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Background: Children are exposed to pesticides from many sources and routes, including dietary 
and incidental ingestion, dermal absorption, and inhalation. Linking health outcomes to these 
exposures using urinary metabolites requires understanding temporal variability within subjects to 
avoid exposure misclassification.

Objectives: We characterized the within- and between-child variability of urinary organo
phosphorus and pyrethroid metabolites in 23 participants of the Children’s Pesticide Exposure 
Study–Washington over 1 year and examined the ability of one to four spot urine samples to 
categorize mean exposures.

Methods: Each child provided urine samples twice daily over 7- to 16-day sessions in four seasons 
in 2003 and 2004. Samples were analyzed for five pyrethroid and five organophosphorus (OP) 
metabolites. After adjusting for specific gravity, we used a customized maximum likelihood estima-
tion linear mixed-effects model that accounted for values below the limit of detection to calculate 
intraclass correlation coefficients (ICC) and conducted surrogate category analyses.

Results: Within-child variability was 2–11 times greater than between-child variability. When 
restricted to samples collected during a single season, ICCs were higher in the fall, winter, and 
spring than in summer for OPs, and higher in summer and winter for pyrethroids, indicating an 
increase in between-person variability relative to within-person variability during these seasons. 
Surrogate category analyses demonstrated that a single spot urine sample did not categorize metabo-
lite concentrations well, and that four or more samples would be needed to categorize children into 
quartiles consistently.

Conclusions: Urinary biomarkers of these short half-life pesticides exhibited substantial within-
person variability in children observed over four seasons. Researchers investigating pesticides and 
health outcomes in children may need repeated biomarker measurements to derive accurate esti-
mates of exposure and relative risks.
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Introduction
Insect control in U.S. agriculture and 
residences is currently predominated by the 
widespread use of pesticides, amounting to 
> 90 million pounds annually (Grube et al. 
2011). This results in dietary exposures from 
the residues left behind from organophos-
phorus (OP) and pyrethroid insecticides 
used on food and animal feed crops [U.S. 
Environmental Protection Agency (EPA) 
2006a]. After the 2001 U.S. EPA voluntary 
phaseout of residential OP use, pyrethroids 
have become the principal pesticide class 
used for indoor pest control (Sudakin 2006), 
creating opportunities for dermal, inhalation, 
and incidental ingestion exposures (Agency 
for Toxic Substances and Disease Registry 
2003). In addition to acute poisonings, epi-
demiological studies have reported evidence 
of neurotoxic and developmental effects from 
OP exposures (Bouchard et al. 2010; Harley 
et al. 2011; Rauh et al. 2011) and evidence 
of reproductive toxicity (Meeker et al. 2008; 
Nassr et al. 2010) and endocrine disruption 
(Han et al. 2008; Meeker et al. 2009) asso-
ciated with pyrethroid exposures. In addi-
tion, the U.S. EPA has listed permethrin, a 
widely used pyrethroid for both agricultural 

and residential insect control, as “likely to be 
carcinogenic to humans” (U.S. EPA 2006b).

To investigate these potential risks, uri-
nary pesticide metabolites are often used as 
biomarkers of exposure. Integrating expo-
sures across sources and routes, biomarkers 
are more likely to give a better indication of 
actual absorption at the individual level than 
environmental measures. Urine biomarkers 
often are examined because they are easier 
and less invasive to collect than blood or 
tissue samples. Although all biomarkers are 
influenced by the timing, magnitude, and fre-
quency of exposure as well as biological clear-
ance rates, for short half-life chemicals with 
irregular exposure patterns, such as the pyre-
throid and OP pesticides, urinary metabo
lite levels may be especially variable not just 
between people but even within a person.

