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Introduction
Autism spectrum disorders (ASDs) affect 
approximately 1% of U.S. children and 
are characterized by impaired interpersonal 
behavior or communication and repetitive or 
stereotypic behaviors that begin before 3 years 
of age [American Psychiatric Association 
2000; Centers for Disease Control and 
Prevention (CDC) 2012]. Two lines of evi-
dence suggest that the endocrine system plays 
a role in the etiology of ASDs. First, males 
are four times as likely to be diagnosed with 
ASDs as females (CDC 2012). Second, adre-
nal, gonadal, and thyroid hormones play an 
important role in fetal neurodevelopment 
(Auyeung et al. 2010; Henrichs et al. 2013; 
Ronald et al. 2010).

In utero environmental exposures may 
increase the risk of ASDs (Landrigan et al. 
2012). Specifically, it has been proposed that 
endocrine-disrupting chemicals (EDCs) may 

alter endogenous hormone axes to interfere 
with steroid-dependent neurodevelopment 
and modify the risk of ASDs (Braun 2012). 
Pregnant women are exposed to a mixture of 
EDCs during pregnancy, including some that 
may increase the risk of childhood behavior 
disorders (de Cock et al. 2012; Landrigan 
et al. 2012; Woodruff et al. 2011). Isolating 
the potential effect of one EDC exposure 
from another is difficult when exposures 
are correlated due to common sources. For 
instance, serum levels of individual polychlo-
rinated biphenyl (PCB) congeners are cor-
related with one another as well as with some 
organochlorine (OC) pesticides (Meeker 
et al. 2009).

Despite the importance of identifying 
modifiable risk factors for ASDs and large 
number of EDCs in our environment, few 
epidemiological studies have examined 
the relationship between gestational EDC 

exposures and ASDs (Miodovnik et al. 2011; 
Roberts et al. 2007). Thus, epidemiological 
studies with multiple EDC exposure bio-
markers employing robust statistical meth-
ods are needed to screen components of the 
chemical mixtures humans are exposed to and 
identify the effect of individual EDCs from 
correlated co-pollutants.

To address this important research need, 
we used a semi-Bayesian hierarchical regres-
sion model to estimate associations between 
prenatal blood or urine concentrations of 
52  suspected EDCs and autistic behaviors 
at 4 and 5 years of age in a prospective birth 
cohort of 175 mothers and their children.

Methods
Study participants. The Health Outcomes 
and Measures of the Environment (HOME) 
Study is a prospective birth cohort from the 
greater Cincinnati, Ohio, metropolitan area 
designed to study the relationship between 
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Background: Endocrine-disrupting chemicals (EDCs) may be involved in the etiology of autism 
spectrum disorders, but identifying relevant chemicals within mixtures of EDCs is difficult.

Objective: Our goal was to identify gestational EDC exposures associated with autistic behaviors. 

Methods: We measured the concentrations of 8 phthalate metabolites, bisphenol A, 25 poly
chlorinated biphenyls (PCBs), 6 organochlorine pesticides, 8 brominated flame retardants, and 4 per-
fluoroalkyl substances in blood or urine samples from 175 pregnant women in the HOME (Health 
Outcomes and Measures of the Environment) Study (Cincinnati, OH). When children were 4 and 
5 years old, mothers completed the Social Responsiveness Scale (SRS), a measure of autistic behav-
iors. We examined confounder-adjusted associations between 52 EDCs and SRS scores using a two-
stage hierarchical analysis to account for repeated measures and confounding by correlated EDCs.
Results: Most of the EDCs were associated with negligible absolute differences in SRS scores 
(≤ 1.5). Each 2‑SD increase in serum concentrations of polybrominated diphenyl ether-28 
(PBDE‑28) (β = 2.5; 95% CI: –0.6, 5.6) or trans-nonachlor (β = 4.1; 95% CI: 0.8–7.3) was associ-
ated with more autistic behaviors. In contrast, fewer autistic behaviors were observed among chil-
dren born to women with detectable versus nondetectable concentrations of PCB‑178 (β = –3.0; 
95% CI: –6.3, 0.2), β-hexachlorocyclohexane (β = –3.3; 95% CI: –6.1, –0.5), or PBDE‑85 
(β = –3.2; 95% CI: –5.9, –0.5). Increasing perfluorooctanoate (PFOA) concentrations were also 
associated with fewer autistic behaviors (β = –2.0; 95% CI: –4.4, 0.4).
Conclusions: Some EDCs were associated with autistic behaviors in this cohort, but our 
modest sample size precludes us from dismissing chemicals with null associations. PFOA, 
β‑hexachlorocyclohexane, PCB‑178, PBDE‑28, PBDE‑85, and trans-nonachlor deserve additional 
scrutiny as factors that may be associated with childhood autistic behaviors.
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low-level environmental chemical exposure 
and children’s growth and development. 
Extensive data including biological speci-
mens, environmental samples, interviews, 
psychometric tests, and anthropometric mea-
surements were collected during pregnancy 
and at annual clinic and home visits when the 
children were between 1 and 5 years of age. 
We recruited pregnant women from seven 
prenatal clinics associated with three hospitals 
in the Cincinnati area from March 2003 to 
January 2006. Eligibility criteria at enroll-
ment included a) 16 ± 3 weeks of pregnancy, 
b) age ≥ 18 years, c) residence in a home built 
before 1978, d) no history of HIV infection, 
and e) no medications taken for seizure or 
thyroid disorders. All women provided writ-
ten informed consent for themselves and their 
children after the study protocols had been 
explained. The institutional review boards 
(IRBs) of Cincinnati Children’s Hospital 
Medical Center and the cooperating deliv-
ery hospitals approved this study. The CDC 
IRB relied on the determinations made by the 
other IRBs.

