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Introduction
The process of identifying human health 
hazards of chemicals has evolved substantially 
over time with advances in weight of evidence 
determination, mode of action (MOA), and 
systematic review (e.g., Meek et  al. 2014; 
NRC 2011; U.S. EPA 2005; Woodruff and 
Sutton 2014), but practices for quantitative 
dose–response assessment to characterize 
those hazards and inform risk management 
rely largely on approaches that have shown 
relatively small changes since they were first 
used. For assessment of non-cancer effects, 
it is still common to derive exposure limits 
by dividing a no observed adverse effect level 
(NOAEL) or a benchmark dose lower confi-
dence limit (BMDL) derived from a chronic 
study by a generic “uncertainty factor” 
of 100 (also known as a “safety,” “assess-
ment,” or “extrapolation” factor), although 
using chemical-specific “adjustment” factors 
(CSAFs) or data-derived extrapolation factors 
(DDEFs) is increasingly encouraged (IPCS 
2005; U.S. EPA 2014b). Exposure limits for 
carcinogens that are genotoxic or without an 
established nongenotoxic MOA are usually 
based on other approaches, in particular the 
linear extrapolation approach (EFSA 2005; 

U.S. EPA 2005), although more recently 
the margin-of-exposure approach has been 
suggested even for genotoxic carcinogens 
(Barlow et  al. 2006; Benford et  al. 2010; 
O’Brien et al. 2006).

Although procedurally straight-forward, 
these practices are most amenable to risk 
management decisions in which the margins 
between calculated exposure limits and actual 
or anticipated exposures are large enough to 
be of little or no risk management concern. 
For instance, the safety factor approach 
results in an exposure limit [acceptable daily 
intake (ADI), reference dose (RfD)] generally 
presumed to be “safe” (e.g., having “reason-
able certainty of no harm”). However, the 
conclusion that exposures at or below this 
level would not result in appreciable health 
risks is typically not based on further quan-
titative substantiation. For exposures higher 
than such an exposure limit, the only state-
ment that can be made is that risks “cannot 
be excluded” without any quantitative charac
terization of what the extent of potential 
health effects might be. Thus, if reducing 
exposures to the level of the derived exposure 
limit is challenging (e.g., economically, prac-
tically, or politically), then there is no way to 

weigh the cost of exposure reduction against 
its likely human health benefits. Moreover, 
there may be a residual risk at, or even below, 
the exposure limit, and this residual risk 
may vary among different chemicals and/or 
exposure scenarios.

To address these disadvantages, a proba-
bilistic approach to hazard or risk charac
terization has been advocated by several risk 
assessment researchers (Baird et  al. 1996; 
Evans et al. 2001; Hattis et al. 2002; Slob 
and Pieters 1998; Swartout et al. 1998), as 
well as by several expert panels (NRC 1994, 
2009; U.S.  EPA Science Advisory Board 
2002). Although most of the work has 
focused on characterization of non-cancer 
effects, the National Research Council 
(NRC) revisited the question of unifying 
assessment of cancer and non-cancer effects 
(NRC 2009). Some of the recommendations 
of NRC (2009) as to default approaches to 
low-dose extrapolation have been controver-
sial (Abt et al. 2010; Pottenger et al. 2011; 
Rhomberg 2011; Rhomberg et  al. 2011); 
however, deciding on such science policy 
questions (as “default” options clearly are) 
does not preclude moving forward with 
developing a unified probabilistic framework 
for all types of endpoints. 

In this review we present a unified proba-
bilistic framework, developed in tandem 
with an international harmonization project 
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(IPCS 2014) on uncertainty in human 
dose–response assessment [“hazard charac
terization” in World Health Organization/
IPCS (International Program on Chemical 
Safety) nomenclature]. This framework retains 
the usual “two-part” process as employed in 
the current nonprobabilistic (“deterministic”) 
approaches for quantitative dose–response 
assessment: a) dose–response analysis of an 
experimental or observational dataset of health 
effects resulting from chemical exposure, and 
b)  inference (or “extrapolation”) as to the 
potential effects in the target human popula-
tion. The second part needs to account for 
differences in characteristics (e.g., species, 
exposure duration) between the dataset 
analyzed and the human population of 
interest for risk assessment. In terms of the 
usual deterministic approach of dose–response 
assessment, the determination of the point 
of departure (POD) may be regarded as the 
first part and the extrapolations addressed by 
uncertainty factors (interspecies, intraspecies, 
subchronic-to-chronic, etc.) as the second 
part. Although the basic procedure appears 
unchanged, probabilistic assessment requires 
more precise definitions of each step and 
thus also promotes greater transparency as to 
the biological and quantitative assumptions 
underlying the dose–response assessment. In 
particular, the framework we propose here 
provides a theoretical basis for human dose–
response assessment, where all underlying 
concepts are explicitly defined and logically 
interrelated. In this way, it is fully trans-
parent as to what the various computational 
procedures represent, and how the results can 
be interpreted.

This review is organized as follows. In 
“Methods,” we first set out the four funda-
mental principles that underlie the unified 
probabilistic framework. In addition, we lay 
out a prototypical approach to implement 
the unified framework for human-relevant 
animal toxicology data. In “Results,” we illus-
trate the approach by deriving probabilistic 
exposure limits from example non‑cancer 
and cancer datasets using probability 
distributions for uncertainty derived from 
historical data (for datasets and computer 
code, see Supplemental Material, Table S1). 
In “Conclusions,” we discuss implementa-
tion issues and identify data needs (see 
also Supplemental Material, “Additional 
Applications and Extensions”).

Methods
Fundamental principles .  Principle 1. 
Individual and population-level dose 
response. The starting point of this frame-
work is that a conceptual distinction exists 
between effects on the individual and effects 
on the population. In particular, the effect 
of exposure at the level of the individual is 

the “magnitude” of a measure of toxico-
logical effect. The result of a fixed exposure 
in a population will be different magnitudes 
of effect in different individuals in that 
population. Therefore, for a particular magni-
tude of effect, the result in the population is 
expressed as an “incidence.” In the present 
framework, the magnitude of change needs to 
be ordinally related to severity—so a greater 
magnitude constitutes a more severe effect. 
For instance, a body weight (BW) decrease 
of 20% is more severe than a BW decrease 
of 10%, and a moderate liver lesion is more 
severe than a mild liver lesion. Thus, for a 
monotonic dose response in an individual, it 
may be imagined that a higher exposure will, 
for any given endpoint, lead to more severe 
effects. In a population, increasing exposure 
levels will result in simultaneously increasing 
both incidence and severity: more and more 
individuals will suffer from more and more 
severe effects.

For convenience, we establish the 
notation whereby human dose or exposure 
is denoted HD, the magnitude of effect is 
denoted by M, and incidence is denoted I. 
Because M is assumed to have an ordinal 
relationship with severity, incidence can be 
characterized as the incidence of effects of 
magnitude equal or greater than M, denoted 
I≥M. Because it is customary to discuss “inci-
dence” in terms of effects that may be of 
concern, we use the simpler notation HDM

I 
as shorthand for HD(I≥M). In addition, we 
use an asterisk (*) to indicate fixed or target 
values, such as a “critical effect size” (M*), 
target human dose (HD*), or target incidence 
level (I*).

Given these definitions, the output 
of a human dose–response assessment is 
concerned with the quantitative relation-
ships among HD, M, and I, along with their 
uncertainty. We focus on the most common 
type of output, which is developing a human 
health–based exposure limit (some other types 
of outputs are discussed in Supplemental 
Material, “Performing a population assess-
ment”). In our notation, this means esti-
mating a target human dose, HD*, which is 
regarded as a function of a two-dimensional 
protection goal: the target level of incidence 
(I*) and the specified level of effect magnitude 
(M*), both of which may be selected based on 
risk management considerations. Specifically, 
it is the dose at which only a small fraction 
of the population (low incidence of I*) will 
experience effects ≥ M*, which can be written

	 HD* = HD(I*≥M*) = HDM*
I*.	 [1]

F o r  i n s t a n c e ,  o n e  c o u l d  w r i t e 
HD(1%≥ 10%BW) = HD10

01 for the dose at 
which only 1% of the population has > 10% 
change in BW.

Principle 2. Continuous parameters 
underlying all observed dose–response 
endpoints. The second element of this frame-
work is that observed dose–response relation-
ships for all endpoints can, at the individual 
level, be recast as relating to an underlying 
continuous measure of response. Obviously, 
this principle applies to endpoints that are 
directly observed as continuous data. In 
that case, the observed dose response for the 
average responses as a function of dose may 
be imagined to reflect the dose response in 
an individual animal (namely, the average 
animal), even though an individual’s dose 
response is not directly observable in most 
toxicological studies. Endpoints that are 
generally measured as quantal response 
rates in a study population require some 
additional discussion. Below we discuss two 
options, briefly indicated as “deterministic” 
and as “stochastic” quantal endpoints (Slob 
et al. 2014).