When using biomarkers to represent an 
individual’s exposure to these short half-life 
chemicals, the within-person variability, if 
not properly accounted for, could lead to 
exposure measurement error or misclassifi-
cation and obscure results of epidemiologic 
investigations and assessments of risk. But 
researchers have relied on the postulation 
that the between-person variation in pesticide 

metabolites, because of both different 
exposure patterns and metabolic processing of 
these pesticides, will predominate and differ-
entiate their participants (Adgate et al. 2001; 
Egeghy et al. 2011). Investigations of within-
person variability are necessary to understand 
the diversity of exposure and to design effec-
tive studies for understanding pesticide effects 
upon health.

Information on within-person diversity of 
exposures to OPs and pyrethroids is mount-
ing. In a study of 11 adult males, Meeker et al. 
(2005) reported that within-person variability 
in urine concentrations of the OP metabo-
lite 3,5,6-trichloro-2-pyridinol (TCPy) was 
five times higher than between-person vari-
ability with multiple measurements taken 
over 3  consecutive months. Furthermore, 
MacIntosh et al. (1999) reported that the 
average within-person range of TCPy con-
centrations in 80 adults with an average of 
4.3 measurements over 1 year was 1.5 times 
higher than the median TCPy concentrations 
for the study population as a whole.

Estimates of within-person variability 
based on adult studies, however, may not 
be valid for children because of differences 
in exposure patterns (e.g., greater hand-to-
mouth contact, time close to the ground, 
food and liquid ingestion, likelihood of non-
food ingestion, and air inhalation, relative 
to their body size compared with adults) 
(Roberts et al. 2009) and differences in bio-
logical processing (e.g., higher metabolic 
rates and immature detoxification processes) 
(Morgan et al. 2005; Roberts et al. 2009). 
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Potential health effects of pesticide exposures 
are of particular concern in children because 
their exposures are greater relative to their 
body weight, and because their organ sys-
tems are still developing (Landrigan et  al. 
1999). Among studies of short duration (up 
to 7 days), two reported that between-child 
variability was dominant although within-
child variability was still substantial (Adgate 
et al. 2001; Egeghy et al. 2011); in a third 
study population, within-child variabil-
ity was higher than between-child variabil-
ity (Bradman et al. 2013). In a longer-term 
study of an agriculturally exposed popula-
tion followed over 21 months, within-child 
variability accounted for > 90% of the total 
variability for nonspecific OP metabolites 
(Griffith et al. 2011). To our knowledge, only 
one study has examined the long-term vari-
ability of OP exposures in children from the 
general population (Sexton and Ryan 2012). 
In that population, there was a nonsignificant 
predominance of within-child variability for 
OP metabolites measured in four samples col-
lected over 2 years. Additionally, no study has 
evaluated the variability of pyrethroid expo-
sures over the long term. More information is 
needed to understand the extent of variability 
within the general population.

In the present study, we used numer-
ous repeated-measures data from a study of 
children’s dietary pesticide exposures in 
Washington state (Lu et al. 2008, 2009) to 
investigate the extent to which within-child 
variability contributed to the overall variability 
in metabolites of OP and pyrethroid pesticides 
over four seasons of sampling. Second, to shed 
light on how many samples might be needed 
in a situation of high within-person variability, 
we conducted an analysis to assess participant 
assignment into exposure quartiles according 
to the number of measurements used.

Methods
Study design. This study is part of the 
Children’s Pesticide Exposure Study–
Washington (CPES-WA) in which 23 
children, 3–11 years of age and living in sub-
urban Seattle, Washington, participated in 
an organic diet substitution study from 2003 
to 2004; details have been reported elsewhere 
(Lu et al. 2008, 2009). Briefly, the children 
were recruited from two local public elemen-
tary schools and one Montessori preschool. 
The children participated in consecutive 
day urine sampling periods in July/August 
2003 (median, 15 days; range, 15–16 days); 
October/November 2003 (median, 12 days; 
range, 11–13 days); January/February 2004 
(median, 7 days; range, 7–8 days); and April/
May 2004 (median, 7 days; range, 5–9 days). 
In the summer and fall sampling periods, an 
organic diet substitution phase (from day 4 
to day 8) was incorporated into the study 

design to assess the dietary pesticide expo-
sures. For the present study we included only 
samples collected during the conventional 
diet portions of the study so that metabolites 
measured in the urine samples would be rep-
resentative of typical exposures in the children. 
Participating children in each session num-
bered 23 in the summer, 21 in the fall, 20 
in the winter, and 19 in the spring. Written 
informed consent was provided by older chil-
dren and by the parents of all participants, and 
oral assent was provided by younger children. 
The study was approved by the University of 
Washington Human Subjects Division.