Environmental chemical biomarkers. 
Women provided spot urine samples in poly-
propylene cups at their prenatal care clinic 
visits around 16 and 26 weeks of pregnancy. 
At these same visits and within 24  hr of 
delivery, a serum sample was obtained via 
venipuncture. All samples were refrigerated 
until they were processed and aliquoted, 
after which they were stored at –20oC until 
shipped on dry ice to the CDC for analysis.

We measured concentrations of 70 sus-
pected EDCs in either maternal serum 
(n  =  60) or urine (n  =  10) using sensi-
tive and specific isotope dilution liquid or 
gas chromatography mass spectrometry (see 
Supplemental Material, Table  S1) (Jones 
et al. 2012; Kuklenyik et al. 2005; Silva et al. 
2007; Ye et al. 2008). Concentrations below 
the limit of detection were assigned a value 
of the LOD/√

–2 (Hornung and Reed 1990). 
Our analyses included 52 chemicals after 
excluding 16 that were infrequently detected 
(< 20% of samples with detectable values), 
PCB-180 (Pearson r > 0.95 with PCB‑170), 
and mono(2-ethyl-5-oxohexyl) phthalate 
(MEOHP) [Pearson r > 0.95 with mono(2-
ethyl-5-hydroxyhexyl) phthalate (MEHPP)] 
(see Supplemental Material, Table S1). The 
chemical with the higher median concentra-
tion was chosen when two chemicals were 
highly correlated.

The total (free plus conjugated) urinary 
concentrations of eight phthalate metabo-
lites and bisphenol A (BPA) were creatinine-
normalized in units of micrograms per gram 
creatinine to account for urine dilution, and 
log10-transformed before being averaged if 
a woman provided more than one sample. 
PCB, brominated flame retardant (BFR), 

perfluoroalkyl substance (PFAS), and OC 
pesticide concentrations were measured in the 
16-week serum samples. A small number of 
women’s PFAS concentrations were measured 
in serum samples collected at gestational 
week 26 (n = 9) and birth (n = 3) because 
the volume of the 16-week serum sample was 
insufficient for analysis. Concentrations of 
PCBs, OC pesticides, and BFRs were lipid-
normalized in units of nanograms per gram 
serum lipid.

Chemicals with detection frequencies 
≥ 80% (Table 1) were log10-transformed to 
reduce the influence of outliers and treated as 
continuous variables. Chemicals with detection 
frequencies ≥ 20% and < 80% (n = 13) were 
analyzed as dichotomous variables (detectable 
vs. nondetectable concentrations). We then 
rescaled continuous concentrations so that the 
magnitude and precision of changes in Social 
Responsiveness Scale (SRS) score would be 
comparable for both continuous and dichoto-
mous variables. Specifically, we divided con-
tinuous chemical concentrations by 2 times 
their SD (Gelman 2008) to generate rescaled 
variables with SD = 0.5, consistent with the 
SD of a binary variable with a probability of 
0.5. Thus, the differences in SRS scores are 
presented for each 2‑SD increase in exposure 
for continuous variables or as the difference 
between exposed and unexposed participants 
for dichotomous variables.

Autistic behaviors. Mothers completed 
the SRS (Constantiono 2005) up to two 
times in our study clinic when their chil-
dren were 4 and 5 years of age. The SRS is 
a valid, reliable, and sensitive measure of 
interpersonal behaviors, communication, and 
repetitive or stereotypic behaviors (Bolte et al. 
2008; Constantino 2005). The SRS assesses 
autistic behaviors along a continuum, rather 
than an “all or none” diagnosis, using 65 
Likert-scale questions that are summed and 
transformed into a total T-score (mean ± SD, 
50 ± 10 in the normative sample). Higher 
scores indicate more autistic behaviors, 
with T-scores ≥ 60 considered indicative of 
clinically significant deficiencies in recipro-
cal social behavior, and T-scores ≥ 75 being 
consistent with a clinical diagnosis of ASDs. 
However, we examined continuous SRS 
scores because of the small number of chil-
dren with scores ≥ 60 (n = 22).

Confounding variables. We adjusted for 
the following potential confounding variables 
that might be associated with both environ-
mental chemical exposures and autistic behav-
iors based on biological plausibility and prior 
knowledge. Maternal demographic and perina-
tal factors, including maternal age at delivery, 
race, marital status, education, parity, insur-
ance status, employment, household income, 
and prenatal vitamin use were obtained 
using structured interviews and chart reviews 

conducted by trained research staff. Depressive 
symptoms during the second trimester 
were measured with the Beck Depression 
Inventory-II (Beck et al. 1996). Maternal Full-
Scale IQ was measured using the Vocabulary 
and Matrix Reasoning subtests of the Wechsler 
Abbreviated Scale of Intelligence (Wechsler 
1999). Caregiving environment was assessed 
when children were 1  year old using the 
HOME (Home Observation for Measurement 
of the Environment), an in-home semistruc-
tured interview and observational tool that 
measures the quality and quantity of envi-
ronmental stimulation and support (Caldwell 
and Bradley 2003). Serum cotinine, a tobacco 
smoke exposure biomarker, was measured in 
maternal serum samples using mass spectrom-
etry methods and averaged if more than one 
sample was available.

Statistical analysis. We compared geometric 
mean EDC concentrations in women with 
(n = 194–222) and without (n = 130–166) at 
least one follow-up visit when their children 
were 4 or 5 years of age. Then we calculated 
percentiles of EDC concentrations and com-
pared median concentrations with medians in a 
nationally representative sample of U.S. women 
participating in the 2003–2004 National 
Health and Nutrition Examination Survey 
(NHANES) (CDC 2009; Patterson et al. 2009; 
SjÖdin et al. 2008). We also examined SRS 
scores according to the above listed covariates.

