Prenatal Polybrominated Diphenyl Ether Exposure and Body Mass Index in Children Up To 8 Years of Age Ann M. Vuong,¹ Joseph M. Braun,² Andreas Sjödin,³ Glenys M. Webster,⁴ Kimberly Yolton,⁵ Bruce P. Lanphear,⁴ and Aimin Chen¹ ¹Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; ²Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA; ³Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA; ⁴BC Children's Hospital Research Institute, Simon Fraser University, Vancouver, British Columbia, Canada; ⁵Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA BACKGROUND: Prenatal exposure to endocrine disruptors has been associated with increased risk of childhood obesity. However, epidemiologic studies on polybrominated diphenyl ethers (PBDEs) are limited despite animal studies indicating PBDEs' potential role as an obesogen. OBJECTIVES: We investigated whether maternal concentrations of BDEs 28, 47, 99, 100, 153, and Σ PBDEs during pregnancy were associated with anthropometric measures in children aged 1–8 years. METHODS: We examined 318 mother–child pairs in the Health Outcomes and Measures of the Environment (HOME) Study, a birth cohort enrolled from 2003 through 2006 (Cincinnati, OH). Serum PBDEs were measured at 16 ± 3 weeks gestation. We measured child height (1–8 years), weight (1–8 years), body mass index (BMI) (2–8 years), waist circumference (4–8 years), and body fat (8 years). To account for repeated measures, we used linear mixed models and generalized estimating equations to estimate associations between maternal PBDEs and child anthropometric measures. RESULTS: We found no statistically significant associations between prenatal PBDEs and height or weight z-score. A 10-fold increase in maternal serum BDE-153 was associated with lower BMI z-score ($\beta=-0.36;~95\%$ CI: -0.60,~0.13) at 2–8 years, smaller waist circumference ($\beta=-1.81$ cm; 95% CI: -3.13,~0.50) at 4–8 years, and lower percent body fat ($\beta=-2.37\%;~95\%$ CI: -4.21,~0.53) at 8 years. A decrease in waist circumference at 4–8 years was observed with a 10-fold increase in BDE-100 ($\beta=-1.50$ cm; 95% CI: -2.93,~0.08) and $\Sigma PBDEs$ ($\beta=-1.57$ cm; 95% CI: -3.11,~0.02). CONCLUSIONS: Reverse causality may have resulted in prenatal PBDEs, particularly BDE-153, and decreased BMI, waist circumference, and body fat. CITATION: Vuong AM, Braun JM, Sjödin A, Webster GM, Yolton K, Lanphear BP, Chen A. 2016. Prenatal polybrominated diphenyl ether exposure and body mass index in children up to 8 years of age. Environ Health Perspect 124:1891–1897; http://dx.doi.org/10.1289/EHP139 ## Introduction Childhood obesity is associated with adverse health effects, including diabetes, dyslipidemia, fatty liver disease, and hypertension (Daniels 2009). Between 1980 and 2013, the global prevalence of childhood obesity increased by about 50% (Ng et al. 2014). Obesity is attributable to a convergence of several factors, such as genetic predisposition, excess food quantity, readily available energydense food, and less energy expenditure, but recent evidence implicates a number of endocrine-disrupting chemicals as potential obesogens, including bisphenol A (BPA), dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCBs), and phthalates (Braun et al. 2014; Valvi et al. 2013; Verhulst et al. 2009; Warner et al. 2014). Polybrominated diphenyl ethers (PBDEs) are a class of endocrine-disrupting flame retardants used in a number of household and industrial products, including electronics, polyurethane foams, and textiles. Their ability to persist, bioaccumulate, and biomagnify has resulted in chronic and prolonged exposure despite the voluntary cessation of penta- and octaBDE manufacturing in the United States in 2004. PBDEs have been associated with weight gain in animal studies (Bondy et al. 2013; Dufault et al. 2005; Fernie et al. 2006; Gee and Moser 2008; Suvorov et al. 2009). PBDEs have been reported to increase adipocyte differentiation, decrease glucose oxidation, disturb glucose homeostasis, and alter gene expression in the metabolic pathways by directly interacting with retinoic X receptor (RXR), a key regulatory transcription factor in the adipogenic pathway in vertebrates (Bastos Sales et al. 2013; Hoppe and Carey 2007; Kamstra et al. 2014; Suvorov and Takser 2010; Tung et al. 2014). In addition, one study reported that BDE-47 activates peroxisome proliferator-activated receptor gamma (PPAR-γ) in 3T3-L1 cells, a key regulator of adipogenesis in vertebrates (Auwerx 1999; Kamstra et al. 2014). Previous epidemiologic studies examining PBDEs by body mass index (BMI) status have reported conflicting findings (Leijs 2010; Lim et al. 2008; Turyk et al. 2010; Windham et al. 2010). These studies focused primarily on postnatal rather than prenatal exposures to PBDEs. Insults to the developing fetus by endocrine disruptors may influence offspring growth. Plasma insulin-like growth factor 1 (IGF-1) was elevated in male rats perinatally exposed to low doses of BDE-47 (Suvorov et al. 2009). IGF-1 gene expression alteration has been shown to play a role in glucose metabolism and gestational programming of obesity (Ross et al. 2007). Further, epidemiologic studies have reported that prenatal PBDE concentrations disrupt thyroid hormone homeostasis, which is involved in growth and development, accelerating basal energy expenditure, lipid metabolism, and thermogenesis (Abdelouahab et al. 2013; Lim et al. 2008; Address correspondence to: A. Chen, Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267-0056 USA. Telephone: (513) 558-2129. E-mail: aimin.chen@uc.edu Supplemental Material is available online (http://dx.doi.org/10.1289/EHP139). This work was supported