Urine collection and laboratory analysis. 
Each child provided two urine samples per 
day: the last void before bedtime and the fol-
lowing first morning void. Previous studies 
have demonstrated that first voids are good 
predictors of overall daily exposure for OPs 
(Kissel et al. 2005), and in combination with 
last voids, a large portion of the daily expo-
sure is represented. Additional spot urine 
samples collected at different times of the day 
during the study were excluded from the pres-
ent analysis to increase the comparability of 
the samples evaluated.

After collection, urine samples were 
stored on ice or refrigerated before processing 
in the laboratory and then stored at –20oC. 
Samples were analyzed at the National Center 
for Environmental Health at the Centers 
for Disease Control and Prevention (CDC; 
Atlanta, GA) using high performance liquid 
chromatography–tandem mass spectrometry 
(Olsson et al. 2004). Target OP metabolites 
were malathion dicarboxylic acid (MDA), 
TCPy, 2-isopropyl-4-methyl-6-hydroxypyrim-
idinol (IMPy), and 2-diethylamino-6-methyl-
pyrmidin-4-ol (DEAMPy). Target pyrethroid 
insecticide metabolites were 3-phenoxybenzoic 
acid (PBA), 4-fluoro-3-phenoxybenzoic acid 
(4F3PBA), cis-2,2-(dichloro)-2-dimethylvinyl
cyclopropane carboxylic acid (cis-DCCA), 
trans-2,2-(dichloro)-2-dimethylvinylcyclo
propane carboxylic acid (trans-DCCA), and 
cis-2,2-(dibromo)-2-dimethylvinyl-cyclo
propane carboxylic acid (DBCA).

Data analysis. Metabolite concentrations 
were adjusted for specific gravity to control 
for dilution using a reference specific grav-
ity of 1.019 g/cm3, the 2007–2008 National 
Health and Nutrition Examination Survey 
(NHANES) mean for children 6–11 years 
of age (CDC 2009; Levine and Fahy 1945). 
Because carryover from a previous day could 
be expected due to the biological half-life 
(hours to a couple of days) of these com-
pounds, we confirmed that the conventional 
diet days following the end of the organic diet 
portions of the original study were not signifi-
cantly different from other conventional diet 
days before including them in the analyses 
(t-test p-value > 0.05).

Intraclass correlation coefficients (ICC), 
defined as the ratio of between-subject variance 
to total variance, were calculated as a measure 
of the reproducibility of measurements over 
time within individuals. ICCs can range from 
0 to 1; ≥ 0.75 indicates excellent reproduc-
ibility and ≤ 0.4 indicates poor reproducibility 
(Rosner 2006). Between- and within-subject 
variances were calculated with a linear mixed 
effects model using maximum likelihood esti-
mation (MLE) modified to account for val-
ues below the limit of detection (LOD) and 
repeated measurements as implemented in 
SAS 9.3 (SAS Institute Inc., Cary, NC) using 
PROC NLMIXED, assuming a compound 
symmetry covariance structure (Jin et  al. 
2011). Age (3–6, 7–11 years), sex, and season 
were included as covariates in the model:

Ln(Y ) = β0 + β1(age) + β2(sex)  
	 + β3(season) + b1 + ε,� [1]

where Y is the metabolite concentration 
adjusted for specific gravity, b1 is the between-
subject random effect, and ε is the within-
subject error.

