strong binders observed in all three 
ER-binding ToxCast™ assays were compared 
with the 72 reference compounds (Judson et al. 
2015), two strong binders in the ER ToxCast™ 
assay list (daidzein and 2,2´,4,4´-tetrahy-
droxybenzophenone) had median AC50 values 
> 1 μM, whereas 10 of 70 reference compounds 
with AC50 < 1 μM were not strong binders in 
the ER ToxCast™ assay list. Compared with 

the 42 uterotrophic compounds (Browne et al. 
2015), there were 25 compounds evaluated in 
the reference compound list.

In Vitro Binding Potency 
Estimation
The predicted potency of in vitro ER binding 
from the QSAR model was compared with the 
RBA of 17β-estradiol, the positive control used 
in deriving the RBA of the ER QSAR model. 
The RBAs for the investigated compounds 
were calculated relative to the AC50 value of 
17β-estradiol and converted into percentiles. 
Comparison of RBA levels for in silico versus 
in vitro was a poorer match for the high and 

Figure 3. Progesterone and its synthetic analogs which are progesterone receptor binders and in higher doses can bind the androgen receptor. They are used in 
clinical practice to induce abortion, treat premenstrual syndrome and pain, as hormonal contraceptives, and to reduce elevated or unwanted androgen activity in 
the body, respectively.

Figure 2. Heat maps of 18 estrogen receptor (left) and 11 androgen receptor (right) compounds with AC50 < 1 μM (most active) for ToxCast™ assays using TIBCO 
Spotfire (http://spotfire.tibco.com/). Color codes indicate least to most active compounds with the increasing gradient of brown color: darker shades indicate 
more potent activity (lower AC50), and black represents inactive compounds.
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medium binding levels of the human receptor 
than the other two species. This phenomenon 
was observed for both in-domain and total 
compounds because most of the compounds 
that were not predicted were in the “None” 
category (Table  4). For AR binding, the 
potency-based prediction was not performed 
because we were unable to obtain AC50 values 
for R1881, the positive control used to derive 
the RBA of the AR QSAR model. The AC50 
values were not available in the raw data files 
for R1881. Correspondence with a research 
scientist at the U.S. EPA (M. Martin, written 
communication, October 2014) suggested that 
the R1881 was used as a positive control at 
a couple of concentrations only, and the full 
concentration response was not obtained. In 
addition, the AC50 was not calculated based 
on the potency performance of the positive 
control (e.g., relative binding); instead, the 
positive control wells were normalized to 
derive response values (efficacy) that were 
modeled across the tested concentration range 
for the entire ToxCast™ chemical library. The 
Office of Prevention, Pesticides and Toxic 
Substances (OPPTS) EDSP test guideline for 
conducting the AR binding assay using rat 
prostate cytosol suggests blocking the potential 
interaction of the ligand with progesterone 
receptors as part of the assay procedure (U.S. 
EPA 2009). Based on personal communica-
tion with a research scientist at the U.S. EPA 
(M. Martin, written communication, October 
2014), the procedures of the NVS assay did 
not address such matters.

Probability of Positive and 
Negative Predictions
The value of the QSAR findings for 
improving the identification of ER and AR 

binding was determined using Bayesian 
analyses.  The fractions of the tested 
compounds in ToxCast™ Phase II were used 
as the “prior” and the “posterior” probabili-
ties of being positive or negative in the assay 
for all compounds as well as for those in the 
domain of the respective model. The prob-
abilities were determined for each of the three 
ER and AR binding assays (Table 5). For 
ER, the value of the QSAR was greatest for 
the in-domain compounds, where a positive 
QSAR prediction indicated a 51% chance of 
being positive in the human ER assay, and a 
negative finding indicated a 96% chance of 
being negative in the human ER assay. For 
AR, the value of the QSAR was greatest for 
the in-domain compounds, where a positive 
QSAR prediction indicated a 52% chance of 
being positive in the human AR assay, and a 
negative finding indicated a > 99% chance of 
being negative in the human AR assay.