by grants from the National Institute of Environmental Health Sciences (NIEHS)/National Institutes of Health (P01 ES11261, R01 ES014575, R01 ES020349, and R00 ES020346) and the U.S. Environmental Protection Agency (EPA) (EPA P01 R829389). The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the NIEHS or the Centers for Disease Control and Prevention (CDC). B.P.L. served as an expert witness in California for the plaintiffs in a public nuisance case of childhood lead poisoning, a Proposition 65 case on behalf of the California Attorney General's Office, a case involving lead-contaminated water in a new housing development in Maryland, and a Canadian tribunal on trade dispute about using lead-free galvanized wire in stucco lathing, but he received no personal compensation for these services. He is currently representing the government of Peru as an expert witness in a suit involving Doe Run vs. Peru, but he is receiving no personal compensation. The other authors declare they have no actual or potential competing financial interests. Received: 21 October 2015; Revised: 23 February 2016; Accepted: 11 May 2016; Published: 10 June 2016. Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehponline@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days. Pucci et al. 2000; Stapleton et al. 2011; Vuong et al. 2015). Only one study has examined PBDE exposure *in utero* and child measures of growth in a cohort of Mexican-American children and reported sex-specific associations (Erkin-Cakmak et al. 2015). In the present study, we examined the relation between maternal PBDE concentrations at approximately 16 weeks of gestation and child anthropometric measures at ages 1–8 years, including height, weight, BMI, waist circumference, and body fat percentage. # **Methods** ## Study Participants and Design The Health Outcomes and Measures of the Environment (HOME) Study is an ongoing prospective birth cohort that enrolled women between March 2003 and February 2006 from nine prenatal clinics located in the greater Cincinnati, Ohio, area (USA). Eligibility criteria included being ≥ 18 years of age, living in a house constructed before 1978 (a criterion relating to a goal of the randomized trial examining lead and injury hazard reduction interventions), intending to continue prenatal care and deliver at one of the nine collaborating obstetric practices and hospitals, being HIV negative, and not receiving seizure, thyroid, or chemotherapy/ radiation medications. A total of 390 women of the 468 enrolled remained to deliver live singleton infants. Our study focused on 318 mother-child pairs that had concentrations of PBDEs measured at approximately 16 weeks of gestation and at least one measure of child anthropometry at age 1, 2, 3, 4, 5, or 8 years. The study protocol was approved by the institutional review boards at the Cincinnati Children's Hospital Medical Center and the Centers for Disease Control and Prevention (CDC). # PBDE Assessment Maternal serum samples were collected at 16 ± 3 weeks of gestation and stored at -80°C. Concentrations of BDEs 17, 28, 47, 66, 85, 99, 100, 153, 154, and 183 were measured using gas chromatography/isotope dilution high-resolution mass spectrometry at the CDC (Jones et al. 2012; Sjödin et al. 2004). Serum samples were pretreated and extracted by solid phase extraction. Each batch of serum samples included three quality control and three method blank samples. The limit of detection (LOD) was defined as three times the standard deviation (SD) of the method blanks analyzed in parallel with the study samples or as 0.5 pg/ μ L (in 10 μ L nonane) (in the absence of detectable blanks). Total serum lipids were based on measurements of triglycerides and total cholesterol using standard enzymatic methods (Phillips et al. 1989). Serum PBDE values < LOD were substituted with the LOD divided by the square root of 2 (Hornung and Reed 1990). We focused our analysis on congeners with detection frequencies > 80% (BDEs 28, 47, 99, 100, and 153) and the sum of these congeners (ΣPBDEs). ## Child Anthropometry Child height, weight, and waist circumference were measured in triplicate each visit; we used an average of the three measurements. Height and weight were obtained at 1, 2, 3, 4, 5, and 8 years of age. The Ayrton Stadiometer Model S100 was used to measure height (to the nearest 0.1 cm), with the child standing straight without shoes or a head covering on, positioned with the heels against the wall. If children were not standing independently at the 1-year visit, recumbent length was measured with a standard infant length board. For weight (to the nearest 0.01 kg), children were either in undergarments or a dry diaper on the infant ScaleTronix scale (White Plains, NY) or the ScaleTronix Pediatric Scale Model 4802. Ageand sex-specific height and weight z-scores (1, 2, 3, 4, 5, and 8 years) as well as BMI z-scores (2, 3, 4, 5, 8 years) were calculated based on U.S. references from the National Center for Health Statistics (Kuczmarski et al. 2000). BMI z-scores ≥ 85th percentile were considered overweight or obese. At ages 4, 5, and 8 years, waist circumference (cm) was measured by placing a plastic measuring tape around the abdomen at the level of the iliac crest. Body fat percentage was measured at 8 years of age via bioelectrical impedance analysis using the Tanita children's body fat monitor (Arlington Heights, IL). # Statistical Analyses PBDEs were log₁₀-transformed to reduce the influence of extreme values. Linear mixed models with an unstructured correlation matrix and a random intercept were used to estimate β coefficients and 95% confidence intervals (CIs) for individual BDE congeners and ∑PBDEs