For metabolites with high percentages 
of nondetects, the model’s stipulation of a 
normal distribution of the data was diffi-
cult to evaluate. Therefore, we restricted the 
ICC analyses to the four metabolites (MDA, 
TCPy, PBA, and trans-DCCA) that were 
>  LOD in >  50% of samples. Data were 
natural log-transformed before analysis. We 
performed a sensitivity analysis on the calcu
lation of the ICCs by substituting LOD/2 
for values < LOD and using an unmodified 
NLMIXED procedure. A further sensitivity 
analysis was used to test the model’s sensitiv-
ity to the assumption of equal covariance. The 
ICC calculations were repeated using a subset 
of the data with an equal covariance pattern, 
where only samples with at least 2 intervening 
days were included in the subset per season.

To address how much exposure misclas-
sification may develop when participants are 
categorized into exposure groups and how 
many samples may be necessary to improve 
the categorization, we performed surrogate 
category analyses for the first and last voids 
separately (Hauser et al. 2004; Willet 1998) 
with an additional scoring step (Figure 1). 
We calculated the geometric mean value of a 
metabolite across all samples collected from 
each participant, resulting in 23 participant 
mean values. Next, we assigned each partici-
pant to an exposure quartile (a “surrogate 
category”) based on the metabolite concentra-
tion of a single sample selected at random 
from each participant’s pool of samples. Then 
we populated each surrogate category with 
the children’s geometric means and calculated 
the group grand means. Then we evaluated 
the performance of the category assignment. 
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It would not be possible to directly determine 
whether individuals were correctly assigned 
according to their “true” and unobserved dis-
tribution in the population; however, if sur-
rogate categories were correctly assigned, the 
mean value of each category should increase 
monotonically from the lowest to the highest 
exposure category. If this were the case, we 
assigned the run a score of 1, and 0 otherwise. 
Then we repeated the sampling and classifica-
tion steps 1,000 times and used the mean 
value of the 1,000 scores (expressed as a per-
centage) to indicate an average “success rate.” 
We performed this process three additional 
times based on the mean value of two, three, 
and four randomly selected samples for each 
participant. For this analysis, we substituted 
instrument-read values (when available), 
or the LOD/2, as the concentration for all 
samples with measurements < LOD.

Results
A total of 1,215 urine samples were col-
lected from 23 children (15–63 per child, 
with a median of 59) during the conventional 
diet stages of the study over four seasons. 
Metabolite frequency of detection, and dis-
tributions, adjusted for specific gravity for 
first and last voids, are presented in Table 1. 
Summary statistics of unadjusted levels for 
both the conventional and organic diet parts 
of the sampling were previously reported (Lu 
et al. 2008, 2009). The frequency of detection 
varied among the metabolites. Those detected 
most frequently across all measurements 
were PBA (> 85%), a common metabolite 

of several pyrethroids, and TCPy, a specific 
metabolite of chlorpyrifos (> 81%). Several 
metabolites were detected < 20% of the time, 
including the pyrethroid metabolites 4F3PBA 
and DBCA (specific metabolites of cyfluthrin 
and deltamethrin, respectively), and the OP 
metabolites IMPy and DEAMPy.

Within-subject variability was the larger 
component of variance across all analytes, 

making up > 65% of the total variability in 
first voids and last voids (Table 2). The ICCs 
ranged from 0.29 to 0.35 among the pyre-
throid metabolites and 0.08 to 0.12 for the 
OP metabolites, demonstrating that within-
subject variability exceeded between-subject 
variability by a factor of 2–11.

A seasonal effect on the ratio of within- 
and between-subject variability was observed 

Figure 1. Process of surrogate category analysis with scoring. GM, geometric mean.
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Table 1. Descriptive statistics of first and last void concentrations of urinary metabolites adjusted for 
specific gravity from 23 children.