Many quantal endpoints, such as in histo-
pathology, are ordinally scored (e.g., minimal, 
mild, moderate, severe). Such endpoints 
can be considered as gradually increasing 
in magnitude at the individual level, but 
are reported in “bins,” or severity categories 
rather than as a continuous measure. In this 
way, the reported incidences can be thought 
of as relating to a single category (or a limited 
number of categories) of severity, whereas 
for other severities the incidences are not 
reported. In fact, any continuous dataset can 
be “quantized” and transformed into such a 
quantal (or ordinal) dataset by setting one (or 
more) cut points, resulting in incidences Y 
associated with each cut point. For instance, 
changes in hematocrit from the mean level in 
the controls can be separated into < 5% and 
≥ 5%, and the fraction of animals below and 
above the 5% cut point can treated as quantal 
data. In this case, the effective dose (ED) for 
a 5% change in the continuous hematocrit 
data (i.e., ED05) is equal to the ED for a 50% 
quantal response, EDY = 50%, as illustrated in 
Figure 1. This concept of quantal endpoints 
has previously been discussed by Slob and 
Pieters (1998).

Therefore, when quantal data can be 
viewed as reflecting the incidence of a contin-
uous effect above or below a “determined” 
cut point equal to M*, then the endpoint 
is referred to as a “deterministic quantal 
endpoint.” This is generally appropriate for 
effects that can occur in different degrees of 
severity. Furthermore, for the purposes of 
dose–response data analysis, the ED50 from 
the quantal response data would be used to 
estimate the EDM* corresponding to M* of 
the underlying continuous data. When the 
available dose–response data report the inci-
dences related to various severity categories, 
then one of them may be chosen as being 
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minimally adverse. When they report only the 
incidences related to a single severity category, 
this severity may be more than minimally 
adverse, in which case additional uncertainty 
arises in estimating the dose for a minimally 
adverse level of severity.

However, not all quantal effects may 
be derived from applying a cut point to an 
underlying continuous variable. Some effects 
appear to have discrete outcomes, without 
an underlying, gradually increasing level of 
severity. An example of such an endpoint 
is malformations, which often do not show 
different degrees of severity: It is there or it 
is not. Cancer may be considered another 
example, because a particular tumor is present 
or not (ignoring observational practicalities). 
For such endpoints, an alternative interpre-
tation of the dose response is possible: The 
observed incidences at each dose are consid-
ered as resulting from a “stochastic” process, 
where the observation that an individual 
animal has a tumor or not is analogous to 
drawing a lottery ticket, with probability equal 
to the expected incidence at that dose (and 
time of observation). That is, given all relevant 
circumstances for the particular individual 
(such as genetic make-up or experimental 
conditions), the effect is not fully determined, 
but rather any particular animal may be (un)
lucky or not. If it were possible to perform 
a study in which all animals were identical, 
and identically treated (except the dose, but 
without dosing errors), then the quantal dose 
response would estimate the “individual prob-
ability of effect.” In this case, the observed 
incidence Y is treated as an estimate of the 
underlying individual probability of effect 
M, so M* would correspond to an incidence 
Y* = M*, as depicted in Figure 2. This concept 
of quantal endpoints has previously been 
discussed by Slob et al. (2014).

Therefore, when quantal data are assumed 
to reflect the individual probability of an 
outcome as a result of a stochastic process, the 
endpoint is referred to as a “stochastic quantal 
endpoint.” In reality, there are always small 
differences between animals (including the 
experimental conditions), which will have 
some impact on the dose response. However, 
this additional impact is generally not sepa-
rately distinguishable from the dose–response 
data. This interindividual variability might 
be assumed to be relatively small in the 
study population and hence ignored. If so, 
the observed quantal dose response approxi-
mates the individual probability of effect as a 
function of dose.

Whether the “deterministic” or “stochastic” 
interpretation of quantal endpoints is correct 
remains uncertain, because even for endpoints 
such as cancer or malformations, it might 
be the case that the effect in an individual 
subject is evoked deterministically as soon 

as a given internal dose in that individual is 
reached. For risk assessment, the distinction 
between the two interpretations is important 
for the following reason: In the deterministic 

interpretation, the animal dose–response 
curve reflects the experimental variation and 
errors in the animal study, and therefore 
its shape (e.g., slope) would not be relevant 

Figure 1. Deterministic quantal endpoints: quantal responses reflecting incidences of a continuous 
response above/below a fixed cut point. The various dose–response lines in the upper panel reflect the 
(hypothetical) dose responses of individual animals.
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information for predicting risks in humans. 
However, in the stochastic interpretation, the 
dose–response curve may be regarded as a 
model for the human individual probability 
of effect, and therefore its shape would be 
relevant as information for human risks.

Principle 3. Selecting a basis for 
inference: the “effect metric.” The third 
fundamental element in this framework is that 
inferences are made on the basis of a selected 
“effect metric” that defines “toxicological 
equivalent” magnitudes of effect. This effect 
metric should reflect the effect size in such a 
way that it applies across species (or popula-
tions) as well as across individuals within a 
species (or population). Changes of the same 
magnitude in this metric are considered to 
reflect equal toxicologically induced changes.

In addition, the magnitude of effect 
should also be ordinally related to severity 
at the level of the individual. For a contin-
uous endpoint, severity increases with an 
increase in the percent change of a contin-
uous endpoint (e.g., from 5 to 7% decrease 
in hematocrit). For a deterministic quantal 
endpoint, the severity is related to the 
category of effect (e.g., from “mild” to more 
severe liver lesions). For a stochastic quantal 
endpoint, severity is related to the probability 
of experiencing the effect (e.g., from 1 to 2% 
individual probability of cancer). 

“Equipotent doses” are defined as doses 
that elicit the same size of effect metric. 
Thus, individuals with the same equipotent 
doses (at all effect sizes) are defined as equally 
sensitive to the chemical for the endpoint.

Note that it is assumed that the effect 
has previously been determined to be an 
appropriate basis for making inferences 
about human health effects—for example, 
that the effects observed in the test animal 
are relevant to humans. In this context, 
“relevance” needs to be determined only in 
the qualitative sense: Could a similar effect 
occur in humans, or not? When the answer 
is “yes,” quantitative differences, including 
large differences that are expected based on 
MOA considerations, should be addressed 
explicitly and quantitatively, taking uncertainty 
into account as well (e.g., using a probabilistic 
CSAF or DDEF; see Supplemental Material, 
“Chemical-specific/data-derived toxicokinetics 
or toxicodynamics”).

The use of an effect metric does not neces-
sarily imply that a given change is equally 
adverse in all individuals (or species). For 
instance, a 5% decrease in hematocrit may 
be considered as a toxicologically equivalent 
effect metric in all individuals, but be adverse 
in persons with anemia and nonadverse in 
healthy persons. Finally, it should be noted 
that further inferences are possible from the 
toxicologically equivalent effect metric to 
other measures of health effect, such as if an 

adverse outcome pathway can quantify the 
linkage between a change in effect metric and 
the likelihood of an adverse health outcome. 
For instance, if the effect metric is a percent 
change in serum cholesterol, given an adverse 
outcome pathway linking serum cholesterol 
changes to cardiovascular disease, one might 
aim to estimate the risk of fatal myocardial 
infarction in a specific population. Because 
variability in baseline serum cholesterol levels 
and other relevant risk factors (e.g., blood 
pressure, C-reactive protein) may differ across 
different populations (e.g., geographic regions, 
socioeconomic groups, lifestages), analyses of 
such “downstream effects” would necessarily 
be specific to the population(s) being assessed, 
even if the relationship between exposure and 
the effect metric is assumed to be the same 
across populations. Such analyses may also be 
useful for socioeconomic analyses because a 
fixed magnitude of effect may have different 
cost implications across human subpopula-
tions (e.g., modifying insulin for diabetics 
vs. nondiabetics). This is discussed further 
in Supplemental Material, “Extrapolation to 
downstream health endpoints and adverse 
outcome pathways” and Figure S1.

Principle 4. Making adjustments while 
accounting for variability and uncertainty. 
The final fundamental element in this 
framework is that dose–response assessment 
involves making inferences about the human 
population of interest for risk assessment (the 
“target population”) based on information 
obtained from a scientific study (the “study 
population”). In the usual deterministic 
approach, these inferences are accomplished 
using the “uncertainty factors” to address 
(potential) differences due to differing species, 
human variability, suboptimal study condi-
tions, and so on. However, these factors are 
often mixtures of multiple elements that 
need to be clearly specified in a probabilistic 
framework. Specifically, making inferences 
between the “study” and “target” populations 
involves making adjustments from the study 
to the target populations while accounting for 
variability and uncertainty:
•	 Adjustments are needed to correct for 

differences between the study and target 
populations in order to make inferences 
as to the potential health effects in the 
population of interest, with the relevant 
exposure conditions. For example, on 
average across chemicals, the dose in milli-
grams per day eliciting the same effect 
differs between species due to differences in 
body size. The usual (implicit) adjustment 
is to divide the dose by BW, which is also 
intended to normalize across individual 
subjects in the (study or target) popula-
tion. But data increasingly support the idea 
that the dose in milligrams per kilogram 
BW may need additional adjustment by an 

allometric scaling factor to achieve equiva-
lent effects (e.g., Bokkers and Slob 2007; 
Dedrick 1973; Kleiber 1932; Price et al. 
2008; U.S. EPA 2011b). Further, it might 
be known that, for any particular chemical, 
there are specific differences in toxico
kinetic or toxicodynamic properties, which, 
for instance, make it plausible that one 
species would be more sensitive than others 
(e.g., resulting in a CSAF or DDEF). 
As another example, for some classes of 
effects, the expected relationship between 
a benchmark dose (BMD) and duration 
of exposure might be reflected by Haber’s 
law (toxicity depends on the product of 
concentration and exposure time), which 
may be used to adjust the BMD to other 
exposure durations. Usually, differences 
in study population/conditions and the 
target population/conditions can be better 
characterized (i.e., its uncertainty reduced) 
with additional data or analysis, and some 
can even be eliminated by conducting new 
studies that require fewer adjustments (e.g., 
conducting a chronic study to replace a 
subchronic study).