Assessment of the QSAR models and the 
assays used to derive them is also crucial to 
understand the internal predictivity of the 
model and for comparison with the ToxCast™ 
assays. The following sections deal with 
the predictive ability of the models for the 
ToxCast™ compounds, present a comparison 
of the assays used to derive the QSAR models 
with the ToxCast™ assays, and address the 
internal predictivity of the QSAR models.

Estrogen Receptor QSAR 
Prediction for ToxCast™ 
Compounds
Of the 1,851 ToxCast™ compounds with 
in vitro ER assay AC50 data for all mamma-
lian NR targets, 6 compounds were not 
predicted by the ER QSAR model; of 
these, 5 were not active in ≥ 2 assays, and 

one (fulvestrant) was active in all three ER 
assays. Of the remaining 1,845 compounds 
that were predicted, 1,680 (91%) were not 
active in any of the three ToxCast™ in vitro 
assays, but 74 were predicted to be active by 
the in silico model. Of these 74 compounds, 
41 were in the training set of the model 
with existing experimental data; among 
these, 9 were not active, and 32 compounds 
were active with a different range of RBA 
activity (0% < RBA ≤ 10%). Similarly, of 
1,845 compounds, 45 (2.5%) were active 
in all three ToxCast™ assays; of these 45, 
28 were predicted to be active (20 in the 
training set of the ER model), and 17 were 
predicted to be not active (none in training 
set) by the in silico model. The remaining 120 
compounds were active in some assays and 
inactive in others.

Androgen Receptor (AR)
QSAR Prediction for ToxCast™ 
Compounds
Of 1,851 ToxCast™ Phase II compounds for 
AR, 93 were not predicted by the AR QSAR 
model (undefined in the range 0.001% < RBA 
< 0.1% and with missing parameters); of these 
93, 66 were not active, 5 were active in all 
three AR in vitro assays, and the remaining 22 
had different assay results. Of the remaining 
1,758 compounds that were predicted, 800 
(45.5%) did not have a value for the chim-
panzee AR binding assay (NVS_NR_cAR), 
and excluding those, 775 (44.1%) were not 
active in any of the three ToxCast™ in vitro 
assays, although 74 of these were predicted 
active by the in  silico model. Of these 74 
compounds, 10 were in the training set of 
the model with experimental in vivo data, 
where 1 was not active, and 9 were active with 

Table 5. Value of quantitative structure-activity relationship findings in improving the prediction of estrogen receptor binding (left) and androgen receptor 
binding (right).

Findings

Estrogen receptor Androgen receptor

ToxCast™ (all) cells ToxCast™ (in-domain) cells ToxCast™ (all) cells ToxCast™ (in-domain) cells

Human Bovine Mouse Human Bovine Mouse Human Chimp Rat Human Chimp Rat
Probability of positive in ToxCast™ data set (%) 6.7 3.5 5.6 12 7.4 9 7 10 6 18 19 12
Probability of positive if QSAR is positive (%) 41 28 30 51 36 36 25 26 17 52 44 33
Probability of negative in ToxCast™ data set (%) 93.3 96.5 94.4 88 92.6 91 93 80 94 82 81 88
Probability of negative if QSAR is negative (%) 96 98 96 96 99 97 95 92 95 99 100 99

Abbreviations: Chimp, chimpanzee; QSAR, quantitative structure-activity relationship.

Table 4. Summary performance of quantitative structure-activity relationship model potency predictions for in-domain ToxCast™ Phase II compounds against 
individual mammalian in vitro assays for estrogen receptor binding model v.03.