in relation to child height and weight z-scores at 1-8 years of age, BMI z-scores at 2-8 years of age, and waist circumference at 4-8 years of age. Interaction terms between PBDEs (continuous) and child age (categorical) were included in the models to determine whether child growth differed over time. However, because interaction terms were not statistically significant (p > 0.10), overall estimates are provided for height and weight z-scores at 1-8 years; BMI z-scores at 2-8 years; and waist circumference at 4-8 years. The relation between PBDEs and having a high-end BMI z-score (≥ 85th percentile) or a low-end BMI z-score (≤ 15th percentile) at ages 2-8 years was examined using generalized linear models (GLM) with generalized estimating equations (GEE) to estimate odds ratios (ORs) and 95% CIs. Multiple linear regression models were used to examine the association between individual BDE congeners and \(\sumeq PBDEs \) and body fat percentage at 8 years. Dose response was examined using generalized additive models to examine linearity for PBDEs and child growth measures. Because the results did not indicate a nonmonotonic relationship, the associations between tertiles of PBDE concentrations and child anthropometric measures were assessed for linear trend using the median value in each tertile as a continuous variable in the previously described models (Greenland 1995). We also examined whether effect modification by child sex was present by including the interaction term of PBDEs (continuous) and child sex in the models, with p < 0.10considered significant. As a sensitivity analysis, we adjusted by other environmental contaminants in separate models, including maternal serum concentrations of DDE, lead (Pb), perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and ∑PCBs (sum of PCB congeners 28, 74, 99, 105, 118, 146, 153, 156, 170, 180, 183, 187, 194, 199, and 206) and creatinine adjusted maternal urinary concentrations of BPA and di(2-ethylhexyl) phthalate (DEHP). Covariates included in the final regression models were based on results of bivariate analyses examining the relationship with child growth (p < 0.20). Final models included the following covariates (categorized as shown in Table 1): maternal age at enrollment, race, education, family income, maternal depression (assessed by Beck Depression Inventory II at ~ 16 weeks of gestation) (Beck et al. 1996), maternal serum cotinine (ng/ mL, continuous) at enrollment, and fresh fruit and vegetable intake during pregnancy. Additional covariates were included in models examining height z-scores (maternal height); weight z-scores (maternal prepregnancy weight); BMI z-scores (prepregnancy BMI); and waist circumference and body fat percentage (prepregnancy BMI, child sex, and child age). Two of the mother-child pairs were missing information on maternal depression and thus were not included in the final analyses. As a secondary analysis, we examined whether prenatal PBDEs impacted growth trajectories by regressing on the differences in z-scores of child growth measures. We additionally estimated $\hat{\beta}$ coefficients without adjustment for prepregnancy maternal anthropometric measures to determine whether our findings differed if we did not take into account maternal measures of height, weight, and BMI. As an additional sensitivity analysis, we adjusted for potential selection bias by applying weights to the regression models equal to the inverse probability of being observed. Stata version 12.1 (StataCorp, College Station, TX) was used for statistical analyses, and graphs were produced using GraphPad Prism (GraphPad, San Diego, CA). ## Results HOME Study mothers were predominantly non-Hispanic white, educated, nonsmokers, married or living with a partner, and had an annual income > \$40,000 (Table 1). The most abundant congener was BDE-47, with a geometric mean (GM) of 20.3 ng/g lipid. BDE congeners were highly correlated with each other ($r_s = 0.46-0.92$, p < 0.0001) (see Tables S1 and S2). Concentrations of ΣPBDEs were lower among women who were older, non-Hispanic white, highly educated, of a higher income, minimally/ mildly depressed, and married/living with a partner. BMI z-scores were significantly higher among children whose mothers were non-Hispanic black and others, less educated, obese before conception, and not married/living alone. At age 8 years, both waist circumference and body fat percentage were higher among female children and those with mothers who were obese before pregnancy. At age 8 years, approximately 25% of HOME Study children were either overweight or obese (see Table S3). Average (± SD) waist circumference and body fat percentage were 60.7 ± 8.2 cm and $20.8 \pm 6.1\%$, respectively. Participants included in the analysis were significantly more likely to be older, non-Hispanic white, educated, of a higher income, and nonsmokers compared with women excluded due to insufficient information on PBDEs (n = 30) and/or child anthropometric measures (n = 42) (see Table S4). Maternal concentrations of PBDEs were not associated with weight or height z-scores in children ages 1–8 years (Table 2). Although we observed a decrease in BMI z-scores in children ages 2–8 years with a 10-fold increase across all BDE congeners and Σ PBDEs, only BDE-153 was statistically significant (β = -0.36; 95% CI: -0.60, -0.13). An inverse association was also observed between BDE-100 (β = -1.50 cm; 95% CI: -2.93, -0.08), BDE-153 (β = -1.81 cm; 95% -3.13, -0.50), and ΣPBDEs (β = -1.57 cm; 95% CI: -3.11, -0.02) and waist circumference. Among children 8 years of age, a 10-fold increase in maternal BDE-153 concentration was associated with a 2.37% decrease (95% CI: -4.21, -0.53) in body fat percentage. There was no significant linear trend between tertiles of PBDEs and weight or height z-scores (see Figure S1). However, tertiles of BDE-100, BDE-153, and ∑PBDEs were associated with decreasing BMI z-score and waist circumference (Figure 1). The highest tertiles of BDE-100 ($\beta = -0.33$; 95% CI: -0.61, -0.06), BDE-153 $(\beta = -0.46; 95\% \text{ CI: } -0.73, -0.20), \text{ and}$ Σ PBDEs ($\beta = -0.37$; 95% CI: -0.64, -0.09) were significantly associated with decrements in BMI z-score. The associations between tertiles of BDE-153 and body fat percentage also presented a decreasing linear trend ($p_{\text{trend}} = 0.021$). Although the highest tertile of BDE-100, BDE-153, and ∑PBDEs had the lowest waist circumference and body Table 1. Maternal serum concentrations of ∑PBDEs (ng/g lipid) and child anthropometric measures at 8 years by maternal and child characteristics, HOME Study. | | ∑PBDEs | | BMI z-score | | Waist circumference | | Body fat percentage | | |----------------------------------------------------------------------------------------------|-----------------|----------------------------------------|-----------------|----------------------------------------------|---------------------|--------------------------------------------|---------------------|-------------------------------------------| | Characteristic | n | GM (GSD) | n | Mean ± SD | n | Mean ± SD | n | Mean ± SD | | Maternal age (years) | | | | | | | | | | < 25 | 64 | 47.9 (2.2)* | 55 | 0.37 ± 0.95 | 54 | 59.2 ± 7.1 | 54 | 21.1 ± 6.5 | | 25–34 | 175 | 39.2 (2.7)* | 129 | 0.37 ± 0.98 | 127 | 61.0 ± 7.6 | 127 | 20.7 ± 5.9 | | ≥ 35 | 48 | 29.6 (2.5)* | 32 | 0.26 ± 1.03 | 30 | 62.0 ± 11.7 | 29 | 20.8 ± 6.8 | | Race/ethnicity | 10 | 20.0 (2.0) | 02 | 0.20 1.00 | 00 | 02.0 ± 11.7 | 20 | 20.0 ± 0.0 | | Non-Hispanic white | 188 | 33.4 (2.5)* | 131 | 0.19 ± 0.94 * | 127 | 60.6 ± 7.5 | 127 | 19.7 ± 5.5* | | Non-Hispanic black and others | 99 | 52.8 (2.5)* | 85 | 0.60 ± 0.98 * | 84 | 60.8 ± 9.1 | 83 | 22.5 ± 6.8* | | Education High school or less Some college/2-year degree Bachelor's Graduate or professional | 70 | 53.0 (2.2)* | 57 | 0.69 ± 0.89* | 56 | 61.0 ± 8.3 | 56 | 23.1 ± 6.5* | | | 73 | 42.1 (2.3)* | 56 | 0.06 ± 1.07* | 56 | 58.8 ± 7.5 | 55 | 19.0 ± 5.6* | | | 90 | 34.0 (2.6)* | 65 | 0.39 ± 0.95* | 63 | 62.1 ± 9.1 | 63 | 20.9 ± 6.0* | | | 54 | 30.2 (3.0)* | 38 | 0.22 ± 0.87* | 36 | 60.5 ± 6.7 | 36 | 19.7 ± 5.8* | | Family income < \$40,000 \$40,000—\$79,999 ≥ \$80,000 | 108 | 51.7 (2.5)* | 88 | 0.50 ± 1.06 | 88 | 60.5 ± 9.0 | 87 | 21.8 ± 7.0 | | | 99 | 36.6 (2.5)* | 72 | 0.24 ± 0.92 | 69 | 60.8 ± 8.1 | 69 | 20.1 ± 5.7 | | | 80 | 29.1 (2.4)* | 56 | 0.27 ± 0.90 | 54 | 60.7 ± 6.7 | 54 | 20.1 ± 5.1 | | Maternal depression
Minimal/mild
Moderate/severe | 261
24 | 37.5 (2.5)*
64.1 (2.9)* | 196
19 | 0.32 ± 0.96
0.72 ± 1.09 | 192
18 | 60.4 ± 8.2
63.5 ± 7.2 | 191
18 | 20.5 ± 6.0*
24.4 ± 6.9* | | Maternal smoking None Environmental tobacco smoke Active | 245 | 37.2 (2.6) | 181 | 0.29 ± 0.95 | 177 | 60.3 ± 7.6 | 177 | 20.4 ± 5.8 | | | 20 | 47.8 (2.2) | 18 | 0.56 ± 1.20 | 18 | 61.8 ± 9.2 | 18 | 23.4 ± 8.1 | | | 22 | 56.5 (2.6) | 17 | 0.81 ± 0.89 | 16 | 63.7 ± 12.2 | 15 | 22.2 ± 6.6 | | Prepregnancy BMI
Underweight/normal
Overweight
Obese | 147
79
61 | 35.4 (2.5)
39.6 (2.6)
48.9 (2.7) | 111
56
49 | 0.13 ± 0.95*
0.33 ± 0.92*
0.89 ± 0.92* | 106
56
49 | 59.3 ± 7.1*
60.0 ± 6.7*
64.2 ± 10.6* | 106
55
49 | 19.7 ± 5.6*
19.9 ± 4.5*
24.1 ± 7.6* | | Marrial status Married/living with partner Not married, living alone | 225 | 35.6 (2.6)* | 160 | 0.24 ± 0.94* | 155 | 60.3 ± 7.7 | 155 | 20.1 ± 5.7* | | | 62 | 55.3 (2.1)* | 56 | 0.67 ± 1.04* | 56 | 61.6 ± 9.3 | 55 | 22.7 ± 7.1* | | Fresh fruit and vegetable intake during pregnancy ≥ Daily < Daily | 233 | 38.7 (2.6) | 170 | 0.37 ± 0.98 | 166 | 61.1 ± 8.1 | 165 | 21.1 ± 6.3 | | | 54 | 41.1 (2.3) | 46 | 0.29 ± 0.98 | 45 | 59.1 ± 8.4 | 45 | 19.7 ± 5.6 | | Child sex
Male
Female | 129
158 | 36.8 (2.6)
41.2 (2.6) | 95
121 | 0.24 ± 0.95
0.44 ± 0.99 | 93
118 | 59.0 ± 7.0*
62.0 ± 8.7* | 93
117 | 18.4 ± 4.4*
22.7 ± 6.7* | Note: GM, geometric mean; GSD, geometric standard deviation; SD, standard deviation. Frequencies may not add to the total number of participants because of missing values. *p < 0.05 (two-sided p-values using ANOVA or t-test). fat percentage, only the results of BDE-153 tertile was statistically significant. Maternal serum concentrations of BDE-153 \geq 6.8 ng/g lipid were associated with decreased waist circumference (β = -1.85 cm; 95% CI: -3.32, -0.38) and body fat percentage (β = -2.62%; 95% CI: -4.67, -0.58). No association was observed between maternal concentrations of PBDEs and being overweight or obese at 2–8 years of age (see Table S5). A 10-fold increase in BDE-153 was associated with higher odds of having a BMI \leq 15th percentile (OR = 2.18; 95% CI: 1.16, 4.08) (see Table S6). Effect modification by child sex was observed only for the association between maternal BDE-153 concentrations and height *z*-scores ($p_{\text{modification}} = 0.065$), with a borderline significant decrease in males ($\beta = -0.32$; 95% CI: -0.65, 0.01) but not in females ($\beta = 0.12$; 95% CI: -0.20, 0.44) (see Table S7). No statistically significant associations were observed between prenatal PBDEs and trajectories of child growth (results not shown). Additionally adjusting by BPA, DDE, DEHP, Pb, PFOA, PFOS, or Σ PCBs did not change our overall conclusions (see Table S8). However, significant inverse associations were observed between BDE-28, BDE-153, and Σ PBDEs and weight z-score in models adjusting for maternal concentrations of BPA, DDE, or DEHP. A 10-fold increase in BDE-99 was also significantly associated with decreased waist circumference after adjustment for DDE, DEHP, or PFOA. Our conclusions did not change when we **Table 2.** Estimated differences (95% CIs) in child anthropometric measures^a by 10-fold increases in maternal serum concentrations of polybrominated diphenyl ethers (ng/g lipid), HOME Study.^b | PBDEs | Height z-scores ^c