We implemented a two-stage semi-
Bayesian model that has previously been used 
to examine multiple environmental pollutants 
in relation to human health (De Roos et al. 
2001; Kalkbrenner et al. 2010). The semi-
Bayesian model controls for co-pollutant and 
traditional confounders, addresses multiple 
comparisons by reducing the influence of out-
lying estimates, and improves the precision and 
plausibility of estimates by shrinking the beta 
coefficients toward the mean of their exchange-
ability group as a function of their precision 
and a prespecified normally distributed residual 
variance parameter (τ2). This technique allows 
individual beta parameters to borrow informa-
tion from other betas in the same exchange-
ability group (Greenland 1994; Greenland and 
Poole 1994). In the first stage of the model, 
SRS scores were regressed on all 52 EDC bio-
markers and the above-mentioned confound-
ers in a single linear mixed model to account 
for the repeated SRS measures. In the second 
stage, the beta parameters from this model 
were regressed against an exchangeability 
matrix, their covariance, and τ2.

Exchangeability predictors were cho-
sen based on our a priori expectation that 
structurally similar chemicals would share 
common mechanisms. Our exchangeability 
matrix included indicator variables (0/1) for 
dibutyl phthalate (DBP) metabolites [mono-
n-butyl phthalate (MBP) and monoisobutyl 
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phthalate (MiBP)], di(2-ethylhexyl) phthalate 
(DEHP) metabolites [mono(2-ethylhexyl) 
phthalate (MEHP), MEHHP, and mono(2-
ethyl-5-carboxypentyl) phthalate (MECPP)], 
BFRs, PFASs, PCBs, OC pesticides, and 
whether the chemical was persistent or non-
persistent (persistent chemicals were mea-
sured in serum; nonpersistent chemicals 
were measured in urine) (see Supplemental 

Material, Table S2). We specified a τ2 that 
assumed beta parameters would be between 
–10 and 10 (i.e., within 1 SD of the mean 
SRS score in the normative sample). A smaller 
τ2 implies that most of the association is 
explained by factors specified in the exchange-
ability matrix, whereas a larger τ2 assumes 
that factors not specified in the exchange-
ability matrix explain more of the association. 

First-stage models were fit using SAS PROC 
MIXED and second stage models were fit 
with SAS PROC IML code (SAS Institute 
Inc., Cary, NC, USA) (Witte et al. 1998).

Sensitivity analyses. We conducted addi-
tional analyses to test the robustness of our 
results. First, we used inverse probability 
weights to account for nonrandom censoring 
due to loss to follow-up (Cole and Hernan 

Table 1. Univariate statistics of urinary or serum endocrine disrupting chemicals concentrations during pregnancy among 175 Cincinnati, Ohio, women 
(2003–2006) and median concentrations U.S. women (NHANES 2003–2004).

Chemicala Percent > LOD GM (GSD) 5th percentile 25th percentile Median 75th percentile 95th percentile

Median in 
NHANES women 

(2003–2004)
MBP 100 26.0 (1.9) 9.5 18 26 37 75 24
MiBP 99 5.1 (2.1) 1.5 3.0 5.6 8.6 17 4.0
MEP 100 143.3 (2.9) 25 70 133 286 1010 120
MBzP 98 10.3 (2.4) 3.2 5.8 11 17 48 10
MCPP 99 2.4 (1.8) 1.1 1.6 2.3 3.4 5.9 2.9
MEHP 89 5.2 (2.7) < LOD 2.9 4.4 7.5 41 2.2
MEHHP 100 41.0 (2.4) 7.7 15 22 49 152 19
MECPP 100 27.6 (2.5) 13 21 35 70 191 31
BPA 96 2.1 (1.9) 0.8 1.4 2.0 3.1 6.6 2.7
PCB-28 82 0.8 (2.9) < LOD 0.7 1.0 1.6 3.3 5.0
PCB-66 75 5.6 (2.7) < LOD < LOD 0.6 1.0 2.2 1.4
PCB-74 99 2.8 (1.8) 1.2 2.0 2.6 3.9 7.0 5.4
PCB-99 99 2.8 (1.8) 1.2 1.9 2.8 3.9 7.1 3.9
PCB-101 32 2.1 (2.9) < LOD < LOD < LOD 0.5 1.5 1.6
PCB-105 93 1.1 (2.5) < LOD 0.8 1.1 1.7 3.4 1.2
PCB-118 99 4.9 (2.0) 2.1 3.2 4.8 7.1 14 5.0
PCB-138/158 99 7.8 (2.0) 3.0 5.3 7.7 11 25 16
PCB-146 93 1.0 (2.6) < LOD 0.8 1.1 1.7 4.1 2.3
PCB-153 100 11.1 (1.9) 4.3 7.6 11 15 35 22
PCB-156 96 1.6 (2.4) 0.5 1.0 1.6 2.5 6.1 3.4
PCB-157 51 3.3 (3.2) < LOD < LOD 0.4 0.7 1.6 0.9
PCB-167 59 3.9 (3.1) < LOD < LOD 0.5 0.7 1.8 0.9
PCB-170 100 2.8 (2.2) 0.9 1.8 2.8 4.2 9.4 6.3
PCB-172 34 2.2 (3.0) < LOD < LOD < LOD 0.5 1.2 0.9
PCB-177 61 4.0 (3.1) < LOD < LOD 0.5 0.7 2.1 1.3
PCB-178 52 3.3 (3.2) < LOD < LOD 0.4 0.7 1.8 1.2
PCB-183 87 0.8 (3.0) < LOD 0.6 1.0 1.4 2.8 1.7
PCB-187 98 2.1 (2.3) 0.7 1.5 2.1 3.3 7.1 4.6
PCB-194 92 1.2 (2.8) < LOD 0.9 1.4 2.2 4.5 4.0
PCB-195 39 2.4 (3.1) < LOD < LOD < LOD 0.6 1.1 0.6
PCB-196/203 96 1.6 (2.3) 0.5 1.1 1.6 2.5 4.8 3.3
PCB-199 93 1.2 (2.8) < LOD 0.9 1.3 2.2 4.4 3.7
PCB-206 81 0.6 (3.2) < LOD 0.6 0.8 1.2 2.4 2.3
PCB-209 35 2.2 (3.0) < LOD < LOD < LOD 0.5 1.0 1.2
β-HCH 27 1.9 (2.8) < LOD < LOD < LOD 1.9 4.4 < LOD
HCB 94 6.5 (1.9) < LOD 5.5 7.0 9.0 13.8 16
p’p’-DDT 52 3.3 (3.2) < LOD < LOD 1.9 3.2 6.2 < LOD
p’p’-DDE 100 71.6 (1.8) 31 51 67 93 182 206
Oxychlordane 90 4.4 (2.5) < LOD 3.5 5.1 7.2 13 11
trans-Nonachlor 97 7.5 (2.1) 2.3 5.1 7.4 12 25 15
BB-153 85 0.9 (3.7) < LOD 0.6 1.1 1.9 4.5 2.0
PBDE-28 81 0.8 (4.0) < LOD 0.5 1.1 1.8 4.2 1.0
PBDE-47 100 20.1 (2.7) 4.9 9.7 19 35 103 19
PBDE-85 49 3.1 (3.2) < LOD < LOD < LOD 1.0 3.5 < LOD
PBDE-99 100 4.7 (2.9) 1.0 2.2 4.4 8.0 33 < LOD
PBDE-100 99 3.8 (3.0) 0.9 2.0 3.4 7.9 25 3.2
PBDE-153 99 5.1 (3.1) 1.3 2.4 4.2 9.0 54 4.0
PBDE-154 42 2.6 (3.1) < LOD < LOD < LOD 0.9 2.8 0.8
PFOA 100 5.6 (1.7) 2.5 3.8 5.5 7.6 13 3.6
PFOS 100 13.1 (1.6) 5.7 9.3 13 18 27 18
PFNA 100 0.9 (1.5) 0.5 0.7 0.9 1.2 1.9 0.9
PFHxS 100 1.5 (2.0) 0.5 0.9 1.6 2.4 5.0 1.6