In domain in vitro

Bovine Human Mouse

In silico

Total

In silico

Total

In silico

TotalHi Med Low VLow None Hi Med Low VLow None Hi Med Low VLow None
Hi 3 1 0 0 0 4 8 7 7 0 2 24 3 2 0 0 0 5
Med 5 6 1 0 0 12 1 6 11 4 7 29 4 3 8 0 1 16
Low 0 1 5 0 1 7 0 0 0 0 4 4 0 4 3 1 10 18
VLow 0 4 3 2 2 11 0 0 0 0 0 0 0 0 0 0 2 2
Total 8 12 9 2 3 34 9 13 18 4 13 57 7 9 11 1 13 41

Abbreviations: Hi, high; Med, medium; VLow, very low. 
Data are bolded to show agreement and italicized and bolded to show disagreement. Potency bins are described in “Performance of QSAR Models” under “Methods.”
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a different range of RBA activity (0.001% 
≤  RBA ≤  0.1%). Similarly, 39 (2.2%) 
compounds were active in all three ToxCast™ 
assays; of these, 20 were predicted active, 14 
were predicted not active, and 5 were not 
predicted by the in silico model.

Comparison of the ER Assay 
Used for the QSAR Model versus 
ToxCast™ ER Binding Assays
Restricting the analysis to compounds 
with relatively high in vitro activity, that is, 
compounds with RBA > 0.1% that were in 
the ER QSAR training set (17 compounds), 
we found 14 to be active in all 3 ToxCast™ 
in  vitro assays of mouse, bovine, and 
human. Of these, 4-nonylphenol (linear) 
was inactive in all 3 ToxCast™ in  vitro 
binding assays (but active in 10 of 11 of the 
remaining agonist-mode assays), 4-dodecyl-
phenol was inactive in 2 of 3 assays (bovine 
and mouse), and mestranol was inactive in 
only 1 (mouse) of 3 ToxCast™ assays (see 
Figure 4). Similarly, for inactive compounds 
present in the ER QSAR model (107 
compounds), 1, 9 and 7 were active in the 
bovine, human, and mouse ToxCast™ assays, 
respectively. Phenolphthalein was active in 
all three ToxCast™ assays, whereas phenol 
red, 2,2´,6,6´-tetrachlorobisphenol A, and 
4-(hexyloxy)phenol were active in 2 (human 
and mouse) of 3 assays. Some compounds 
such as phthalates were considered active in 
the training set for the ER QSAR model but 
were inactive in the ToxCast™ in vitro assay 
(see Table S3c). This outcome highlights 
the contradictory assay results for the same 
compounds between different in vitro assay 
platforms and ToxCast™.

Comparison of the AR Assay 
Used for the QSAR Model versus 
ToxCast™ AR Binding Assays
Restricting the analysis to compounds with 
relatively high activity (RBA > 0.1%) that 
were in the AR QSAR training set (46 
compounds), only 2 (cyproterone acetate and 
hydroxyflutamide) were active in all three 
ToxCast™ in vitro assays of rat, chimpanzee, 
and human. Similarly, all 30 compounds that 

were inactive in the training set of the model 
were inactive or not predicted (NA) in all 
three ToxCast™ in vitro assays.

QSAR Model Internal Predictivity 
of Training Set Compounds
In some cases, some of the training set 
compounds that were used to derive the 
model were either positive in the in  vitro 
ER binding assay but the QSAR model 
predicted no binding activity (see Table S4a), 
or were negative in  vitro but predicted 
to be positive by the QSAR model (see 
Table  S4b). Similarly, some compounds 
were either positive in the AR assay and 
belonged to the training set of the model 
but were predicted to be negative by QSAR 
model (see Table S5a), or they were negative 
in vitro but predicted to be positive by the 
QSAR model (see Table S5b). Out of 190 
compounds with relatively high RBA activity 
in the ER QSAR model, 31 were predicted 
to be out of the total applicability domain of 
the model. Similarly, out of 76 compounds 
with relatively high RBA activity in the 
AR QSAR model, 19 were predicted to be 
out of the total applicability domain of the 
model. The full list of compounds with their 
names, SMILES codes, in vitro assay values, 
and in  silico predictions is given in Excel 
File Table S2a.