[β (95% CI)] | Weight z-scores ^d
[β (95% CI)] | BMI z-scores ^e
[β (95% CI)] | Waist circumference (cm) ^{e,f}
[β (95% CI)] | Body fat percentage e,f [β (95% CI)] | |----------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|---------------------------------------------------------|--------------------------------------------------| | BDE-28 | 0.03 (-0.26, 0.33) | -0.28 (-0.60, 0.04) | -0.21 (-0.51, 0.10) | -1.09 (-2.77, 0.59) | 0.03 (-2.39, 2.45) | | BDE-47 | 0.04 (-0.22, 0.30) | -0.18 (-0.46, 0.10) | -0.08 (-0.35, 0.18) | -0.96 (-2.44, 0.52) | -0.53 (-2.69, 1.64) | | BDE-99 | 0.03 (-0.22, 0.28) | -0.25 (-0.52, 0.02) | -0.18 (-0.45, 0.08) | -1.41 (-2.89, 0.06) | -1.17 (-3.35, 1.02) | | BDE-100 | -0.001 (-0.25, 0.25) | -0.21 (-0.48, 0.06) | -0.21 (-0.46, 0.05) | -1.50 (-2.93, -0.08) | -1.13 (-3.16, 0.90) | | BDE-153 | -0.09 (-0.33, 0.14) | -0.24 (-0.49, 0.02) | -0.36 (-0.60, -0.13) | -1.81 (-3.13, -0.50) | -2.37 (-4.21, -0.53) | | Σ PBDEs | -0.01 (-0.28, 0.26) | -0.28 (-0.57, 0.02) | -0.26 (-0.54, 0.02) | -1.57 (-3.11, -0.02) | -1.50 (-3.75, 0.76) | PBDEs were log₁₀-transformed. ^fChild sex and child age. Figure 1. Estimated differences and 95% CIs from multiple linear mixed models for associations between polybrominated diphenyl ether (ng/g lipid) tertiles and BMI z-score, waist circumference, or body fat percentage in children. All models were adjusted for maternal age, race, education, income, maternal smoking status, maternal depression, prepregnancy BMI, and maternal fruit and vegetable intake during pregnancy. Waist circumference and body fat percentage models were additionally adjusted for child sex and age (months). Children included in the models were 2–8 years for BMI z-score, 4–8 years for waist circumference, and 8 years for body fat percentage. PBDE tertile ranges in ng/g lipid: BDE-28 (0.2–0.7, 0.8–1.3, 1.4–31.4), BDE-47 (1.5–13.1, 13.2–27.9, 28.0–1,290), BDE-99 (0.6–2.9, 3.0–6.0, 6.1–465), BDE-100 (0.4–2.4, 2.5–5.6, 5.7–172), BDE-153 (0.5–3.0, 3.1–6.8, 6.9–152), and \$\geq\$PBDEs (4.5–24.9, 25.0–52.9, 53.0–2,047). ^aAt 1–8 years of age for weight and length/height z-scores, 2–8 years of age for BMI z-scores, 4–8 years of age for waist circumference, and 8 years of age for body fat percentage. Adjusted by maternal age, race, education, income, maternal smoking status, maternal depression, fresh fruit and vegetable intake during pregnancy. ^cAdditionally adjusted by maternal height. ^dPrepregnancy weight. ePrepregnancy BMI. did not adjust for maternal anthropometric measures, nor did the results differ with additional adjustment for potential selection bias (results not shown). ## **Discussion** We examined the relation between maternal serum concentrations of PBDEs and anthropometric measures in a cohort of children 1-8 years of age residing in Cincinnati, Ohio. We did not observe an increase in child anthropometric measures, including weight z-score, height z-score, BMI z-score, waist circumference, and body fat percentage, with maternal serum concentrations of BDE congeners or ∑PBDEs. In contrast, 10-fold increases in BDE-100, BDE-153, and ∑PBDEs were associated with decreased waist circumference among children 4-8 years old. BDE-153 was also significantly associated with a 0.36 reduction in BMI z-score in children 2-8 years of age and a 2.37% reduction in body fat percentage in children 8 years of age. Previous epidemiologic studies have focused primarily on postnatal exposures of PBDEs (Leijs 2010; Lim et al. 2008; Turyk et al. 2010; Windham et al. 2010). Only one study, the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) Study, has examined pre- and postnatal concentrations of PBDEs and their relation to childhood obesity (Erkin-Cakmak et al. 2015). In the CHAMACOS Study, a significant inverse association was reported between child serum concentrations of PBDEs and BMI and waist circumference z-score at 7 years. Specifically, significant decreases in BMI (β = -1.15; 95% CI: -1.53, -0.77) and waist circumference z-scores ($\beta = -0.95$; 95% CI: -1.26, -0.64) were observed with a 10-fold increase in childhood concentrations of BDE-153. However, Erkin-Cakmak et al. (2015) reported no associations between maternal concentrations of PBDEs and BMI z-score, waist circumference z-score, or being overweight or obese at 7 years of age. In contrast, we observed a reduction in BMI z-score, waist circumference, and body fat percentage with maternal concentrations of BDE-153. Null findings between maternal concentrations of PBDEs and child anthropometric measures reported by Erkin-Cakmak et al. (2015) may be attributable to lower BDE-153 concentrations in the CHAMACOS cohort (GM = 2.4 ng/g lipid; 95% CI: 2.15, 2.69) compared with our study $(GM = 5.3 \pm 2.9 \text{ ng/g lipid})$. In addition, the prevalence of overweight and obese children in the HOME Study at age 8 years (25%) was lower than that of the CHAMACOS Study at 7 years (53%). It is also uncertain whether findings differed in part due to the racial/ethnic composition of participants between the two studies. The CHAMACOS Study comprises primarily Mexican-American children, whereas participants in the HOME Study consisted mainly of non-Hispanic white and black women. However, although the associations in the CHAMACOS Study did not reach statistical