Metabolite Void

Total no. 
of urine 
samples

LOD 
(μg/L)

Detection 
frequency (%)

Percentile

25th 50th 75th 95th 100th
Pyrethroid

PBA First 616 0.1 91 0.5 1.1 1.5 4.5 61.2
Last 599 0.1 85 0.3 1.0 1.4 4.1 26.5

4F3PBA First 599 0.2 16 < LOD < LOD < LOD 1.1 2.3
Last 599 0.2 13 < LOD < LOD < LOD 1.0 61.2

cis-DCCA First 599 0.2 37 < LOD < LOD 0.7 1.7 46.0
Last 599 0.2 32 < LOD < LOD 0.4 1.3 4.6

trans-DCCA First 599 0.4 55 < LOD 0.9 1.4 4.4 97.1
Last 599 0.4 49 < LOD 0.6 1.3 3.9 27.7

DBCA First 599 0.1 3 < LOD < LOD < LOD < LOD 0.3
Last 599 0.1 4 < LOD < LOD < LOD < LOD 0.8

OP
MDA First 616 0.3 57 < LOD 0.8 3.0 13.8 433.8

Last 599 0.3 52 < LOD 0.6 3.2 16.9 283.8
TCPy First 616 0.2 87 1.0 3.8 6.8 13.0 43.8

Last 599 0.2 81 0.8 3.2 6.0 12.2 69.5
IMPy First 600 0.7 3 < LOD < LOD < LOD < LOD 16.2

Last 586 0.7 4 < LOD < LOD < LOD < LOD 31.4
DEAMPy First 597 0.2 10 < LOD < LOD < LOD 0.6 26.7

Last 593 0.2 18 < LOD < LOD < LOD 1.5 50.2

Abbreviations: DBCA, cis-2,2-(dibromo)-2-dimethylvinyl-cyclopropane carboxylic acid; cis-DCCA, cis-2,2-(dichloro)-
2-dimethylvinylcyclopropane carboxylic acid; trans-DCCA, trans-2,2-(dichloro)-2-dimethylvinylcyclopropane carboxylic 
acid; DEAMPy, 2-diethylamino-6-methyl-pyrmidin-4-ol; IMPy-2-isopropyl-4-methyl-6-hydroxypyrimidinol); MDA, mala-
thion dicarboxylic acid; OP, organophosphorus; PBA, 3-phenoxybenzoic acid; 4F3PBA, 4-fluor-3-phenoxybenzoic acid; 
3,5,6-trichloro-2-pyridinol; TCPy, 3,5,6-trichloro-2-pyridinol. 
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when the same model was fit separately for 
each season. Compared with the overall 
results, ICCs increased in the fall, winter, 
and spring, especially for the last voids of 
TCPy (up to 0.59) (Figure  2). However, 

none reached a level considered to be a highly 
reproducible measure (> 0.75). For the pyre-
throids (Figure 3), ICCs continued to have a 
large contribution of within-subject variation, 
although summer and winter ICCs reached 

or exceeded 0.5. Where ICCs increased, the 
within-subject variance had decreased while 
the between-subject variance had increased 
relative to the full model.

The surrogate category analysis indicated 
that when a single sample was used to cat-
egorize exposure into quartiles, the quartile 
mean values increased monotonically only 
14–51% of the time (Table 3). Single samples 
were least likely to produce monotonically 
increasing quartiles for the OP metabolite 
MDA, and most likely to do so for the pyre-
throid metabolite PBA. As the number of 
samples increased, the rate of successful rank-
ing improved, to the point that PBA reached 
a 78% success rate with four first morning 
samples, and an 86% success rate for four 
evening samples.

Discussion
Our analyses demonstrated that most of the 
variance in repeated measures of OP and 
pyrethroid metabolites was attributable to 
within-subject variability in both the first 
and last voids of the day, with some varia-
tion in the extent of within-person variabil-
ity according to season. The low ICCs we 
observed indicated poor reproducibility of 
a single measurement and the need for 
repeated sampling to characterize individuals’ 
exposures appropriately.