•	 “Variability” refers to intrinsic hetero
geneity about a central tendency, usually 
between the individuals in the “target” 
population. For example, different indi-
viduals (humans) will exhibit different 
sensitivity to toxic effects from the same 
exposure due to various sources of vari-
ability (e.g., genetics, lifestyle, health 
status). Additional data or analysis can 
make an estimate of human variability 
more precise, but the variability itself 
cannot be eliminated.

•	 “Uncertainty” refers to a lack of knowl-
edge that could,  in principle,  be 
reduced with additional data or analysis. 
Uncertainty can relate to the degree 
of adjustment (e.g., the exact allome-
tric power with which to adjust for BW 
differences) but also to the degree of vari-
ability (e.g., how much more sensitive is 
the 95% individual relative to the median 
individual). As another example, because 
toxicity studies have finite numbers of 
individuals per dose group, the BMD is 
uncertain. This uncertainty can, in prin-
ciple, be reduced by performing a larger or 
better designed study. Similarly, “missing 
studies” represent an uncertainty that can 
be quantified by meta-analyses comparing 
the overall differences between study 
types and capture that in a distribution 
(e.g., Hattis et al. 2002). In some cases, 
observed variability among chemicals, in 
general, can be used to inform the uncer-
tainty in an adjustment factor for a specific 
chemical. For instance, observed variability 
among chemicals in the dose ratio between 
subchronic and chronic studies for the 
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same effect translates into uncertainty in 
the subchronic/chronic difference for a 
specific chemical for which no such data 
are available (e.g., Bokkers and Slob 2005).
As Table 1 shows, all typical uncertainty 

factors include an uncertainty compo-
nent, and an adjustment component, 
except for the intraspecies factor, where 
the adjustment component is replaced by a 
variability component.

Prototypical approach implementing a 
unified probabilistic framework. The prin-
ciples described above underlying a unified 
probabilistic framework can be applied to 
any type of study or endpoint that has dose–
response information, but here we address 
the most common case of using animal 
toxicology data. The primary assumption is 
that the candidate critical endpoint(s) from 
an animal toxicology study is relevant in the 
sense that similar effects might be expected 
to occur in humans (uncertainty in the 
qualitative cross-species concordance is not 
addressed in this framework). Additional 
assumptions are as follows:
•	 The toxicity data are from a study 

conducted in an (inbred) laboratory animal 
strain, with the purpose of mimicking what 
might happen in a typical human being. 
Intrastudy variability reflects experimental 
errors (e.g., dosing errors, imperfectly 
controlled experimental conditions) and 
remaining differences (genetic, or other-
wise) among animals. This is treated as 
statistical uncertainty in estimating a POD, 
which is supposed to mimic an equipotent 
dose in a typical human being.

•	 In the effect range of interest, the 
continuous dose–response relationships 
are monotonic and parallel on a log-dose 
scale across species and across individuals 
within a species, so that the values (distri-
butions) for any adjustments, variability, 
or uncertainties are independent of the 
selected critical effect size M*. Slob and 
Setzer (2014) found evidence consistent 
with this assumption.
The basic steps of the procedure under 

these assumptions are as follows (see also 
Figure 3 and Table 2):
1.	 Select a toxicologically equivalent effect 

metric and an associated critical effect 
size (M*), and conduct a BMD analysis 
with benchmark response (BMR) = M* 
(Crump 1984) to derive the uncertainty 
distribution for the dose corresponding to 
M* in the animal (ADM*). 

2.	 Apply probabilistic interspecies and 
other adjustments to ADM* to derive 
the uncertainty distribution for the dose 
corresponding to M* in the median 
human (HDM*). 

3.	 Select a human variability distribution 
(e.g., log-normal), setting the median 

to HDM* with an uncertainty distribu-
tion as obtained in step 2. The measure 
of dispersion of this human variability 
distribution [such as geometric standard 
deviation; GSD = exp(σH)] has an uncer-
tainty distribution, reflecting that we are 
uncertain about the degree of variability 
among individuals. From this (uncertain) 
human variability distribution, we derive 
an (uncertain) human variability factor 
HVI* for the ratio between the quantile 
corresponding to a selected target inci-
dence (I*) value and the median, so that 
HDM*

I* = HDM* × HVI*.
This output is an estimate of the HDM*

I* 
in the form of an uncertainty distribution, 
and any given level of confidence may be 
chosen for deriving an exposure limit (e.g., 
a “probabilistic RfD”), by taking the asso-
ciated lower percentile of the uncertainty 
distribution of HDM*

I*. Alternatively, the full 
uncertainty distribution can be combined 
with exposure information to inform risk 
management decisions. Details of each step 
are described below along with Monte Carlo 
(MC) procedures for the overall calculation.

Step 1: Estimating the animal dose 
corresponding to the critical effect size for 
the selected toxicologically equivalent effect 
metric. The purpose of this step is to establish 
the uncertainty distribution for ADM*, the 
animal dose associated with a specified effect 
size M* (= BMR) based on a specified toxico-
logically equivalent effect metric.

The key issue in defining the effect 
metric is how to address baseline differences 

across species or individuals in order to 
make changes “comparable.” For instance, a 
decrease of 10 g in rat body weight does not 
compare to a 10-g change in human body 
weight. For most (continuous) parameters, a 
percent change would be the obvious effect 
metric, being the only measure that may be 
defined as representing an equal effect size 
among different species and individuals (with 
different background responses). Note that 
an equal effect size does not imply that it will 
always be equally adverse in different species/
individuals (such as a 5% decrease in hema-
tocrit in anemic vs. nonanemic persons). 
Severity categories in histopathological 
lesions appear to directly apply as a measure 
of equivalent effect magnitude. However, for 
endpoints measuring an increase in individual 
probability of effect, the question of how to 
correct for the background risk is not easily 
answered. Various measures are being used, 
such as additional, extra, or relative risk, which 
all correct for background in a different way. 
It remains unclear, however, which of these 
measures reflects an equivalent measure of risk 
(if any), in particular when background risks 
among species (populations) differ greatly.

After having chosen the effect metric, one 
also needs to specify a critical effect size—
the magnitude of effect size M* of interest, as 
defined by the problem formulation and risk 
management context for the assessment. The 
term “critical” here should be understood in 
a wide sense, that is, it is a selected value (or 
even a range of values) that forms a starting 
point for doing the probabilistic calculations. 

Table 1. Components of adjustment, variability, and uncertainty in some typical uncertainty factors.

Uncertainty factor Adjustment Variability Uncertainty Comment
Correcting dose 

for body size
✓ ✓ Oral dose in mg/day may be adjusted to mg/(kgα day), 

where the value of α may be chosen to be 1 or < 1; 
this value is assumed to hold generically, so there is 
no variability, but the value of α is uncertain. Generic 
adjustments have also been derived for inhalation 
exposures based on regional gas or particle dosimetry 
derived from respiratory tract geometry and airflow.

Interspecies 
toxicokinetic or 
toxicodynamic 
differences

(✓)a ✓ Assuming that the test animal and humans are (on the 
appropriate dose scale) equally sensitive, on average, 
to chemicals overall, no further adjustment is needed 
(i.e., the factor equals 1). However, species do differ in 
sensitivity from one chemical to another. This chemical-
to-chemical variability translates into uncertainty about 
the appropriate factor for a single chemical.

Intraspecies  ✓ ✓ Some humans are expected to be more sensitive than 
others, but for a single chemical and effect, it is 
uncertain how many of them are more sensitive and by 
how much. Thus, there is variability, the size of which 
is uncertain.

Subchronic/
chronic

✓ ✓ On average, for chemicals overall, a given effect may 
be expected to occur at a lower dose with chronic 
exposure than with subchronic exposure (hence 
adjustment), but a single chemical may deviate to an 
uncertain degree.

Database ✓ ✓ When one study type systematically results in lower 
PODs, then adjustment would be needed, while a 
single chemical may deviate to an uncertain degree.

aThe adjustment factor is assumed to be 1 in this case, so that it appears to be absent in the calculations. 
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Often, the problem formulation suggests 
that the critical effect size should reflect the 
effect size that is considered to be “minimally 
adverse” biologically. However, current toxi-
cological knowledge does not allow one to 
unequivocally define minimally adverse effect 
sizes for all potentially critical endpoints. 
Further, a given effect size might not be mini-
mally adverse in one species or individual, 
while it is minimally adverse in another (e.g., 
hematocrit and anemia, discussed above). As 
a practical limitation, the choice of M may be 
restricted by the available data. For instance, 
the reported data may relate to discrete values 
of M only (e.g., specific severity catego-
ries of lesions, as in histopathological data). 
Moreover, the lower the value of M, the less 
precise the estimates of the associated doses 
will be. For biologically defined M*s, one 
might aim to specify study designs that are 
likely to achieve “adequate” statistical preci-
sion for dose estimates related to that value 
M*. However, even then, the study design 
needed to achieve that goal may be impractical 
(e.g., unrealistic number of animals needed). 
If so, one may decide to use a statistically 
based M* (i.e., the lowest value of M* that 
achieves the desired level of statistical preci-
sion) as a surrogate. Such statistically based 
M*s could reflect levels of effect that are larger 
than minimally adverse levels, and this can 
be regarded as an additional source of uncer-
tainty or addressed by setting a more strin-
gent protection goal in terms of incidence. 
Typical examples of effect metrics and critical 
effect sizes are shown in Table 3, along with 
the BMD approach implied, by treating all 
endpoints as fundamentally continuous.