significance, point estimates for maternal PBDEs and BMI z-score at age 7 years did suggest a possible weak inverse association. We did not observe effect measure modification by sex between PBDEs and measures of obesity. The only association that was significantly modified by child sex was between BDE-153 and height z-score. In the CHAMACOS Study, effect modification by child sex was consistent across in utero concentrations of BDE congeners and ∑4PBDEs (sum of BDEs 47, 99, 100, and 153) and BMI z-score, waist circumference, and obesity status (Erkin-Cakmak et al. 2015). The authors observed a positive association between maternal PBDEs and measures of obesity in males, but an inverse association in females. It is unclear whether child sex modifies the association between prenatal concentrations of PBDEs and child anthropometric measures, or what biological mechanisms could account for such differences. Our findings do not support the role of maternal exposure to PBDEs as obesogens in early childhood. Still, the inverse association between maternal concentrations of BDE-153 and various measures of childhood obesity may be attributable to confounding by maternal adiposity. Similar to other lipophilic compounds, such as organochlorines, serum concentrations of PBDEs may be influenced by body weight (Chevrier 2013). Previous studies have reported significantly higher plasma and tissue concentrations of organochlorines following weight loss (Chevrier et al. 2000; Imbeault et al. 2001; Walford et al. 1999). It is posited that individuals who are heavier would have more adipose tissue for organochlorines and PBDEs to partition into, which would result in lower concentrations as a "dilution" of serum concentrations may occur (Glynn et al. 2003). The decrease in BMI z-score, waist circumference, and body fat percentage in children with higher prenatal PBDE concentrations could be attributable to this. Thus, an inverse association can be a result of higher PBDE concentrations in lean mothers. Although all BDE congeners and ∑PBDEs were inversely associated with BMI z-scores at 2-8 years and waist circumference at 4-8 years, only BDE-153 was statistically significant, perhaps due to BDE-153's biochemical properties. Compared with the other BDE congeners, BDE-153 is more bioaccumulative, is the most difficult to metabolize and excrete, and has the highest fat deposition (Staskal et al. 2006). However, we did adjust by measures of maternal anthropometry and observed an inverse association between prenatal PBDEs and child anthropometric measures. This inverse association was present even without adjustment for maternal anthropometric measures, suggesting that PBDEs may not be obesogens. Although some animal models have reported weight gain with PBDE exposure (Bondy et al. 2013; Dufault et al. 2005; Fernie et al. 2006; Gee and Moser 2008; Suvorov et al. 2009), others have indicated null or inverse associations (Daubié et al. 2011; Ta et al. 2011; Talsness et al. 2008). One possibility is that the direction of the association between PBDEs and growth measures differs between species. A reduction in thyroxine (T₄) has been observed in rodents pre- and postnatally exposed to PBDEs across several studies (Kim et al. 2009; Kuriyama et al. 2007; Zhou et al. 2002), whereas some epidemiologic studies have reported an increase in T4 (Stapleton et al. 2011; Vuong et al. 2015). The precise biological mechanism involved in the observed inverse association between PBDEs and measures of childhood obesity is unclear. However, PBDEs' mechanism of action may be similar to that of PCBs due to their similarities structurally and shared toxicological effects. PCBs have been observed to severely reduce the body weight of male rats in the neonatal period (Ahmed 2013). Male rats dosed with PCBs had decreased serum concentrations of growth hormone (GH) and IGF-1, suggesting a disruption of the GH/IGF-1 axis, which may delay growth. Further, decrements in body weight and fat mass may be attributed to the significantly higher concentrations of leptin, adiponectin, and tumor necrosis factor α (TNF α) that may have accelerated energy expenditure and lipid oxidation. The strengths of the present study include its prospective design and long follow-up period. In addition to the multiple measures of weight, height, BMI, and waist circumference, we also measured body fat percentage at age 8 years. We accounted for a number of potential confounders, including sociodemographic factors, maternal depression, and maternal prepregnancy BMI. Concentrations of BDEs 28, 47, 99, and 100 were comparable between HOME Study participants and pregnant women in NHANES (National Health and Nutrition Examination Survey) 2003-2004, although concentrations of BDE-153 were somewhat lower (5.3 vs. 9.9 ng/g lipid) (see Table S1) (Woodruff et al. 2011). We also focused on PBDE exposures in utero, an important period of vulnerability, because developmental toxicants may perturb the central endocrine regulatory systems, which play a crucial role in long-term metabolic and body weight programming. In addition, confounding by other environmental toxicants purported as possible obesogens was also explored. The findings of our study are subject to a number of limitations. Children in the HOME Study may have a lower BMI score than the national average. Approximately 13% and 8% of HOME Study children 2-8 years of age were overweight and obese, respectively. The prevalence of being overweight or obese among children in NHANES 1999-2012 is higher, with 23.8% and 11.1% of children 2-5 years, and 33.1% and 17.5% of those 6–11 years of age (Skinner and Skelton 2014). Further, HOME