Seasonal variability in ICCs may offer 
insight into exposure sources. For the OPs, 
ICCs were larger in fall through spring than 
in the summer, which may reflect seasonal 
variation in food sources. Diet has been shown 
in previous studies to be a primary contribu-
tor to urinary OP levels (Bradman et  al. 
2011; Lu et al. 2009; Morgan et al. 2011), 
and imported fruits and vegetables have been 
found to have higher levels of OP residues 
than domestic produce (U.S. EPA 2006a). 
ICCs for both pyrethroid metabolites were 
higher in the summer than in the fall or 
spring. This might reflect increased use of pes-
ticides to treat pests by those who use pesti-
cides, which would result in more consistent 
environmental exposures, and thus reduced 
within-person variability. However, this 
would not explain high ICCs for trans‑DCCA 
during the winter.

As a result of having many repeated mea-
sures, we were able to investigate how many 
samples would be sufficient to create quartiles 
of increasing exposure levels of participants 
for the entire period. Although this explora-
tion does not indicate whether participants 
have been assigned to the correct quartile, it 
does indicate whether the quartile averages 
follow expected stepwise increases, which is 
a good starting point for any epidemiologi-
cal investigation. Monotonically increasing 
quartiles were produced only 14–32% of the 
time when OP exposures were categorized 

Table 2. Components of variancea and intraclass correlation coefficients for first and last voids.

Metabolites

First void Last void

Percent 
> LOD

Variance 
between

Variance 
within ICC

Percent 
> LOD

Variance 
between

Variance 
within ICC

PBA 91 0.48 0.97 0.33 85 0.47 1.16 0.29
trans-DCCA 55 0.45 0.88 0.34 49 0.49 0.91 0.35
MDA 57 0.36 4.04 0.08 52 0.56 4.88 0.10
TCPy 87 0.21 1.75 0.11 81 0.29 2.09 0.12

Abbreviations: trans-DCCA, trans-2,2-(dichloro)-2-dimethylvinylcyclopropane carboxylic acid; MDA, malathion dicarbox-
ylic acid; OP, organophosphorus; PBA, 3-phenoxybenzoic acid; TCPy, 3,5,6-trichloro-2-pyridinol.
aAge, sex, and season were included as covariates. Metabolite concentrations were ln-transformed.

Figure 2. OP metabolite intraclass correlation coefficients of first and last voids by season.
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Figure 3. Pyrethroid metabolite intraclass correlation coefficients of first and last voids by season.
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Table 3. Surrogate category analysis based on 1–4 random samples in 1,000 resamples. 

Metabolites Void
1 Sample 

success rate (%)
2 Samplea 

success rate (%)
3 Samplea 

success rate (%)
4 Samplea 

success rate (%)
PBA First 47 50 73 78

Last 51 61 79 86
trans-DCCA First 48 47 67 71

Last 48 50 66 78
MDA First 15 31 52 59

Last 14 32 55 66
TCPy First 19 34 44 55

Last 32 41 59 66

Abbreviations: trans-DCCA, trans-2,2-(dichloro)-2-dimethylvinylcyclopropane carboxylic acid; MDA, malathion dicar-
boxylic acid; PBA, 3-phenoxybenzoic acid; TCPy, 3,5,6-trichloro-2-pyridinol. Results indicate the success rate of all 
resamples that produced monotonically increasing quartiles. 
aIn runs with two or more random samples, children were assigned to quartiles according to the mean of the logged 
values of the selected samples.
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based on a single sample measurement, but 
increased to 55–66% when categorization was 
based on the mean value of four samples. For 
pyrethroids, monotonically increasing quar-
tiles resulted about 50% of the time when 
based on a single measurement, but increased 
to 71–86% when categorization was based on 
the mean value of four samples. These find-
ings suggest that having a small number of 
samples from each study participant may lead 
to a high probability of exposure misclassifica-
tion by incorrect quantile assignment and 
offer little assurance for correctly classifying 
the exposure into a specific category.