Abbreviations: BB-153, 2,2’,4,4’,5,5’-hexabromobiphenyl; GM, geometric mean; GSD, geometric standard deviation; MBP, mono-n-butyl-phthalate; MBzP, monobenzyl phthalate; MCPP, 
mono(3-carboxypropyl) phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHP, mono(2-ethylhexyl) phthalate; MEP, monoethyl phthalate; MiBP, monoisobutyl phthalate; 
PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate; PFOA, perfluorooctanoate; PFOS, perfluorooctane sulfonate. 
aConcentrations are displayed in units of ng/g lipds (PCBs, PBDEs, and OC pesticides), μg/g creatinine (phthalates and BPA), and μg/L (PFAS). 
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2008). Second, we specified a smaller τ2 
parameter in the second stage of our semi-
Bayesian regression model that corresponded 
to a 10-point range of SRS scores (i.e., within 
0.5 SD of the mean SRS scores in the norma-
tive sample). Third, we tested the assumption 
of a fixed residual variance by conducting an 
empirical Bayesian analysis (i.e., with τ2 = 0 
and the residual variance estimated from the 

observed data). Finally, we examined the rela-
tionship between individual chemicals con-
centrations and SRS scores without restricting 
to mother–child pairs with complete EDC 
biomarker data.

Exploratory analysis. We investigated 
whether the associations between EDC 
biomarkers and SRS scores were modified 
by child sex using confounder-adjusted 

single-pollutant models with a product 
interaction term between child sex and 
biomarker concentrations to produce 
sex-specific estimates.

Results
Among 389 women who delivered single-
ton infants, 222 mother–child pairs (57%) 
completed at least one follow-up visit at 4 
(n = 184) or 5 (n = 205) years of age. Our 
analyses included 175 (45%) mother–child 
pairs with 310 observations at 4 and 5 years 
of age after excluding those who were missing 
data for confounders (n = 13), EDC biomark-
ers (n = 33), or both (n = 1). One hundred 
thirty-five children had two SRS measures at 
both 4 and 5 years of age. Average urine and 
serum biomarker concentrations were similar 
among women with and without follow-up 
when their child was 4 or 5 years old (see 
Supplemental Material, Table S3).

Individual women had 21–52 (median, 
44) detectable EDCs in their serum or urine 
during pregnancy. Median EDC concentra-
tions in HOME study women were similar 
to those of adult women in the NHANES 
2003–2004 (Table 1).

Repeated SRS total T-scores in individual 
children at 4 and 5 years were highly corre-
lated, with an intraclass correlation coefficient 
of 0.74. Higher SRS scores, indicating more 
autistic behaviors, were observed among chil-
dren whose mothers were socioeconomically 
disadvantaged or exposed to tobacco smoke 
during pregnancy (Table 2).

In single-pollutant models, the extent 
of confounding related to SES or perinatal/
caregiving/maternal factors depended on 
the chemical class; in some cases point esti-
mates were attenuated down and toward the 
null [e.g., polybrominated diphenyl ethers 
(PBDEs)] and in other cases up and through 
the null (e.g., PCBs and OC pesticides) (see 
Supplemental Material, Table S4).