The result of the dose–response analysis 
is an uncertainty distribution for ADM*, 
the animal dose corresponding to M*. 
Approaches to establishing the uncertainty 
distribution include a) translating the BMD 
confidence limits obtained by BMD software 
into a distribution, b) parametric bootstrap-
ping [Slob and Pieters 1998; implemented 
in the R package (version  3.2.2; R  Core 
Team 2015) PROAST (RIVM 2012)], or 
c) Bayesian analysis (Kopylev et al. 2007). 
It should be noted that fitting a single 
dose–response model may not fully capture 
the uncertainties in the dose–response data. 
Therefore, instead of deriving a BMD distri-
bution from a single model, various models 
should be fitted to address model uncertainty. 
These model-specific distributions may be 
simply pooled in a single distribution (e.g., 
Slob et al. 2014), or one may apply “model 
averaging,” for which various approaches 
have been proposed (Bailer et al. 2005; Shao 
and Gift 2013; Wheeler and Bailer 2007). In 
addition, if different dose–response datasets 
are available for the same endpoint, they 
could be combined in a joint dose–response 

Figure 3. Implementation of the unified probabilistic framework to derive the uncertainty distribution for 
HDM*I* and a corresponding probabilistic RfD. In step 1, BMD analysis is used to derive the uncertainty 
distribution for ADM*. In step 2, this distribution is combined with uncertainties in dosimetric adjustment, 
animal-to-human toxicokinetics and toxicodynamics, and other study-specific limitations, to derive the 
uncertainty distribution for HDM*. In step 3, the distribution is further combined with the uncertainty in 
the human variability factor corresponding to the selected incidence I* in the population to derive the 
uncertainty distribution for HDM*I*. The lower 95% (one-sided) confidence limit on HDM*I* can be chosen 
as the “probabilistic RfD” corresponding to the selected values of M* and I*. See “Methods” and Table 2 
for additional details. This approach is illustrated with two example datasets, with results shown in Table 4 
and Figures 4 and 5.

Step 1. Dose that will cause 
effect of magnitude M* in the 

experimental animal.

Inter-species, 
study-specific 

adjustments

Step 2. Dose that will cause 
effect of magnitude M*  in the 

median human.

Accounting for 
human 

variability

Step 3. Dose that will cause 
effects of magnitude ≥ M*

with incidence I* in the 
human population.

Benchmark dose
(BMD)

Dosimetric
adjustment

(DAF)

Animal-to-human
uncertainties 

(AHU)

Other study-specific
uncertainties

(OU)

Human variability factor
for incidence I*

(HVI*)

Probabilistic RfD (for selected M* and I*)
= lower 95% (one-sided) confidence bound

ADM*

HDM*

HDM*
I*

Table 2. Summary of unified probabilistic framework.

Step and goal New input(s) for each step Output(s) for each step
1.	Critical ED in animal. 

Estimate the uncertainty 
distribution for ADM*, the 
animal dose associated with 
the critical effect size M*.

•	Animal dose–response data
•	Toxicologically equivalent effect metric (M)
•	Critical effect size (M*)
•	Appropriate BMD analysis

ADM* = uncertainty distribution for 
BMD based on analysis of animal 
dose–response data.

2.	Equipotent dose in 
median human. Infer the 
uncertainty distribution for 
HDM* = HD(0.5 ≥M*), the 
human dose at which 50% 
of the human population has 
effects greater than or equal 
to the critical effect size M*.

•	ADM* from step 1
•	DAF, distribution for the dosimetric 

adjustment factor due to differences in 
body size between animal and human

•	AHU, distribution for the “animal-to-human 
uncertainties” due to unknown chemical- 
and/or species-specific toxicokinetic or 
toxicodynamic differences

•	OU, the distributions for “other 
uncertainties” due to study- and/or 
endpoint-specific conditions that differ from 
the target conditions

HDM* = ADM* × DAF / 
(AHU × OU) = uncertainty 
distribution derived by multiplying 
ADM* by uncertain factors.

3.	Equipotent dose in 
sensitive human (for an 
exposure limit). Infer 
HDM*I* = HD(I*≥M*), the 
dose at which a target 
incidence I*≥M* yields 
effects of size ≥ M*. 
Select a particular value 
HD* from the uncertainty 
distribution based on level 
of confidence.

•	HD (0.5≥M*) from step 2, serving as the 
uncertainty distribution for the median of 
the human variability distribution

•	A log-normal human variability distribution, 
and a separate uncertainty distribution for 
its variance σH2a

•	A target incidence I*, from which a human 
variability factor HVI* for the ratio between 
the “sensitive” and median individual is 
calculated [= exp(zI* σH) for a log-normal 
distribution, where zI is the normal z-score 
for the I* quantile]

HDM*
I* = HDM* × HVI* = uncertainty 

distribution for the I* percentile 
of a human variability distribution 
with median equal to HDM* and 
standard deviation on log scale 
of σH.

aWe use a log-normal distribution for the uncertainty in the variance, but other distributions could in principle be used. 
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analysis, with study as a covariate in the 
analysis, that is, some of the parameters of the 
dose–response model are study specific, and 
others are not (Slob and Setzer 2014).

Step 2: Adjustments due to interspecies 
differences and study conditions. The purpose 
of this step is to establish an uncertainty distri-
bution for the “typical” human dose associ-
ated with a specified magnitude of effect and 
endpoint, and with specified exposure condi-
tions. This step combines with the results 
of step 1. The “typical” human is defined as 
the median person of the population. This 
interspecies step involves addressing three 
separate aspects:
•	 A dosimetric adjustment factor (DAF) 

for generic physiological differences 
(e.g., body size differences for oral dose; 
respiratory tract differences for inhalation 
exposures) between the test animal and 
(median) human, along with uncertainty 
in the expected adjustment 

•	 Animal-to-human uncertainties (AHU) 
due to potential chemical-specific toxico
kinetic or toxicodynamic differences 
between the test animal and humans, 
resulting in differences in sensitivity for a 
given chemical 

•	 Other uncertainties (OU) due to specific 
study conditions that differ from the 
target exposure conditions (e.g., exposure 
duration, or exposure pattern).
The result of this step is an uncertainty 

distribution for the human dose at which 
50% of the human population has effects 
greater than (or equal to) M*:

HD(0.5≥M*) =  
	 ADM* × DAF / (AHU × OU).	 [2]

Each of the adjustments is described in more 
detail below.

Dosimetric adjustments. It is increasingly 
evident that generic differences in physi-
ology (e.g., body size) across species can be 
accounted for by multiplying the animal dose 
by a DAF, or equivalently, by dividing by 
an “assessment” factor (AF) accounting for 
interspecies body size differences (AFinter-bs).

For oral exposures, scaling doses by a frac-
tional power of BW has been found to better 
account for interspecies differences in body 
size than scaling by BW alone. Because oral 
doses are usually expressed as milligrams per 

kilogram BW, a correction factor is needed to 
convert the doses in milligrams per kilogram 
into allometrically scaled doses. Thus, the 
DAF and AFinter-bs are given by

DAForal =  
	 (animal BW/human BW)1 – α	 [3]

AFinter-bs(oral) =  
	 (human BW/animal BW)1 – α,	 [4]

where α is the allometric power. This power 
is not exactly known, and can be represented 
by a distribution (e.g., normal). Because this 
adjustment is meant to extrapolate from 
the test animal to the median human, the 
average (median) animal BW in the study 
and the median human BW in the target 
(sub)population should ideally be used 
(U.S. EPA 2011a). If these are not avail-
able, then standard values can be used (e.g., 
U.S. EPA 1988), with an uncertainty that 
is probably negligible compared with the 
uncertainty in the allometric power (although 
the BW uncertainty could be included in the 
assessment).

For inhalation exposures, different types 
of DAFs have been derived for particles 
(regional deposited dose ratio, or RDDR) 
and gases (regional gas dose ratio, or RGDR) 
(U.S. EPA 1994). Based on interspecies infor-
mation about respiratory tract geometries 
and air flow rates, the inhalation DAFs differ 
depending on whether the effects of interest 
are regional or systemic. For example, for 
effects in the upper airways, DAFs are based 
on the surface areas of relevant regions of the 
respiratory tract and the inhalation minute-
volume. For systemic effects that involve 
transport by blood, DAFs utilize information 
on species differences (if any) in blood-air and 
blood-tissue partition coefficients. As with 
the oral DAFs, these are meant to extrapolate 
between the (median) test animal and the 
median human. Standard values, rather than 
statistically based medians or values specific 
to the study, are usually employed, but clearly 
these are uncertain as well. Thus, one could 
define the uncertainty in the DAF (or in the 
analogous AFinter-bs(inhalation)) by assuming log-
normal residual uncertainty:

DAFinhalation =  
	 (RDDR or RGDR) × exp(εDAF)	 [5]

AFinter-bs(inhalation) =  
	 (RDDR or RGDR)–1 × exp(εDAF),	 [6]

where εDAF is normally distributed with a 
standard deviation of σDAF. The value of σDAF 
might be based on propagating the uncer-
tainties in the parameters occurring in the 
calculations predicting the RDDR or RGDR 
or based on expert judgment.