The degree of within-person variability 
seen in the CPES-WA children was consis-
tent with prior studies of children’s exposures 
to OPs, although those relied primarily on 
fewer samples per person for their calcula-
tions. Similar to our study, when samples were 
spread over time (2 weeks to 1 year), ICCs 
were low (0.02–0.3), indicating a strong con-
tribution of within-person variability (Griffith 
et al. 2011; Harris et al. 2010; Meeker et al. 
2005; Sexton and Ryan 2012; Whyatt et al. 
2009). These low ICCs were observed across 
different exposure scenarios: occupational 
parental exposure, residence in proximity to 
agricultural fields, and urban and suburban 
general population level exposure. When sam-
ples were taken in closer proximity to each 
other, as for six samples taken within 48 hr in 
the U.S. EPA study of preschool children in 
Ohio and North Carolina, ICCs were higher 
(0.44–0.65) (Egeghy et al. 2011). This indi-
cated a greater contribution of between-child 
variability, but still such a substantial contri-
bution of within-child variability that authors 
expressed concern about the utility of using 
one sample to rank participants’ 48‑hr expo-
sure levels (Egeghy et al. 2011). However, a 
recent study of agriculturally exposed children 
found low ICCs for samples taken over a sin-
gle week (0.27–0.35) (Bradman et al. 2013). 
Similar to our study, between-subject vari-
ability increased when ICCs were calculated 
by season in a study of turf workers sampled 
up to 18 times for five pesticides (Harris et al. 
2010). For pyrethroids, only a single study 
is available for comparison though with a 
much shorter time frame (2 days). The Ohio 
U.S. EPA study authors reported an ICC of 
0.69, which, again, they suggested was not 
high enough to merit using single spot sam-
ples to represent the 2-day sampling period 
(Egeghy et al. 2011).

Our study’s generalizability could be limi
ted by the study population’s characteristics 
that could influence pesticide exposures pat-
terns and their absorption and metabolism. All 
children in the present study originated from 
the Seattle area, were Caucasian, and were of 
a mid- to upper range of socioeconomic status 
in relation to average U.S. levels. Although a 

direct comparison to NHANES is not possible 
due to its cross-sectional nature, the present 
study’s mean values over all samples collected 
during the conventional diet days for PBA, 
trans‑DCCA, and TCPy were similar to mean 
values based on single spot urine samples col-
lected from 6- to 11-year-old NHANES par-
ticipants in 1999–2000. However, MDA was 
rarely detected in samples from the NHANES 
participants, and concentrations were much 
lower [95th percentile values of 2 ng/mL com-
pared with 16 ng/mL in the present study; 
lower percentiles were < LOD (2.64 ng/mL)]. 
Although participation in the diet intervention 
may have made the families more conscious 
of their pesticide use over time, pesticide 
use by families was indeed reported, and the 
means of postorganic conventional diet por-
tions were equivalent to or higher than pre-
organic portions (data not shown). We were 
also limited by the small number of children 
in the study. However, our finding of low 
ICCs for the pesticides evaluated is consistent 
with previous studies, which suggests that high 
within-person variability may be common 
across populations. Our analysis lacked rep-
licate samples (split samples measured again 
on the same day or a different day) to examine 
the contribution of the method variability to 
the overall variability. However, even with a 
worst-case scenario of a 25% coefficient of 
variation (CV), our method variability could 
at most contribute 7% of the within-person 
variability. Methods commonly used for these 
compounds report CVs for quality controls at 
< 10% (Olsson et al. 2004). Also, a limit of 
quantitation (LOQ) was not provided by the 
laboratory, so we used the LOD as the censor-
ing point in our statistical analysis. However, 
when we employed an estimated LOQ of 
LOD × 3 as the censoring point, we observed 
ICCs very similar to those obtained using the 
LOD (at most increased by 0.09; data not 
shown). A further limitation of the method 
was its reliance upon an assumption of equal 
covariance among the repeated measures 
within a subject by requiring a compound 
symmetry covariance structure. However, a 
sensitivity analysis using a subset of the data 
conforming to compound symmetry struc-
tures (samples with at least 2 intervening days) 
produced similar ICCs.