After adjustment for confounders and 
all EDC exposures in our semi-Bayesian 
hierarchical regression model, most EDC 
concentrations were associated with negli-
gible changes in SRS scores, with the abso-
lute change being ≤  1.5 point (Figure 1; 
also see Supplemental Material, Table S4). 
Many EDCs showed very imprecise associa-
tions with SRS scores, as indicated by the 
larger SEs (> 2) and wide confidence intervals 
(e.g., PCB-153, PCB-199, and PBDE-100). 
PCB-138/158 and PCB-153 had the larg-
est associations with SRS scores, but were 
very imprecise because of their high correla-
tions with each other (Pearson r = 0.89) and 
other PCBs. Below we highlight some chemi-
cals associated with ≥ 1.5-point change in 
SRS scores that were reasonably precise (SEs 
< 2.0). Almost all of the stronger and pre-
cise associations were observed for persistent 

Table 2. SRS total T-scores among 4- and 5-year-old children in Cincinnati, Ohio, according to demo-
graphic, perinatal, and environmental factors.

Demographic, perinatal, or environmental factor n (%)
Total T-score 
(mean ± SD)a

Overall 175 51 ± 9
Maternal race

White 117 (67) 48 ± 7
Black 50 (29) 58 ± 12
Other 8 (5) 45 ± 6

Maternal age (years)
< 25 36 (21) 57 ± 13
25 to < 35 115 (66) 50 ± 8
≥ 35 24 (14) 47 ± 7

Maternal education
Graduate/professional school 92 (53) 47 ± 6
Some college 48 (27) 53 ± 9
High school 21 (12) 57 ± 13
< High school 14 (8) 60 ± 11

Marital status
Married 122 (70) 48 ± 6
Unmarried, living together 15 (9) 55 ± 10
Unmarried, living alone 38 (22) 59 ± 12

Annual household income
≥ $80,000 46 (26) 47 ± 5
$40,000 to < 80,000 66 (38) 48 ± 6
$20,000 to < 40,000 26 (15) 54 ± 8
< $20,000 37 (21) 60 ± 13

Maternal depressive symptoms
Minimal 148 (85) 50 ± 8
Mild 16 (9) 58 ± 10
Moderate/severe 11 (6) 59 ± 14

Maternal IQ
1st tertile (58–101) 58 (33) 58 ± 11
2nd tertile (> 101–114) 61 (35) 49 ± 7
3rd tertile (115–134) 56 (32) 47 ± 6

Child sex
Girls 95 (54) 52 ± 10
Boys 80 (46) 49 ± 8

Caregiving environment score
Low 30 (17) 58 ± 9
Medium 27 (15) 58 ± 13
High 118 (67) 48 ± 6

Maternal serum cotinine concentration (ng/mL)
No exposure (< 0.015) 68 (39) 48 ± 6
Secondhand exposure (0.015–3) 94 (54) 53 ± 11
Active exposure (> 3) 13 (7) 55 ± 10

Prenatal vitamin use frequency
Daily 132 (75) 49 ± 7
1–6 times/week 17 (10) 52 ± 12
Never or few times/month 26 (15) 58 ± 13

Maternal employment
None 30 (17) 56 ± 14
Any 145 (83) 50 ± 8

Parity
Nulliparous 80 (46) 50 ± 9
1–2 83 (47) 51 ± 10
≥ 3 12 (7) 58 ± 11

Maternal insurance source
Private 129 (74) 48 ± 7
Public/none 46 (26) 58 ± 12

aHigher scores indicate more autistic behaviors.
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chemicals, except for the two oxidative 
DEHP metabolites.

At least one chemical from each class of 
EDCs we examined was associated with higher 
SRS scores, which are consistent with more 
autistic behaviors. The one exception was the 
phenol BPA, which was not associated with 
SRS scores. Notably, maternal serum concen-
trations of trans-nonachlor and PBDE‑28 were 
associated with higher SRS scores (β = 4.1; 
95% CI: 0.8, 7.3 and β = 2.5; 95% CI: –0.6, 
5.6) with each 2‑SD increase in concentration. 

Lower SRS scores, consistent with less 
autistic behaviors, were associated with pre-
natal exposure to at least one chemical from 
each class of EDCs. Detectable (vs. non
detectable) serum concentrations of PCB‑178 
(n  =  27; β  =  –3.0; 95% CI: –6.3, 0.2), 
β-hexachlorocyclohexane (β-HCH) (n = 52; 
β = –3.3; 95% CI: –6.1, –0.5), or PBDE‑85 
(n = 86; β = –3.1; 95% CI: –5.9 –0.5) were 
associated with lower SRS scores. Each 2-SD 
increase in serum perfluorooctanoate (PFOA) 
(β = –2.0; 95% CI: –4.4, 0.4) was associated 
with SRS scores.

Sensitivity analyses. The patterns of our 
results were similar when we accounted for 
censoring due to loss to follow-up, used a 
smaller τ2 in our semi-Bayesian model, 
or used an empirical Bayes analysis (see 
Supplemental Material, Table S5). Most of 
the confounder-adjusted single-pollutant 
model results were similar and more precise 
because of the increased sample size (n = 181–
208) when we did not restrict to mother–
child pairs with complete EDC biomarker 
data (see Supplemental Material, Table S5). 
However, the associations between perfluo-
rooctane sulfonate (PFOS) or perfluoro
nonanoate (PFNA) and SRS scores were 
attenuated toward the null when we included 
these additional women.

Exploratory analysis. With few exceptions 
(Figure 2; see also Supplemental Material, 
Table S6), most EDC biomarker and SRS 
score associations were similar for boys and girls 
(interaction p-values > 0.10) (see Supplemental 
Material, Table S5). However, a 2-SD increase 
in serum hexachlorobenzene (HCB) (interac-
tion p-value = 0.02) and trans-nonachlor (inter-
action p-value < 0.01) was positively associated 
with higher SRS scores in girls (HCB β = 4.9; 
95% CI: 1.9, 7.8; trans-nonachlor β = 5.6; 
95% CI: 2.4, 8.8), but not in boys (HCB 
β = 0.3; 95% CI: –1.9, 2.6; trans-nonachlor 
β = 0.3; 95% CI: –1.7, 2.2). Serum PFOS 
concentrations were positively associated with 
SRS scores in in boys (β = 3.8; 95% CI: 1.3, 
6.3), but not girls (β = 0.9; 95% CI: –1.5, 3.3) 
(interaction p-value = 0.08). A 2-SD increase 
in monoethyl phthalate (MEP) concentra-
tions was associated with lower SRS scores 
(consistent with fewer autistic behaviors) in 
boys (β = –1.9; 95% CI: –3.9, 0.1), but not 

girls (β = 1.1; 95% CI: –1.7, 3.9) (interaction 
p-value = 0.09).