Discussion
The OASIS 3D QSAR models that were 
used to estimate ToxCast™ in vitro data do 
not have 100% predictive capability. There 
are active compounds that belonged to the 
training set of the model and were in-domain, 
but the QSAR model predicted no binding 
activity. Moreover, some of the compounds 
were predicted to be opposite in activity by 
the ER or AR QSAR models. This lack of 
predictivity and these opposing predictions 
could be caused by an undefined RBA activity 
or by some missing parameters needed for 
the prediction, thus reducing the prediction 
performance of the models when using them 
to further evaluate novel compounds. We 
also noticed contradictory assay results for the 
same compounds found in the in silico model 

and ToxCast™ in  vitro data. Because the 
in vitro assay data platform used to develop 
the OASIS-QSAR model is different than 
that of the ToxCast™ assay, we expected to 
find subtle differences in assay activities and 
predictions, particularly for weak binders. 
The differences in assay activities were found 
more often in the ER platform than in the 
AR platform for the same compounds.

The sensitivity and specificity of the 
in silico models for binding assays were > 80% 
on average for the in-domain compounds. 
This result reveals that a robust and predic-
tive QSAR model developed on multiple 
assay and species (in vitro human and trout 
data) platforms can be used to predict 
other in  vitro and/or in  vivo data gener-
ated in different laboratories, species, or 
assay platforms. When the evaluation was 
restricted to include only strong binders 
(AC50 < 1 μM), the prediction of binding 
for the parents or for known hydroxylated 
metabolites improved the sensitivity of the 
predictions to 100% for both the ER and 
AR models. When the activities of this 
restricted set were further examined for the 
other in vitro ToxCast™ assays within the ER 
or AR platforms or for curated uterotrophic 
data (ER platform), the results showed that 
a QSAR prediction of receptor binding for 
in-domain compounds flagged compounds 
that were always active in the other in vitro or 
in vivo screening assays. This finding suggests 
a tiered screening approach wherein QSAR 
is first used to identify compounds that are 
in-domain in the ER or AR binding models 
and are predicted to bind, which are then 
screened in vitro to assess binding potency, 
with the strong binders (AC50 <  1  μM) 
screened in vivo. It is important to empha-
size that this approach would only identify 
the subset of compounds that are in-domain 
in the QSAR, flagged as potential binders, 
and then shown to bind with strong affini-
ties across three independent platforms. This 
approach would not apply to compounds that 
are not in domain (majority of compounds), 
that are predicted not to bind, that require 
metabolism to manifest activity, that were 
not active in in vitro binding assays, or for the 

Figure 4. Representative compounds for which in vivo and in vitro assay results are not concordant. These compounds were present in the training set of the 
estrogen receptor quantitative structure-activity relationship model, and the data were compiled from in vivo studies (Serafimova et al. 2007). The first three 
compounds were active in vivo but inactive in vitro, whereas the last three were active in vitro but inactive in vivo.
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AR platform, where the relationship of the 
QSAR or in vitro assays to in vivo data was 
not studied. Because the binding assays do 
not accommodate metabolism, consideration 
should be given to simulating it within the 
initial QSAR model analysis. For compounds 
predicted by QSAR to only bind after being 
metabolized, any negative binders would 
need to be followed up by other screening 
approaches that include metabolism.