Chemical-specific toxicokinetic or toxico
dynamic differences. Test animals and 
humans differ not only generically (e.g., in 
body size) but also in compound-specific 
toxicokinetics or toxicodynamics. Although 
on average across chemicals, the DAF is 
intended to neither under- nor overestimate 
the interspecies differences, the actual inter-
species difference for any particular chemical 
is unknown in the absence of chemical-
specific data. This uncertainty is addressed 
by subsequently dividing by a distribution 
for animal-to-human uncertainty (AHU), 
reflecting the additional differences in sensi-
tivity between animal and median human 
beyond those addressed by the DAF (i.e., 
the toxicokinetic/dynamic differences specifi-
cally related to the chemical considered). For 
instance, assuming a log-normal uncertainty, 
one could define

	 AHU = exp(εAHU),	 [7]

where εAHU is normally distributed with a 
standard deviation of σAHU. With chemical-
specific toxicokinetic or toxicodynamic 
data, a CSAF or DDEF may be developed, 
resulting in

AHU = 	(CSAF or DDEF) × exp(εAHU),	 [8]

where the standard deviation of εAHU would 
normally be smaller than that of the default 
value related to Equation  6, as discussed 
in Supplemental Material, “Chemical-
specific/data-derived toxicokinetics or 
toxicodynamics.”

Additional study-specific adjustments. 
Depending on the situation (e.g., experi-
mental setup of a critical study, toxicity 
database), additional issues may need to be 
addressed to infer the equipotent dose in the 
median human under the target conditions. 
Those additional adjustments and their asso-
ciated uncertainties that are specific to the 

Table 3. Example approaches to analysis of the animal dose–response data.

Endpoint type (examples)
M : Example of toxicologically 

equivalent effect metric
M*: Example of critical  

effect size(s) Benchmark dose approach
Continuous  

(hematocrit, serum enzyme, BW, organ/BW ratio)
Percent change relative to control 5%, 10% (percent change) Continuous models with  

BMR = M* = 5%, 10%.
Deterministic quantal  

(hepatic lesions, cytoxicity)
Severity category “Minimal” (severity category) Quantal models for 50% incidence 

of M* = minimal, mild.
Stochastic quantal  

(hepatic tumors, fetal resorptions, eye malformations)
Extra risk for individual probability of 

occurrence
1%, 5%, 10% (extra risk) Quantal models with  

BMR = M* = 1%, 5%, 10%.
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study (or endpoint) are addressed in step 2 as 
well. The purpose of these adjustments is to 
account for the “other uncertainties” (OU) 
in characterizing the uncertainty distribution 
for the median human dose associated with 
a specified magnitude of effect, based on a 
specified study and endpoint. Examples of 
additional uncertainties include the following:
•	 The human hazard to be assessed relates 

to a different duration of exposure than 
that in the study. For instance, when the 
effect was in a subchronic rather than 
chronic study, the animal dose for the 
selected magnitude of effect might have 
been smaller in a chronic study. Based 
on historical data, one can estimate the 
empirical distribution for the ratio of 
chronic to subchronic dose (e.g., using 
equipotent doses from studies of both 
durations across many chemicals). Or, in 
specific situations a dose–time relation-
ship (e.g., cumulative dose = constant, 
analogous to Haber’s law) could be postu-
lated, along with a distribution reflecting 
the uncertainty in how accurately the 
relationship holds.

•	 The human hazard to be assessed relates 
to a different route of exposure than that 
in the study, such as inhalation versus 
oral. Again, both an empirical (e.g., ratio 
of inhalation to oral equipotent doses), 
theoretical (e.g., based on total intake 
or absorbed dose), or model-based [e.g., 
physiologically based pharmacokinetic 
(PBPK) model] approach can be used, 
along with a distribution reflecting the 
uncertainty in how accurately the assumed 
relationship is believed to hold.

•	 The hazard is being assessed for a different 
exposure pattern than that in the study, 
such as continuous exposure in humans 
versus daily bolus exposure in the test 
animal. In this case, it is common to make 
assumptions about the dose–time rela-
tionship, such as peak or cumulative dose, 
as the basis for adjustment. If multiple 
assumptions are plausible, the uncer-
tainty among the different options can 
be characterized through a distribution. 
For instance, when there is uncertainty 
whether a given peak exposure would 
be equivalent to a three times lower or a 
three times higher equivalent continuous 
dose as compared with Haber’s rule, this 
could be reflected by taking those values 
as the lower 5th and upper 95th percen-
tiles of the equivalent dose distribution for 
constant exposure.
Note that in this step uncertainties are 

are with respect to the same magnitude of the 
same effect (endpoint). Uncertainties with 
respect to possibly different effects due to 
missing studies, even if they are at a similar 
level of severity, are not addressed here. This 

additional uncertainty is best addressed after 
completing steps 1–3, which are all related 
to the specific effect under consideration. 
For a discussion of some of these additional 
uncertainties, see Supplemental Material, 
“Cross-study/endpoint uncertainties.” 

Step 3: Accounting for human inter
individual variability in sensitivity. The aim 
of this step is to take into account differ-
ences in sensitivity across individuals in the 
population. For an exposure limit, for example, 
the result would be the uncertainty distribu-
tion for the dose associated with a specified 
endpoint and magnitude of effect (M*) for a 
“sensitive” individual, defined in terms of a 
percentile or incidence in the population (I*). 
To make these inferences, a population distri-
bution representing the variation in equipotent 
doses among individuals needs to be specified. 
Because there are usually limited data as to the 
magnitude of this variation, this uncertainty 
needs to be taken into account as well.

Assuming a log-normal distribution for 
human variability, with standard deviation 
σH on a log-scale, the relationship between 
M*, the incidence of effects I≥M*, and human 
dose HD is given by

I≥M*(HD) =  
	 Φ[{ln HD – ln HD(0.5≥M*)}/σH],	 [9]

where Φ is the standard normal cumulative 
distribution. A similar relationship can be 
derived for any other assumed human vari-
ability distribution. For an exposure limit, 
one selects a target incidence value I*≥M* and 
solves for dose D. Given that the median of 
the distribution HD(0.5≥M*) was calculated 
in step 2, this can be calculated by multi-
plying the median by the ratio between the I* 
quantile of the variability distribution and its 
median, denoted the human variability factor 
HVI*. For a log-normal distribution

	 HVI * = exp{zI* σH},	 [10]

where zI* is the normal z-score corresponding 
to a quantile I*≥M*. For instance, at a 5% 
incidence, z5% = –1.64; at a 1% incidence, 
z1% = –2.33. Combining Equations 2 and 10, 
the resulting equation is

HD(I*≥M*) =  
	 ADM* × DAF × HVI*/(AHU × OU).	 [11]

For discussion of recent analyses of 
human variability data, see IPCS (2014). For 
instance, Hattis and colleagues (Hattis et al. 
2002; Hattis and Lynch 2007) estimated 
equipotent doses in a number of individuals, 
and calculated the standard deviations σH of 
the log-transformed equipotent doses, repre-
senting the variability in sensitivity among 
individuals. Then, they fitted a log-normal 

distribution to these standard deviations 
established for different chemicals (studies). 
They separated the available data into toxico
kinetic and toxicodynamic factors, and esti-
mated the uncertainty in the overall human 
variability as a combination of toxicokinetic 
and toxicodynamic variability. In this way, 
a default uncertainty distribution for intra
species variation may be defined (IPCS 2014).

For some effects, we might suspect larger 
differences in sensitivity than others, or it 
might be known that the particular target 
subpopulation is highly sensitive for the agent 
considered. Or, we might be more uncertain 
for some effects than for others, for instance, 
for effects that did not occur in the database 
underlying the default distribution. In 
such cases, one may decide to deviate from 
the default distribution in the appropriate 
direction. If compound- and endpoint-
specific toxicokinetic or toxicodynamic data 
are available, these may be used to define a 
case-specific human variability distribution, 
with case-specific uncertainty about that 
distribution (see Supplemental Material, 
“Chemical-specific/data-derived toxico
kinetics or toxicodynamics”).

MC (Monte Carlo) calculation of HDM
I
. 

Keeping variability and uncertainty distinct 
in the calculation of HDM

I requires a hier-
archical approach to implementation. In 
addition, because the individual distributions 
cannot be combined in closed-form (particu-
larly incorporating uncertainty in the extent 
of human variability), an MC simulation 
approach is necessary (see IPCS 2014, for an 
“approximate probabilistic approach” that 
can be implemented in a spreadsheet without 
MC simulation). Specifically, at each MC 
iteration, all the steps addressing uncertainty 
are done first, followed by the steps evaluating 
variability:
•	 Evaluating uncertainty: Simultaneously 

draw MC samples [j] from ADM*, DAF, 
AHU, OU, and σH. Obtaining MC 
samples from ADM* is not a standard 
output f rom U.S.   Environmental 
Protection Agency (EPA) Benchmark 
Dose Software (BMDS) (U.S.  EPA 
2014a), but can be generated with 
PROAST using the bootstrap method 
(RIVM 2012). Bayesian methods offer 
another approach to generating such 
samples, and software such as WinBUGS 
(version 1.4.3; Lunn et al. 2000), JAGS 
(version 4.0.0; Plummer 2003), or Stan 
(version 2.8.0; Stan Development Team 
2015) can be used. 