Discussion
This work builds on the theory that ASDs are 
a spectrum of disorders with prenatal origins, 
where both genetic and environmental fac-
tors contribute to atypical neurodevelopment, 
resulting in more autistic behaviors, and, at the 
extreme end, clinical diagnosis. EDCs deserve 
consideration as candidate risk factors for 
ASDs because of their potential to alter hor-
monal axis functions that play an important 
role in neurodevelopment. Building on this, 

we employed a statistically rigorous design to 
screen 52 different candidate EDCs and iden-
tify those worth additional study. Most of the 
EDC biomarkers we examined were associated 
with modest and imprecise differences in SRS 
scores in children, including most of the PCBs, 
all of the phthalate metabolites, and BPA. 
Maternal serum trans-nonachlor and PBDE‑28 
concentrations were positively associated with 
more autistic behaviors, whereas PBDE‑85, 
PCB‑178, β‑HCH, and PFOA concentrations 
were associated with less autistic behaviors.

Because there are few prior studies exam-
ining the link between EDC exposures and 

Figure 1. Associations between maternal gestational urine or serum EDC concentrations and SRS total 
T-scores in 4- and 5-year-old Cincinnati children using a semi-Bayesian model (n = 175). PCB-66, PCB‑101, 
PCB-157, PCB-167, PCB-172, PCB-177, PCB-178, PCB-195, PCB-209, β-HCH, DDT, PBDE-85, PBDE-154, 
and PBDE‑183 are coded as detected vs. nondetectable. The displayed betas are the change in SRS 
scores among children born to women with detectable vs. nondetectable levels of these chemicals. All 
other chemicals were treated as continuous log10-transformed variables that are divided by two times 
their standard deviation to put them on a comparable scale to the dichotomous variables. Adjusted for 
demographic factors for the covariate-adjusted semi-Bayesian model (see Table 2), as well as depres-
sive symptoms during pregnancy (continuous), HOME score (continuous), and gestational serum cotinine 
concentration (continuous log10 transformed). The residual variance (τ2) of the semi-Bayesian model was 
set to 26.03 (20-point range). The exchangeability matrix is contains an intercept and indicator (0/1) vari-
ables for OCs, PCBs, BFRs, PFASs, DEHP metabolites, DBP metabolites, and persistent vs. nonpersistent 
chemicals. Whiskers indicate 95% CIs. 
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the risk of ASDs or autistic behaviors, we 
discuss studies examining early-life EDC 
exposures and other neurobehavioral traits 
or disorders below [e.g, attention deficit/
hyperactivity disorder (ADHD)]. These com-
parisons are made assuming that EDCs may 
affect multiple neurobehavioral domains, or 
that neurodevelopmental disorders share com-
mon behavioral features. Study results may 
also vary because of differences in methods of 
assessing neurobehavior or ascertaining ASD 
cases, mechanisms underlying each chemical–
neurobehavior association, study designs, the 
timing or method of exposure assessment, and 
statistical methods.

Prior studies suggest that prenatal BPA 
or phthalate exposures may be associated 
ADHD, anxiety, or autistic behaviors (Braun 
et al. 2011; Engel et al. 2010; Miodovnik 
et al. 2011). Using a prospective birth cohort 
of 137 mothers and their children, Miodovnik 
et al. (2011) reported that maternal urinary 
MEP and possibly BPA concentrations dur-
ing pregnancy were associated with higher 
SRS scores in 7- to 9-year-old children. We 
observed an inverse association between MEP 
levels and SRS scores, and a null association 
for BPA. Even when we did not adjust for 
co-pollutant confounding, we observed an 
inverse association between MEP levels and 
SRS scores. The relatively high within-person 
variability of urinary MEP and BPA concen-
trations and different timing of urine collec-
tion across studies may account for different 
results. If the timing of exposure affects neu-
rodevelopment, then future epidemiological 
studies trying to identify windows of suscepti-
bility to nonpersistent chemicals, such as BPA 
and phthalates, will need to find ways to mini-
mize exposure measurement error (Braun et al. 
2009, 2012; Gioiosa et al. 2013).

Several studies have reported associa-
tions of in utero PCB exposure with neuro
behavioral features of ADHD (Eubig et al. 
2010; Sagiv et al. 2010), but few have exam-
ined ASD or autistic behaviors. A small nested 
case–control (n = 75 cases, n = 75 controls) 
study reported that higher maternal serum 
PCB and dichlorodiphenyldichloroethylene 
(DDE) concentrations were associated with 
increased odds of ASD diagnosis (Cheslack-
Postava et al. 2013). We observed different 
patterns of association between individual PCB 
congeners and SRS scores. Consistent with 
their findings (Cheslack-Postava et al. 2013), 
we did observe a positive association between 
maternal DDE levels and SRS scores (β = 1.5; 
CI: –1.1, 4.1). There was no a priori reason 
to suspect that PCB‑178 would be protective, 
and the neurotoxicity of individual PCB con-
geners has not been well investigated because 
many prior investigations have used individual 
or the sum of PCB congeners to assess this 
exposure mixture.