The ToxCast™ assays can be a robust 
source of data to improve the existing model 
predictions, to derive novel in  silico models 
with improved predictivity, or to refine the 
existing QSAR model. For example, in the 
case of phthalates, which are known to be ER 
inactive (Moore 2000) (see uterotrophic assay 
data as well as ToxCast™ in vitro binding 
data), the data used in the derivation of the 
TIMES ER QSAR model considered them 
to be active compounds. Phthalates undergo 
ester hydrolysis in vivo, which might explain 
the discrepancy between the in  vitro and 
in vivo assay results. Interestingly, compounds 
such as butyl benzyl phthalate (BBP) (Picard 
et al. 2001) are active in almost all ToxCast™ 
ER assays except the NVS ER binding 
assays. Further analyses are needed to address 
quantitative prediction of low or medium 
levels of ER and AR binding using in  silico 
approaches. The differences in ER and AR 
binding activity across species (human, 
bovine, rat, mouse, chimpanzee, etc.) need to 
be explored further.

Conclusions
We assessed the OASIS 3D-QSAR models 
for predicting ER and AR binding by 
using in  vitro HTS binding data from 
>  1,800 ToxCast™ Phase II compounds 
generated by NVS. Our analysis indicated 
that for ER, the QSAR predictions of the 
three NVS assay platforms’ results had low 
sensitivity (<  56%) but high specificity 
(95%) and concordance (> 91%) when all 
compounds in the data set were analyzed. For 
the in-domain compounds, the ER QSAR 
model had high sensitivity (> 75%) and high 
specificity (> 86%), and overall concordance 
decreased by ~5%. When HTS results were 
restricted to a subset of compounds within 
the domain of the ER QSAR model and 
with consistent agreement of ER binding at 
AC50 < 1 μM for the three binding assays, 
the ER QSAR model predicted binding for 
the parent compounds or known hydroxyl-
ated metabolites 100% of the time. Similarly, 
for AR, QSAR predictions of the three assay 
platform results had low sensitivity (< 41%) 
but high specificity (84–89%) and concor-
dance (> 83%) when all compounds in the 
data set were analyzed. For the in-domain 
compounds, the AR QSAR model had high 
sensitivity (92–100%), specificity of 70–81%, 

and overall concordance decreased by ~10%. 
Similarly, when HTS results were restricted to 
a subset of compounds in-domain of the AR 
QSAR model and with consistent agreement 
of AR binding at AC50 < 1 μM for the three 
binding assays, the QSAR model accurately 
predicted binding for the parent compounds 
100% of the time.

The potency of binding prediction for 
in vitro compounds was estimated only for 
the ER model, where in silico versus in vitro 
comparison was found to be a poorer match 
for high and medium RBA levels for the 
in vitro human receptor than receptors for the 
other two species.

Heat maps showed that the subset of 
ToxCast™ compounds that were in-domain 
of the ER or AR QSAR models and predicted 
to be active were active across all ER and AR 
binding platforms (AC50 < 1 μM). This subset 
of compounds was also active in the respec-
tive transactivation assays, where metabo-
lism was incorporated with the addition of 
exogenous S9 fraction (OT platform). For 
the compounds in this subset known to 
require metabolism to manifest activity, the 
transactivation response appears to be less 
promiscuous than binding because of the 
mixed nature of the response in these assays, 
which may reflect some degree of constitutive 
metabolism depending on the cell type. This 
same subset of ER-active compounds was 
active in the uterotrophic assay in vivo. Based 
on this research, a tiered screening approach 
could be implemented wherein a) QSAR is 
used to identify compounds in-domain of 
the ER or AR binding models and predicted 
to bind; b) those compounds are screened 
in vitro to assess binding potency; and c) the 
stronger binders (AC50 < 1 μM) are screened 
in vivo. It is important to emphasize that 
this approach would only identify the subset 
of compounds that were in-domain of the 
QSAR, flagged as potential binders, and then 
shown to bind with strong affinities across 
three independent platforms. This approach 
would not apply to compounds that are not 
in-domain, that are predicted not to bind, 
that require metabolism to manifest activity, 
that are not active in in vitro binding assays, 
or for the AR platform, where the relation-
ship of the QSAR or in vitro assays to in vivo 
data has not been studied. In such scenarios, 
mathematical models using a battery of 
in vitro assays could be useful.
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