Study participants had a relatively high annual household income (~ \$60,000) compared with the national median of ~ \$48,500 in 2006 (Webster and Bishaw 2007). Thus, study findings may not be entirely generalizable to the U.S. population. Residual confounding may also be a concern because we did not have information on dietary intake and physical activity of the children. However, fresh fruit and vegetable intake during pregnancy was used as a proxy for dietary consumption of children as parental dietary patterns would influence caloric and nutrient intake of their children. Last, we did not examine postnatal exposures to PBDEs or PFASs, which may also influence measures of child anthropometry. #### Conclusion Maternal serum concentrations of PBDEs during early pregnancy may alter measures of child anthropometry. In particular, BDE-153 was inversely associated with BMI z-score, waist circumference, and body fat percentage. Lower waist circumference was also observed in children with higher prenatal exposures to BDE-100 and ∑PBDEs. Our findings do not support the hypothesis that prenatal PBDE exposure is obesogenic in young children. In contrast, we found an inverse association between maternal PBDE concentrations in early pregnancy with child BMI z-score, waist circumference, and body fat percentage up to age 8 years. Further research is needed to replicate these findings while taking into account other environmental contaminants that could play a role in altering measures of child anthropometry. ## REFERENCES - Abdelouahab N, Langlois MF, Lavoie L, Corbin F, Pasquier JC, Takser L. 2013. Maternal and cordblood thyroid hormone levels and exposure to polybrominated diphenyl ethers and polychlorinated biphenyls during early pregnancy. Am J Epidemiol 178:701–713. - Ahmed RG. 2013. Early weaning PCB 95 exposure alters the neonatal endocrine system: thyroid adipokine dysfunction. J Endocrinol 219:205–215. - Auwerx J. 1999. PPARgamma, the ultimate thrifty gene. Diabetologia 42:1033–1049. - Bastos Sales L, Kamstra JH, Cenijn PH, van Rijt LS, Hamers T, Legler J. 2013. Effects of endocrine disrupting chemicals on *in vitro* global DNA methylation and adipocyte differentiation. Toxicol In Vitro 27:1634–1643. - Beck AT, Steer RA, Brown GK. 1996. BDI-II, Beck Depression Inventory: Manual. 2nd ed. San Antonio, TX:Psychological Corporation. - Bondy GS, Lefebvre DE, Aziz S, Cherry W, Coady L, Maclellan E, et al. 2013. Toxicologic and immunologic effects of perinatal exposure to the brominated diphenyl ether (BDE) mixture DE-71 in the Sprague-Dawley rat. Environ Toxicol 28:215–228. - Braun JM, Lanphear BP, Calafat AM, Deria S, Khoury J, Howe CJ, et al. 2014. Early-life bisphenol A exposure and child body mass index: a prospective cohort study. Environ Health Perspect 122:1239–1245, doi: 10.1289/ehp.1408258. - Chevrier J. 2013. Invited commentary: maternal plasma polybrominated diphenyl ethers and thyroid hormones—challenges and opportunities. Am J Epidemiol 178:714–719. - Chevrier J, Dewailly É, Ayotte P, Mauriège P, Després JP, Tremblay A. 2000. Body weight loss increases plasma and adipose tissue concentrations of potentially toxic pollutants in obese individuals. Int J Obes Relat Metab Disord 24:1272–1278. - Daniels SR. 2009. Complications of obesity in children and adolescents. Int J Obes (Lond) 33(suppl 1):S60–S65. - Daubié S, Bisson JF, Lalonde R, Schroeder H, Rychen G. 2011. Neurobehavioral and physiological effects of low doses of polybrominated diphenyl ether (PBDE)-99 in male adult rats. Toxicol Lett 204:57–63. - Dufault C, Poles G, Driscoll LL. 2005. Brief postnatal PBDE exposure alters learning and the cholinergic modulation of attention in rats. Toxicol Sci 88:172–180. - Erkin-Cakmak A, Harley KG, Chevrier J, Bradman A, Kogut K, Huen K, et al. 2015. *In Utero* and childhood polybrominated diphenyl ether exposures and body mass at age 7 years: the CHAMACOS study. Environ Health Perspect 123:636–642, doi: 10.1289/ehp.1408417. - Fernie KJ, Laird Shutt J, Ritchie IJ, Letcher RJ, Drouillard K, Bird DM. 2006. Changes in the growth, but not the survival, of American kestrels (*Falco sparverius*) exposed to environmentally relevant polybrominated diphenyl ethers. J Toxicol Environ Health A 69:1541–1554. - Gee JR, Moser VC. 2008. Acute postnatal exposure to brominated diphenylether 47 delays neuromotor ontogeny and alters motor activity in mice. Neurotoxicol Teratol 30:79–87. - Glynn AW, Granath F, Aune M, Atuma S, Darnerud PO, Bjerselius R, et al. 2003. Organochlorines in Swedish women: determinants of serum concentrations. Environ Health Perspect 111:349–355, doi: 10.1289/ehp.5456. - Greenland S. 1995. Avoiding power loss associated with categorization and ordinal scores in dose-response and trend analysis. Epidemiology 6:450–454. - Hoppe AA, Carey GB. 2007. Polybrominated diphenyl ethers as endocrine disruptors of adipocyte metabolism. Obesity (Silver Spring) 15:2942–2950. - Hornung RW, Reed LD. 1990. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg 5:46–51. - Imbeault P, Chevrier J, Dewailly E, Ayotte P, Després JP, Tremblay A, et al. 2001. Increase in plasma pollutant levels in response to weight - loss in humans is related to *in vitro* subcutaneous adipocyte basal lipolysis. Int J Obes Relat Metab Disord 25:1585–1591. - Jones R, Edenfield E, Anderson S, Zhang Y, Sjodin A. 2012. Semi-automated extraction and cleanup method for measuring persistent organic pollutants in human serum. Organohalogen Compounds 74:97–98 - Kamstra JH, Hruba E, Blumberg B, Janesick A, Mandrup S, Hamers T, et al. 2014. Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47. Environ Sci Technol 48:4110-4119. - Kim TH, Lee YJ, Lee E, Kim MS, Kwack SJ, Kim KB, et al. 2009. Effects of gestational exposure to decabromodiphenyl ether on reproductive parameters, thyroid hormone levels, and neuronal development in Sprague-Dawley rats offspring. J Toxicol Environ Health A 72:1296–1303. - Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, et al. 2000. CDC growth charts: United States. Adv Data 314:1–27. - Kuriyama SN, Wanner A, Fidalgo-Neto AA, Talsness CE, Koerner W, Chahoud I. 2007. Developmental exposure to low-dose PBDE-99: tissue distribution and thyroid hormone levels. Toxicology 242:80–90. - Leijs MM. 2010. Toxic Effects of Dioxins, PCBs and PBDEs in Adolescents [PhD Dissertation]. Amsterdam:University of Amsterdam. - Lim JS, Lee DH, Jacobs DR Jr. 2008. Association of brominated flame retardants with diabetes and metabolic syndrome in the U.S. population, 2003–2004. Diabetes Care 31:1802–1807. - Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. 2014. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet 384:766–781. - Phillips DL, Pirkle JL, Burse VW, Bernert JT Jr, Henderson LO, Needham LL. 1989. Chlorinated hydrocarbon levels in human serum: effects of fasting and feeding. Arch Environ Contam Toxicol 18:495–500. - Pucci E, Chiovato L, Pinchera A. 2000. Thyroid and lipid metabolism. Int J Obes Relat Metab Disord 24(suppl 2):S109-S112. - Ross MG, Desai M, Khorram O, McKnight RA, Lane RH, Torday J. 2007. Gestational programming of offspring obesity: a potential contributor to Alzheimer's disease. Curr Alzheimer Res 4:213–217. - Sjödin A, Jones RS, Lapeza CR, Focant JF, McGahee EE III, Patterson DG Jr. 2004. Semiautomated high-throughput extraction and cleanup method for the measurement of polybrominated diphenyl ethers, polybrominated biphenyls, and polychlorinated biphenyls in human serum. Anal Chem 76:1921–1927. - Skinner AC, Skelton JA. 2014. Prevalence and trends in obesity and severe obesity among children in the United States, 1999–2012. JAMA Pediatr 168:561–566. - Stapleton HM, Eagle S, Anthopolos R, Wolkin A, Miranda ML. 2011. Associations between polybrominated diphenyl ether (PBDE) flame retardants, phenolic metabolites, and thyroid hormones during pregnancy. Environ Health Perspect 119:1454–1459, doi: 10.1289/ehp.1003235. - Staskal DF, Hakk H, Bauer D, Diliberto JJ, Birnbaum LS. 2006. Toxicokinetics of polybrominated diphenyl ether congeners 47, 99, 100, and 153 in mice. Toxicol Sci 94:28–37. - Suvorov A, Battista MC, Takser L. 2009. Perinatal - exposure to low-dose 2,2',4,4'-tetrabromodiphenyl ether affects growth in rat offspring: what is the role of IGF-1? Toxicology 260:126–131. - Suvorov A, Takser L. 2010. Global gene expression analysis in the livers of rat offspring perinatally exposed to low doses of 2,2',4,4'-tetrabromo-diphenyl ether. Environ Health Perspect 118:97–102, doi: 10.1289/ehp.0901031. - Ta TA, Koenig CM, Golub MS, Pessah IN, Qi L, Aronov PA, et al. 2011. Bioaccumulation and behavioral effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in perinatally exposed mice. Neurotoxicol Teratol 33:393–404. - Talsness CE, Kuriyama SN, Sterner-Kock A, Schnitker P, Grande SW, Shakibaei M, et al. 2008. In utero and lactational exposures to low doses of polybrominated diphenyl ether-47 alter the reproductive system and thyroid gland of female rat offspring. Environ Health Perspect 116:308–314, doi: 10.1289/ehp.10536. - Tung EW, Boudreau A, Wade MG, Atlas E. 2014. Induction of adipocyte differentiation by polybrominated diphenyl ethers (PBDEs) in 3T3-L1 cells. PLoS One 9:e94583, doi: 10.1371/journal.pone.0094583. Turyk ME, Anderson HA, Steenport D, Buelow C, - Imm P, Knobeloch L. 2010. Longitudinal biomonitoring for polybrominated diphenyl ethers (PBDEs) in residents of the Great Lakes basin. Chemosphere 81:517–522. - Valvi D, Casas M, Mendez MA, Ballesteros-Gómez A, Luque N, Rubio S, et al. 2013. Prenatal bisphenol A urine concentrations and early rapid growth and overweight risk in the offspring. Epidemiology 24:791–799. - Verhulst SL, Nelen V, Hond ED, Koppen G, Beunckens C, Vael C, et al. 2009. Intrauterine exposure to environmental pollutants and body mass index during the first 3 years of life. Environ Health Perspect 117:122–126, doi: 10.1289/ehp.0800003. - Vuong AM, Webster GM, Romano ME, Braun JM, Zoeller RT, Hoofnagle AN, et al. 2015. Maternal polybrominated diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera: the HOME Study, Cincinnati, USA. Environ Health Perspect 123:1079–1085, doi: 10.1289/ehp.1408996. - Walford RL, Mock D, MacCallum T, Laseter JL. 1999. Physiologic changes in humans subjected to severe, selective calorie restriction for two years in Biosphere 2: health, aging, and toxicological perspectives. Toxicol Sci 52(2 suppl):61–65. - Warner M, Wesselink A, Harley KG, Bradman A, Kogut K, Eskenazi B. 2014. Prenatal exposure to dichlorodiphenyltrichloroethane and obesity at 9 years of age in the CHAMACOS study cohort. Am J Epidemiol 179:1312–1322. - Webster BH Jr, Bishaw A. 2007. Income, Earnings, and Poverty Data from the 2006 American Community Survey. ACS-08. Washington, DC:U.S. Census Bureau. Available: https://www.census.gov/ prod/2007pubs/acs-08.pdf [accessed 2 June 2015]. - Windham GC, Pinney SM, Sjodin A, Lum R, Jones RS, Needham LL, et al. 2010. Body burdens of brominated flame retardants and other persistent organo-halogenated compounds and their descriptors in US girls. Environ Res 110:251–257. - Woodruff TJ, Zota AR, Schwartz JM. 2011. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ Health Perspect 119:878–885, doi: 10.1289/ ehp.1002727. - Zhou T, Taylor MM, DeVito MJ, Crofton KM. 2002. Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption. Toxicol Sci 66:105–116.