Using a retrospective cohort (n = 465 
cases, n  =  6,975 controls), Roberts et  al. 
(2007) reported increased odds of ASD diag-
nosis among children whose mothers resided 
near agricultural fields sprayed with the OC 
pesticides dicofol and endosulfan during their 
pregnancies. Despite the widespread use of 
trans-nonachlor as an insecticide for citrus and 
corn crops from the 1960s to late 1980s, the 
neurotoxicity of trans-nonachlor, the related 
chlordanes, and HCB is relatively unstudied. 
We report that trans-nonachlor concentra-
tions were associated with higher SRS scores, 
especially among girls. Consistent with this, a 
rodent study found that gestational chlordane 
exposure caused decreased testosterone con-
centrations and improved maze performance 
in female offspring (Cassidy et al. 1994).

Two prospective birth cohort stud-
ies (n = 152, n = 323) have reported associa-
tions between gestational PBDE exposure and 
ADHD-like behaviors, poorer mental and 
physical development, and lower IQ among 
children (Eskenazi et  al. 2013; Herbstman 
et al. 2010). Similar to the negative association 
between PBDE-85 concentrations and SRS 
scores we observed, a case–control study of 50 
ASD cases and 25 controls reported that higher 
childhood serum PBDE-85 concentrations 
were associated with decreased odds of ASD 
diagnosis (Hertz-Picciotto et al. 2011). Another 
case–control study examining postmortem 
PBDE and PCB brain tissue concentrations in 
idiopathic ASD cases and controls was not con-
sistent with our results (Mitchell et al. 2012).

The positive and negative associa
tions between SRS scores and PBDE-28 
and PBDE-85, respectively, may reflect 
congener-specific effects on different 

endocrine pathways. In  vitro experiments 
show that tri-brominated PBDE‑28 strongly 
potentiates triiodothyronine responses, but is 
a weaker antagonist of androgen and proges-
terone receptors than some pentabrominated 
PBDEs, such as PBDE‑85. (Hamers et al. 
2006). Additional experimental and epide-
miological studies are necessary to identify 
potential mechanisms of PBDE action and 
confirm our findings (Dingemans et al. 2011).

Similar to the protective association we 
observed for PFOA, a cross-sectional study 
reported that PFAS exposures were associ-
ated with reduced prevalence of adult cog-
nitive limitations (Power et al. 2013), and a 
prospective study of 320 children observed 
better cognitive abilities among children with 
higher prenatal PFOA exposure (Stein et al. 
2013). In contrast, a cross-sectional study of 
U.S. adolescents found that higher PFOA and 
PFOS concentrations were associated with par-
ent-reported ADHD (Hoffman et al. 2010). 
In vitro studies report that PFOA and PFOS 
are partial agonists of the human peroxisome 
proliferator–activated receptor‑γ, and activa-
tion of this receptor may be neuroprotective 
(Kapadia et al. 2008). Contradictory results 
across studies may be attributable to the differ-
ent neurobehavioral domains assessed and dif-
ferences in the timing of exposure assessment 
(e.g., prenatal vs. childhood) in these studies.

The most notable associations in our 
study were for persistent chemicals with 
biological half-lives on the order of years 
(Geyer et al. 2004; Olsen et al. 2007; Wolff 
et al. 2000). The association between autis-
tic behaviors and nonpersistent compounds, 
such as phthalates and BPA, may be attenu-
ated toward the null because these chemicals 

Figure 2. Confounder-adjusted associations between maternal gestational urinary or serum EDC concen-
trations and SRS total T-scores in 4- and 5-year-old Cincinnati children, stratified by child sex (n = 175). All 
displayed betas are the change in child SRS scores with a 2‑SD increase in log10-transformed maternal 
chemical concentration. Adjusted for demographic factors (see Table 2) as well as depressive symptoms 
during pregnancy (continuous), HOME score (continuous), and gestational serum cotinine concentration 
(continuous log10 transformed). Whiskers indicate 95% CIs. Only associations with significant chemical × 
sex interactions are displayed (p < 0.10).
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are subject to more nondifferential exposure 
misclassification than persistent chemicals.

The SRS and other continuous measures 
of autistic behaviors have several desirable 
features for prospective cohorts such as this 
one. Although the SRS is not equivalent to 
clinical diagnosis, SRS scores provide a ranking 
of children’s autistic behaviors on a contin-
uum and enhance statistical power (Bellinger 
2004; Jones and Lord 2013). Studies using 
clinical diagnosis are necessary to determine 
whether environmental exposures associated 
with subtle changes in continuous distribu-
tions of autistic behavior increase the risk of 
ASDs. Finally, continuous measures may 
detect earlier or subclinical manifestations of 
ASD that clinical diagnoses cannot identify, 
but these symptoms may also be correlates of 
other behavioral disorders, including ADHD 
(Reiersen et al. 2007).

Our longitudinal study design had numer-
ous strengths for identifying potential chemi-
cal risk factors for ASDs. We used sensitive 
and specific biomarkers of 52 unique EDC 
exposures during the developmentally sensi-
tive in utero period and repeated assessments 
of autistic behaviors using a valid and reliable 
instrument (Bolte et al. 2008). In addition, we 
adjusted for numerous potential confounders, 
including gestational tobacco smoke expo-
sure, socioeconomic factors, perinatal factors, 
caregiving environment, maternal IQ, and 
maternal depressive symptoms. Such com-
prehensive data collection comes at the cost 
of sample size, and though we increased sta-
tistical power by using repeated continuous 
outcome measures, our precision was modest. 
Residual confounding and nonrandom loss to 
follow-up is always a concern for observational 
longitudinal epidemiology studies. Although 
we controlled for both traditional covariates 
and EDC co-pollutants, the measured asso-
ciations could be attributable to residual con-
founding. Nonrandom attrition could also 
bias our results in an unpredictable fashion, 
but our sensitivity analyses accounting for loss 
to follow-up did not suggest this was the case.