•	 Eva lua t ing  va r i ab i l i t y :  Combine 
(ADM*[ j ] × DAF [ j ])/(AHU[ j ] × OU[ j ]) 
to obtain one sample of the “median” 
human dose HD(0.5≥M*)[ j ]. Next, given 
the target incidence I*, evaluate one 
sample of the human variability factor 
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HVI*[j] = exp{zI* σH[j]}. Combining these 
results is one MC sample of the human 
target dose associated with a particular 
incidence I* and magnitude of effect M*: 
HDM*

I*[ j ] = HD(0.5≥M*)[ j ] × HVI*[ j ].
•	 The result after many samples is the 

uncertainty distribution for HDM
I.

For the illustrative datasets discussed below, 
this procedure was used with 107 MC samples 
for uncertainty (j) (for ADM*, 103 bootstrap 
samples were resampled with replacement). 
Datasets and computer code are available 
in Supplemental Material, Table  S1). An 
example of this approach for an exposure limit 
was provided by van der Voet and Slob (2007) 
who used the term “ICED” (individual critical 
effect dose) rather than HD. 

Calculating population incidence for 
stochastic quantal endpoints. In the determin-
istic interpretation of quantal endpoints, the 
calculated incidence directly represents the 
expected incidence in the overall population. 
However, in the stochastic interpretation, 
the calculated incidence relates to a single 
individual’s probability M of experiencing 
the quantal endpoints (such as a tumor). 
For this reason, the HDM

I for stochastic and 
deterministic quantal endpoints cannot be 
directly compared. To make such comparison 
possible, for the stochastic interpretation, 
the expected incidence in the overall popu-
lation needs to be calculated by integrating 
all possible values of M (Slob et al. 2014). 
The calculation is simplified by the preceding 
assumption that the underlying continuous 
dose–response relationships are “monotonic 
and parallel on a log-dose scale across species 
and across individuals within a species.” 
Specifically, let the animal dose–response 
function be represented by

	 MA(AD) = f (AD, θ),	 [12]

where MA is the magnitude of effect, AD is 
the animal dose, and f is the dose–response 
function with parameters θ. Based on 
“step 2,” the median human has the same 
magnitude of response as the animal [i.e., 
MA  =  MH,I  >  50%] when the human dose 
HD = AD × DAF /(AHU × OU). Rearranging 
so that AD = HD × AHU × OU/DAF, the 
dose–response function for the median 
human will be

MH,I > 50%(HD) =  
	 f (HD × AHU × OU/DAF, θ), 	 [13]

with the same model parameters θ. From 
“step 3,” the equipotent dose across human 
individuals is distributed log-normally with 
log-transformed standard deviation σH. 
Therefore, the magnitude of effect for a 
particular percentile of the population with 
z-score z, will be

MH,z(HD) = f (exp[z × σH] × HD × AHU  
	 × OU / DAF, θ).	 [14]

For a log-normally distributed population 
of equipotent doses, z has a normal distribu-
tion. Therefore, the population arithmetic 
mean of MH will be equal to the expected 
value of MH,z over a normally distributed z: 

<MH(HD)> = ∫ f (exp[z × σH]  
	 × HD × AHU × OU 
	 ÷ DAF, θ) ϕ(z) dz,	 [15]

where  ϕ (z )  i s  the  s t andard  normal 
probability density.

In the case of a stochastic quantal 
endpoint, MH is the “individual probability 
of effect,” which, averaged over the popula-
tion in Equation 15, would be, by definition, 
equal to the expected population incidence of 
effect. Uncertainties in the quantities θ, DAF, 
AHU, OU, and σH would then need to be 
propagated through the calculation to derive 
the uncertainty in this population incidence.

MC calculation of population incidence 
for stochastic quantal endpoints. As with the 
prototypical implementation of the unified 
probabilistic framework described above, 
implementing the calculation of population 
incidence for a stochastic quantal endpoint 
(Equation 1) requires an MC simulation. As 
was the case for calculating HDM

I, all the 
steps addressing uncertainty are performed 
first, followed by the steps evaluating vari-
ability. In particular, at each value of human 
dose HD of interest:
•	 Evaluating uncertainty: Simultaneously 

draw MC samples [j] from θ, DAF, AHU, 
OU, and σH. Note that θ, which is gener-
ally multidimensional because most dose–
response functions have more than one 
fitted parameter, has replaced the scalar 
(one-dimensional) quantity ADM* from 
above. Obtaining MC samples from θ is 
not a standard output from BMDS, but 
can be generated with PROAST using 
the bootstrap method. Bayesian methods 
offer another approach to generating such 
samples, and software such as WinBUGS, 
JAGS, or Stan can be used.

•	 Evaluating variability: Generate a human 
population by drawing N samples z[k] 
from a standard normal distribution, and 
calculate the mean value over z of MH:

<MH (HD)>[ j] =  
	 Σk = 1…N f (exp[z[k] × σH[ j]] × HD  
	 × AHU[ j] × OU[ j]/DAF[ j],  
	 θ[ j])/N,	 [16]

where N is large enough for convergence.
The result after many samples [ j ] is the 

uncertainty distribution for <MH(HD)>. For 
a stochastic quantal endpoint, this equals 

the expected population incidence of the 
quantal effect. This procedure was used for 
the stochastic quantal treatment of tumors 
with 107 MC samples for uncertainty (j) (for 
θ, 103 bootstrap samples were resampled with 
replacement) and 104 MC samples for vari-
ability (k). Datasets and computer code are 
available in Supplemental Material, Table S1. 

Illustrative datasets analyzed. We used 
two datasets contained as examples in the 
PROAST software (RIVM 2012) to illus-
trate the approach: BW changes in rats 
and forestomach tumors in male mice. The 
tumor dataset is analyzed multiple ways—as 
deterministic quantal data, and as stochastic 
quantal data, and with extra risk levels of 
10% and 1%. As discussed above, the HDM

I 
outputs obtained for stochastic and deter-
ministic quantal endpoints cannot be directly 
compared, so for the stochastic interpretation, 
the expected tumor incidence in the overall 
population was also calculated.

The uncertainty distributions for each step 
are based on the following:
•	 The uncertainty in ADM* (BMD at 

BMR = M*) is estimated via the bootstrap 
method in PROAST. To address model 
uncertainty, a standard set of models is 
fitted, with the results of all models 
having goodness-of-fit p-values > 0.05 
combined with equal weight.

•	 The distributions for DAF and AHU 
from Bokkers and Slob (2007), based 
on historical data on interspecies BMD 
ratios, are assumed:
–– DAF = (BWanimal/BWhuman)(1 – α), with 
α assumed to have a normal distribu-
tion with mean 0.7 and standard 
deviation 0.024.

–– AHU has a log-normal distribution with 
a geometric mean of 1 and a geometric 
standard deviation of 2.0. Notably, 
this distribution includes the current 
U.S.  EPA default animal-to-human 
uncertainty factor (UFA) of 3 applied 
after application of a deterministic DAF 
within its 95% confidence interval (CI) 
(U.S. EPA 1994, 2011b). 

The combined distribution for the animal-to-
human adjustment, when applied to rats or 
mice, includes the commonly used animal-to-
human factor of 10 within its 95% CI.
•	 OU is omitted from the analysis (the 

critical study is assumed to be an adequate 
chronic study).

•	 The distribution for σH is based on a 
reanalysis by IPCS (2014) of published 
human toxicokinetic (37  datasets) 
and toxicodynamic (26  datasets) data 
compiled by Hattis and Lynch (2007). 
The result is a log-normal distribution for 
σH with a geometric mean of 0.746 and 
a geometric standard deviation of 1.59. 
The resulting distribution for the human 
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variability factor HVI* (Equation  10), 
when evaluated at an incidence I* ≤ 5%, 
includes the commonly used human 
variability factor of 10 within its 95% CI.

Results
For each example dataset, the results of 
each step in the probabilistic approach are 
summarized in Table 4: a) BMD modeling 
to estimate the animal dose–response rela-
tionship (Figure 4A and 5A), b) probabilistic 
interspecies adjustments to estimate the equi-
potent doses in median humans (HDM), and 
c) probabilistic estimates of human variability 
to estimate the equipotent dose in sensitive 
humans (HDM

I) (Figures 4B and 5B–D). 
Representative BMD modeling results 

are shown in Figure 4A for the continuous 
dataset (body weight changes) and Figure 5A 
for the quantal dataset (tumors). For the BW 
changes, the exponential and Hill models 
were fitted, both of which had goodness-of-fit 
p-values > 0.05. For tumors, the multistage, 
Weibull, log-logistic, log-probit, gamma, and 
logistic models were fitted, of which only the 
multistage model failed to have a goodness-
of-fit p-value > 0.05. These datasets show 
clear dose responses, and the uncertainty 
in the BMD is relatively modest, with CIs 
(ratio of 95th percentile to the 5th percentile) 
ranging from 1.5- to 4.4-fold.