The use of an MLE approach that includes 
the samples < LOD in the estimation of the 
likelihood was a strength of our ICC analysis; 
this allowed us to employ the entire data set 
without relying on the use of substitute values. 
This method is not widely used in exposure 
assessment and environmental epidemiol-
ogy to incorporate values < LOD, although 
it can provide estimators that are consistent, 
asymptotically unbiased, and efficient (Jin 
et al. 2011). Other methods used to account 
for values < LOD, including substitution of 

censored values with the LOD/2 or LOD/√
–2, 

model-based multiple imputation, or reverse 
Kaplan–Meier estimation, cannot accom-
modate both repeated measurements and 
censored values (Jin et al. 2011). Through 
modeling, Jin et al. (2011) demonstrated the 
general improved performance of a custom-
ized MLE method over substitution in estimat-
ing group means, differences in group means, 
and within-subject variances, especially with 
large percentages of values < LOD. However, 
in specific scenarios of low sample numbers, 
high geometric standard deviation, and/or high 
detection frequencies, more common tech-
niques may be equivalent or preferable. In 
our data, when the method was repeated with 
LOD/2 substitution, ICCs were higher for the 
pyrethroids but were approximately the same 
for the OPs (data not shown).

The high within-child variability and low 
categorization success rates demonstrated here 
have implications for epidemiological stud-
ies and risk assessment of children’s exposure 
to pesticides and health effects. Although 
researchers need to balance the costs and 
administrative load of measuring an appropri-
ate number of people an adequate number 
of times, substantial random within-person 
errors can result in attenuated coefficients of 
regression and correlation, as well as bias risk 
estimates toward the null for continuous data 
and in either direction for categorical data 
(Willet 1998). To provide an example of the 
effect of the within-subject variability upon a 
true risk estimate, we employed the formula 
of Hofmann et al. (2011) derived from Rosner 
et al. (1992) for a case–control study with 
matched sets: RRobs = exp[ICC × ln(RRtrue)], 
where RR indicates relative risk. For a true 
odds ratio of 2, our ICCs suggest that esti-
mated odds ratios in studies might be as low as 
1.06 (using the lowest ICC of 0.08 for MDA) 
to 1.27 (using the highest ICC of 0.35 for 
trans-DCCA), suggesting the possibility of 
substantial bias that could result in false nega-
tive findings. Large studies are not immune 
to the effects of variability in exposure mea-
surement. Attenuation bias reflects high 
within-subject variance when measuring risk 
factors (relative to between-subject variance) 
and is not reduced by increased sample size, 
as demonstrated in the Framingham Heart 
Study (Rosner et al. 1992). Future research-
ers may want to consider methods for esti-
mate adjustment or sensitivity/bias analysis to 
address measurement error and within-person 
variability in their studies (Guo et al. 2012; 
Rosner et al. 1992; Spiegelman 2010). Our 
ICCs may be useful reference values in stud-
ies of children’s pesticide biomarkers where 
internal validation data are not available for 
conducting sensitivity analyses.

In addition to better characterizing aver-
age exposures, collecting repeated samples of 
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a short half-life chemical such as these pesti-
cides enables a better understanding of expo-
sure patterns and identification of extreme 
values. Without longitudinal data, the ability 
to capture trends over time or over season 
will be lost. Repeated measures also provide 
more opportunities to identify risk factors for 
heightened exposures, and therefore provide 
insight on how to reduce exposures. In this 
population, intermittent urinary metabolite 
peaks were observed and then traced back to 
parental uses of pesticides in or around the 
home (Lu et al. 2009).

In conclusion, the short half-life pyre-
throid and OP pesticides exhibited substantial 
within-subject variability as urinary biomarkers 
in children when observed over four seasons 
of measurements. Researchers investigating 
exposure and risk patterns in children and 
links to health outcomes may need repeated 
measurements to derive accurate findings.
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