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A news article by Charles Schmidt propa-
gates the Diversity Outbred mouse model to 
facilitate the extrapolation of toxicology find-
ings to humans. In this regard, we would like 
to highlight two sources of animal diversity 
that could be relevant: 1) the differential—
and genetically codetermined—circadian 
propensity for activity and rest with which the 
mice are born, and 2) the differential stability 
of circadian rhythms in later life stages 
of mice, to which perinatal photoperiods 
may contribute. 

Regarding 1), humans come in different 
chronotypes corresponding to variations in 
how physiology, endocrinology, metabolism, 
and behavior are organized and timed over 
the individual’s biological day and night. 
Inasmuch as the extent of genetic variability 
among model mice should be similar to 
genetic variations in humans, how do new-
generation mouse models capture differen-
tial chronobiological propensity? Laboratory 
mice, like humans, come in various chrono-
types, and different strains come in different 
ones (Wicht et al. 2014); therefore, different 
time windows of biological nights and 
days should significantly impact when and 
what we observe or measure, be it param-
eters of toxicology, behavior, physiology, 
or anatomy. With evidence that responses 
to DNA damage are regulated by the 

circadian clock in mice (Kang et al. 2010), 
chronotype-dependent lows and highs of 
DNA repair within a 24-hour period must be 
considered when extrapolating mouse-based 
toxicological data to humans.

Regarding 2), although inbred mice may 
be genetically identical, perinatal photo
periods may nevertheless—by imprinting 
the circadian clock—lead to a differential 
stability of circadian rhythms. Perinatal expo-
sures to summer versus winter light condi-
tions (i.e., with a light:dark ratio of 16:8 
versus 8:16) can determine the susceptibility 
of a mouse’s circadian rhythm to dysfunc-
tion or disruption throughout the animal’s 
life (Ciarleglio et al. 2011). Furthermore, 
the integrity of circadian clocks and rest–
activity circadian rhythms plays a major role 
for tumor suppression by controlling cell 
proliferation and other cellular functions (Fu 
and Lee 2003). Taken together, if the peri-
natal photoperiod may codetermine the very 
robustness of mice to fight off severe circa-
dian dysfunction (Filipski et al. 2002) and 
the development of tumors, then a fortiori 
we would have to understand, and possibly 
control, circadian diversity. 

Overall, the biological activity of circa-
dian clocks must be taken into account 
when experimenting with mice. Taking 
note of 1) and 2), we should consider 
possible chronotypes in new-generation 
mice and standards for the light:dark 
conditions under which laboratory mice 
are bred and raised. Moreover, the efficacy, 
toxicity, and carcinogenicity of chemicals 

or drugs should be tested at different times 
within a 24-hour period. Given evidence 
for links between aging clocks and progres-
sive declines of the circadian control of 
crucial biological processes (Belancio et al. 
2014), age should also be factored in when 
using mice for testing. 
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