With respect to HDM, the CIs are wider 
due to the additional uncertainty in the inter
species adjustment (e.g., for example A in 
Table 4, 5.5/0.53 = 10 vs. 11/5.6 = 2.0). In 
addition, the 95th percentile of the HDM is 
lower than that of the BMD due to the allo-
metric scaling factor.

With respect to HDM
I, the CIs are 

wider still, due to the additional uncer-
tainty in intraspecies variability, and span a 
40- to 60-fold range. The 5th percentile of 
the HDM

I (Table 4, Figures 4B and 5B–D) 
might be used as the “probabilistic RfD,” 
interpreted as the lower (one-sided) 95% 
confidence limit on the dose at which an 
incidence (I*) of 1% of the population experi-
ences effects greater than the chosen critical 
effect size M*. Note that the choice of percent 

confidence, critical effect size M*, and the 
protection incidence I* are informed by risk 
management considerations and may depend 
on the specific context for the exposure limit. 
In the tumor example, a lower value for M* 
(individual tumor risk) may be chosen by 
risk managers, even though it relates to only 
1% of the population. Usually, however, risk 
managers may prefer to have an estimate of 
the expected tumor incidence in the overall 
population (described below). 

Figures 4B and 5B–D show the 90% CIs 
(i.e., 5th and 95th percentiles) for HDM

I at 
difference levels of incidence I as a function 
of exposure, for a specified value of M*. Based 
on these CIs, different options for protection 
incidence (in combination with M*) might 
be selected for deriving an exposure limit. The 
advantage of the probabilistic framework is 
illustrated by its transparency in the output: 
The magnitude of effect, the fraction of the 
population protected, and percent confidence 
are all explicitly and quantitatively made 
visible. Moreover, uncertainties related to very 
small magnitudes of effect and/or very small 
incidences in the population can be made 
explicit and transparent (see Supplemental 
Material, “Extrapolation to magnitudes 
of effect below a critical effect size” and 
“Extrapolation to very low incidences”).

In the deterministic interpretation of 
the observed tumor incidence (example B in 
Table 4, Figure 5B), the calculated incidence 
directly represents the expected incidence 
in the overall population. However, in the 
stochastic interpretation (examples C and D 
in Table 4, Figure 5C,D), the calculated inci-
dence relates to a single individual’s tumor 
probability M*. Thus, the exposure limit in 
the deterministic case protects the relevant 
fraction of the population (1 –  I) against 
cancer as such, whereas the exposure limits 
in stochastic cases protect this fraction against 
the specified extra risk of cancer. For this 
reason, the outputs obtained from the deter-
ministic versus the stochastic interpretation of 
tumor data cannot be directly compared.

As discussed in “Methods,” to compare 
the results from both interpretations, the 

expected tumor incidence in the overall popu-
lation needs to be calculated for the stochastic 
interpretation by integrating all the incidences 
I over all possible values of M. The results 
of this analysis, including uncertainty, are 
shown in Table 5 and Figure 6, where the 
CIs on the population incidence of tumors 
are compared between the assumptions that 
tumors are “stochastic quantal” versus “deter-
ministic quantal” effects. Results from a tradi-
tional linear extrapolation approach are also 
calculated for comparison.

These results clearly show that the CIs for 
each of the two probabilistic approaches are 
wider than the difference between the CIs 
(Figure 6, Table 5). Therefore, at least in this 
example, the uncertainty in treating tumors 
as a deterministic versus a stochastic endpoint 
is not as great as the other uncertainties that 
have been characterized. Further, in this 
example, the result from a traditional linear 
extrapolation approach is not lower than the 
lower (one-sided) 95% confidence limit, so in 
that sense it is not necessarily “conservative” 
at the 95% level. The latter result was also 
found in various example cases examined by 
Slob et al. (2014).

Conclusions
Compared with previous probabilistic 
approaches to dose–response assessment 
(Baird et al. 1996; Evans et al. 2001; Gaylor 
and Kodell 2000; Hattis et al. 2002; Slob and 
Pieters 1998; Swartout et al. 1998), the frame-
work proposed here is the first to unify across 
the various types of endpoints that may occur 
in toxicological studies, such as continuous 
versus quantal endpoints, or cancer versus 
non-cancer endpoints. It does so by treating 
all endpoints as having a (direct or underlying) 
continuous response (at the level of an indi-
vidual). It thereby fulfills the NRC (2009) 
suggestion to develop a unified approach to 
dose–response assessment for all endpoints. 
Furthermore, as discussed in Supplemental 
Material, the framework described here can 
incorporate other advances in toxicology and 
risk assessment, such as probabilistic exposure 
assessment (see Supplemental Material, 

Table 4. Summary of example probabilistic analyses. 

Example A B C D
Dataset Body weight in ratsa Forestomach tumors in miceb Forestomach tumors in miceb Forestomach tumors in miceb
Type of endpoint Continuous Deterministic quantal Stochastic quantal Stochastic quantal
M (effect metric) Percent change in body 

weight
Tumor/no tumor Individual probability  

(extra risk) of tumor
Individual probability  
(extra risk) of tumor

M* (critical effect size) 5% Tumorc 10% extra risk 1% extra risk
ADM* [critical ED (BMD) in chronic animal study] (5.6, 11) (5.1, 7.5) (1.7, 3.7) (0.39, 1.72)
HDM* (equipotent dose in median human) (0.53, 5.5) (0.19, 1.9) (0.076, 0.83) (0.021, 0.33)
I* (target incidence protected) 1% 1% 1% 1%
HDM*I* (equipotent dose in sensitive human)d (0.031, 1.4) (0.011, 0.47) (0.0044, 0.21) (0.0013, 0.079)

The numbers in parentheses represent the 5th and 95th percentiles, respectively, of the derived uncertainty distributions. All numbers representing dose are in mg/kg BW day. Values 
are rounded to two significant figures.
aUse control BW of 0.496 kg for DAF. bUse standard BW of 0.03 kg for DAF. cFor the deterministic quantal treatment of tumors, BMD analysis uses ED50. d“Sensitive human” is defined 
by the target incidence, here 1%; an exposure limit (“probabilistic RfD”) can be based on the 5th percentile of the derived uncertainty distribution of HDM*I* (bold), equivalent to a lower 
(one-sided) 95% confidence limit.
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“Integrating with probabilistic exposure assess-
ment”), CSAFs or DDEFs (see Supplemental 
Material, “Chemical-specific/data-derived 
toxicokinetics or toxicodynamics”), and 
adverse outcome pathways (see Supplemental 
Material, “Extrapolation to downstream 
health endpoints and adverse outcome 
pathways” and Figure S1).

The main idea of the framework proposed 
here is to quantify all relevant uncertainties 
by distributions instead of using conservative 
(single) values. However, for some uncertain-
ties, it is currently unclear how to quantify 
them. Importantly, the uncertainty associ-
ated with the identification of the critical 
studies and endpoints is difficult to quantify, 
and the usual (deterministic) approach of 
focusing on the most sensitive studies and 
endpoints is hard to avoid. Consequently, 
even if the probabilistic approach described 
here is implemented, the result might be 
more conservative than it appears. For 
instance, if the particular species, strain, and 
sex of animal were idiosyncratic (the effect 
would not occur in humans) or particularly 
sensitive compared with humans, the esti-
mated HDM

I would be biased downward. 
Furthermore, the most sensitive study from a 
large collection of studies will likely be more 
“conservative” than the most sensitive study 
from a smaller number of studies. The current 
approach remains unsatisfactory—be it in a 
deterministic or in a probabilistic assessment. 
In the short-term, the uncertainties related 
to the choice of the biological model might 
be better characterized by carrying forth 
multiple species/strains/sexes and endpoints 
to dose–response analysis (e.g., as recom-
mended by NRC 2011), resulting in multiple 
HDM

I estimates that reflect uncertainty in the 
chosen biological model. Furthermore, the 
emergence of studies using multistrain rodent 
panels or genetically diverse population-
based rodent models (as opposed to single 
homogeneous, inbred strains) might provide a 
means to partially address these uncertainties 
quantitatively (e.g., Chiu et al. 2014; Rusyn 
et al. 2010).

In addition, even conditional on the 
appropriate biological model, a number of 
implementation challenges remain. However, 
although these issues have become more 
apparent in developing the probabilistic 
framework, they are equally relevant for any 
(deterministic) dose–response assessment 
method. The most important conceptual issue 
that has not yet been resolved is the question 
of which quantal endpoints should be 
treated as deterministic or stochastic quantal 
endpoints. Although for histopathological 
quantal data the deterministic interpreta-
tion is obvious from first principles, it is not 
directly clear whether cancer or malformation 
quantal data should be treated as stochastic 

or as deterministic quantal data (Slob et al. 
2014). The problem is that it is not possible 
to directly establish this distinction from inter-
pretation of single experiments, so additional 
research is needed as to what methods or 
datasets can distinguish between these options.

As a practical matter, there may be a 
tendency to treat more severe endpoints (such 
as tumor incidence) as stochastic because, at 

first sight, they seem to lead to more conser-
vative results (although this may not always 
be the case). If, however, an endpoint is in 
reality deterministic rather than stochastic, 
then the outcome from the probabilistic 
dose–response assessment would be based 
on experimental error rather than biological 
phenomena. We repeat that this problem 
would not be specific for the probabilistic 

Figure 4. Results of analysis of example continuous dataset [rat body weight (BW) changes] as a function 
of dose (milligrams per kilogram BW per day). (A) Representative benchmark dose (BMD) modeling results 
using the Hill model with M* = 5% change. (B) Median estimate and 5th and 95th percentile estimates for 
the incidence (I) of effects of size > M* (i.e., 5% change in BW) as a function of population exposure [dose; 
i.e, I≥M*(Dose)]. For reference, also shown are the probabilistic RfDs corresponding to a 1% incidence of 
effects of size > M* at 95% (one-sided) confidence (black square), the 90% (two-sided) CI for the bench-
mark dose (vertical gray shaded area), and a deterministic RfD equal to the BMDL/100 (vertical blue line). 
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Figure 5. Results of analysis of example quantal dataset (forestomach tumors in mice) as a function of 
dose (milligrams per kilogram BW per day). (A) Representative benchmark dose (BMD) modeling results 
using the Weibull model. Multiple BMD estimates are shown, with the ED50 corresponding to M* = tumor, 
and the BMD10 and BMD01 corresponding to M* = 10% and 1% extra risk, respectively. (B–D) Median 
estimate and 5th and 95th percentile estimates ) for the incidence (I) of effects of size > M* as a function 
of population exposure [dose; i.e, I≥M*(Dose)]. In (B), mouse forestomach tumors are treated as a 
deterministic quantal endpoint, whereas in (C,D), tumors are treated as a stochastic quantal endpoint 
[in (C), M* = 10% extra risk; in (D), M* = 1% extra risk)]. For reference, also shown in each panel are the 
probabilistic RfDs corresponding to a 1% incidence of effects of size > M* at 95% (one-sided) confidence 
(black square) and the 90% (two-sided) confidence interval (CI) for the benchmark dose (vertical gray 
shaded area). 
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framework, but it equally holds for traditional 
deterministic dose–response assessments, such 
as those that apply linear extrapolation.

Another conceptual issue related to 
stochastic quantal endpoints concerns the 
definition of a toxicologically equivalent 
effect metric for individual probability of 
effect (e.g., of malformations or cancer). 
Specifically, it remains unclear how individual 
probability of effect observed in animals 
can be made equivalent to individual prob-
ability of effect in humans in situations where 
background risks differ greatly between test 
animals and humans. Correction for back-
ground risk can be done in various ways, such 
as additional, extra, or relative risk, but there 
are no conclusive scientific arguments to favor 
one over the other.

Although the framework discussed here 
aims to estimate health effects in the human 
population in terms of both M and I, it is 
often practical to choose a specific value of 
M (or maybe several) to simplify the calcula-
tions, as well as the output. Therefore, the 
choice of the critical effect size M* (or BMR) 
is often relevant. For continuous endpoints, 
current conventions as to the critical effect 
size M* are based on a combination of 
biological considerations and statistical limi-
tations of typical dose–response data (e.g., 
EFSA 2009). For instance, it was argued by 
the European Food Safety Authority (EFSA 
2009) that the transition from NOAEL to 
BMDL should not result in a systematic 
change in derived exposure limits in the long 
run, resulting in a recommended default 
for continuous endpoints of BMR = 5%. 
Of course, deviations in the default are 
allowed if biologically substantiated (e.g., 
BMR  of ≥  20% for liver enzyme levels, 
BMR of 10% for cholinesterase activity). 
Furthermore, one is reminded that the final 
output from the dose–response assessment 
includes the value of M, so that it remains 
visible. Consequently, one might consider 
requiring a lower value for I if the value of M 
is suspected to be higher than desirable from 
a public health perspective. For deterministic 
quantal endpoints, the value of M* is implic-
itly defined by the data (i.e., the associated 
severity category), although in some cases 

more than one category may be reported (e.g., 
“mild,” “moderate,” “severe”). For stochastic 
(quantal) endpoints, M* relates to the indi-
vidual probability of effect (although in this 
case, the overall population incidence can be 
calculated as well, in which case M vanishes).

In addition, there is of course the issue 
of choosing values (i.e., uncertainty distribu-
tions) to be used as inputs in the probabilistic 
dose–response assessment. First, it should be 
noted that the uncertainty in the BMD is 
quantified by the BMD CI. In the proba-
bilistic framework, this uncertainty directly 
propagates through to the overall uncer-
tainty in the outcome of the dose–response 
assessment. In this way, it is directly visible 
to what extent designing more quantitatively 
informative experiments would improve a 
specific dose–response assessment, that 
is, it might indicate that further improve-
ment would substantially decrease the overall 
uncertainty in the HDM

I, or that the impact 
would be minor. In terms of the adjustments 
from the POD, uncertainty distributions for 
particular aspects have been suggested based 
on meta-analyses of historical data (Bokkers 
and Slob 2005, 2007; Hattis et  al. 2002; 
Hattis and Lynch 2007), and reviewed by 
the IPCS (2014). Thus, in those cases where 
no case-specific information for a given 
aspect is available, these distributions may 
be applied as a preliminary “default” distri-
bution in probabilistic dose–response assess-
ments. The historical data underlying these 
distributions were not generated for that 
purpose, and it might be argued that they 
are not always perfectly representative or 
highly informative. The fact that the proba-
bilistic methodology exists makes it highly 
valuable to gather and/or generate data that 
may lead to better-supported uncertainty 
distributions. Therefore, further research 
and exploration of historical data that may 
inform the uncertainty distributions would 
be highly useful. One of the greatest chal-
lenges is a better characterization of human 
toxicodynamic variability, for which there 
are much fewer data than for toxicokinetic 
variability. Emerging molecular-biology 
and high-throughput systems, such as use 
of genetically diverse populations of human 

cells, offer some opportunities to address this 
data need in a more expedited fashion (Abdo 
et al. 2015; Zeise et al. 2013).

Furthermore, we note that issues in 
choosing input values hold equally for 
nonprobabilistic dose–response assessments; 
the main difference is that the latter methods 
often use single default values, most of which 
have been generally accepted by the risk assess-
ment community, largely by convention. 
However, the current single default values 
lead to point estimates with unknown levels 
of confidence and unspecified levels of the 
protection of the population. By contrast, the 
probabilistic framework allows one to examine 
quantitatively the uncertainty, variability, and 
magnitude of effect associated with dose–
response assessments using such conventional 
approaches. In the examples provided here 
using the postulated uncertainty distribu-
tions, the result of default approaches, such as 
dividing an animal BMDL by 100 or linearly 
extrapolating from an allometrically scaled 
animal BMDL, were higher than the (one-
sided) 95% confidence limit of the probabi-
listic outputs for the protection goals, in terms 
of the magnitude of effect and population inci-
dences illustrated. A similar result was found in 
case studies of carcinogens by Slob et al. (2014) 
when comparing a probabilistic calculation 
with linear extrapolation. Our results imply 
that these traditional deterministic approaches 
are not necessarily conservative in the sense 
that the derived “virtually safe” dose does not 
always reach 95% confidence.

Figure  6.  Comparison of estimated human 
population tumor incidences as a function of 
exposure [dose (milligrams per kilogram BW per 
day)] when treating tumors as a deterministic or 
a stochastic endpoint. Shown are the 90% (two-
sided) CIs for human population tumor incidence 
calculated from the probabilistic approach, 
depending on whether tumors in the example 
dataset are treated as deterministic or stochastic 
quantal endpoints. For reference, also shown is 
the population tumor incidence derived using the 
default U.S. EPA method of linear extrapolation 
from a point of departure equal to the animal 
BMDL10 allometrically scaled by multiplying by 
(BWanimal/BWhuman)0.25 (blue line). 
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Table 5. Human dose at various specified tumor incidences estimated by linear extrapolation and by 
the probabilistic approach based on treating tumors as deterministic quantal versus stochastic quantal 
effects for the example tumor dataset.

Population tumor 
incidence (tumor 
dataset)

Linear extrapolation from 
allometrically scaled BMDLa 

(mg/kg/day)

Human dose assuming 
deterministic quantal effect  

[5th and 95th percentiles  
(mg/kg/day)] 

Human dose assuming 
stochastic quantal effect 
[5th and 95th percentiles) 

(mg/kg/day)] 
5% 0.11 (0.029, 0.67) (0.020, 0.37)
1% 0.022 (0.011, 0.47) (0.0062, 0.17)
0.1% 0.0022 (0.0034, 0.33) (0.0012, 0.078)
0.01% 0.00022 (0.0013, 0.25) (0.00018, 0.040)
aBased on U.S. EPA (2005) default approach, where the point of departure is the lower (one-sided) 95% confidence limit 
on the benchmark dose at a 10% extra risk, scaled to a human equivalent by multiplying by (BWanimal/BWhuman)0.25. 
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Ultimately, as noted by the NRC (1994, 
2009), a probabilistic framework will provide 
a substantially more complete quantitative 
characterization of hazard. In particular, 
in conjunction with exposure data, the 
relative impact of different risk management 
options—in terms of magnitude of effect, 
incidence in the population, and degree of 
confidence—will be much more explicit and 
transparent. We envision that this will lead to 
better-informed risk management decisions. 
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