Failure to consider co-pollutant confound-
ing may lead to erroneous inferences and ulti-
mately ineffective public health interventions. 
By adjusting for multiple EDC exposures in 
a semi-Bayesian model, we accounted for co-
pollutant confounding, let individual beta 
coefficients borrow information from their 
exchangeability group, and were able to com-
pare the magnitude of association across chem-
icals. Although this is a considerable strength 
and is not typically done in epidemiological 
studies, it does risk unnecessary adjustment 
for chemicals that are not correlated with each 
other (Schisterman et al. 2009). In addition, 
we focused specifically on suspected EDCs 
that were measured in this study based on 
our a priori hypothesis, and did not account 

for other neurotoxicants such as lead and 
organophosphate pesticides.

We attempted to reduce type 1 errors 
and address multiple comparisons by using 
a semi-Bayesian model, but we may have 
failed to detect associations (i.e., type 2 errors) 
because of our modest sample size and the 
potential for misclassification of nonpersistent 
chemical exposures. Strict interpretation of 
p-values (e.g., p < 0.05) is not used in the 
Bayesian approach, so we focused on the rela-
tive rank of the magnitude and precision of 
the EDC effect estimates.

Future studies using semi-Bayesian mod-
els could incorporate discrete or continuous 
aspects of a chemical’s toxicity into their analy-
sis, such as aryl hydrocarbon receptor binding 
affinity or potency to reduce androgen produc-
tion (Howdeshell et al. 2008; Van den Berg 
et al. 2006). Other hormonal and molecular 
pathways susceptible to EDC disruption and 
relevant to ASD etiology, including oxytocin 
and vasopressin, also deserve consideration 
(Hammock and Young 2006; Wolstenholme 
et al. 2012). Finally, future work should con-
sider the sum of the effect of EDCs; however, 
this will require additional toxicity data related 
to the biological activity of these chemicals in 
pathways related to ASDs. The imprecise asso-
ciations we observed for many PCBs and the 
two DEHP oxidative metabolites shows that 
the high correlation between some chemicals 
makes it difficult, if not impossible, to disen-
tangle individual associations of highly corre-
lated exposures. Future studies may consider 
summing or weighting these according to their 
biological activity (Safe 1998).

Most biomarkers of maternal EDC 
exposure during pregnancy were not clearly 
associated with autistic behaviors in 4- and 
5-year-old children in this cohort. Although 
this hypothesis-generating study cannot defi-
nitely identify chemical risk factors for ASDs, 
these results suggest that additional studies 
examining the relationship between ASDs 
and gestational exposure to PFOA, PCB-178, 
PBDE-28, PBDE-85, β-HCH, and trans-
nonachlor are warranted. Given the mixture 
of environmental chemicals that pregnant 
women are exposed to, future studies should 
consider statistical techniques that account for 
the complex mixture of potentially modifiable 
prenatal environmental chemical exposures 
that might be associated with ASDs.

References

American Psychiatric Association. 2000. Diagnostic and 
Statistical Manual of Mental Disorders: DSM-IV-TR. 4th 
ed. Washington, DC:American Psychiatric Association.

Auyeung B, Taylor K, Hackett G, Baron-Cohen S. 2010. Foetal 
testosterone and autistic traits in 18 to 24-month-old chil-
dren. Mol Autism 1(1):11; doi:10.1186/2040-2392-1-11.

Beck AT, Steer RA, Brown GK. 1996. Beck Depression Inventory–
2nd Edition (BDI-II). San Antonio, TX:Psychological 
Corporation.

Bellinger DC. 2004. What is an adverse effect? A possible 
resolution of clinical and epidemiological perspectives on 
neurobehavioral toxicity. Environ Res 95(3):394–405.

Bolte S, Poustka F, Constantino JN. 2008. Assessing autistic 
traits: cross-cultural validation of the social responsive-
ness scale (SRS). Autism Res 1(6):354–363.

Braun JM. 2012. Endocrine disrupting compounds, gonadal 
hormones, and autism. Dev Med Child Neurol 54(11):1068; 
doi:10.1111/j.1469-8749.2012.04372.x.

Braun JM, Kalkbrenner AE, Calafat AM, Yolton K, Ye X, 
Dietrich KN, et al. 2011. Impact of early-life bisphenol A 
exposure on behavior and executive function in children. 
Pediatrics 128(5):873–882.

Braun JM, Smith KW, Williams PL, Calafat AM, Berry K, 
Ehrlich  S, et  al. 2012. Variability of urinary phthalate 
metabolite and bisphenol A concentrations before and 
during pregnancy. Environ Health Perspect 120:739–745; 
doi:10.1289/ehp.1104139.

Braun JM, Yolton K, Dietrich KN, Hornung R, Ye X, Calafat AM, 
et al. 2009. Prenatal bisphenol A exposure and early child-
hood behavior. Environ Health Perspect 117:1945–1952; 
doi:10.1289/ehp.0900979.

Caldwell B, Bradley R. 2003. HOME Inventory Administration 
Manual. Little Rock, AK:University of Arkansas at Little Rock.

Cassidy RA, Vorhees CV, Minnema DJ, Hastings L. 1994. The 
effects of chlordane exposure during pre- and postnatal 
periods at environmentally relevant levels on sex steroid-
mediated behaviors and functions in the rat. Toxicol Appl 
Pharmacol 126(2):326–337.

CDC (Centers for Disease Control and Prevention). 2009. Fourth 
National Report on Human Exposure to Environmental 
Chemicals. Available: http://www.cdc.gov/exposurereport/
pdf/FourthReport.pdf [accessed 7 April 2014]. 

CDC (Centers for Disease Control and Prevention). 2012. 
Prevalence of autism spectrum disorders—Autism and 
Developmental Disabilities Monitoring Network, 14 sites, 
United States, 2008. MMWR Surveill Summ 61(3):1–19.

Cheslack-Postava K, Rantakokko PV, Hinkka-Yli-Salomaki S, 
Surcel HM, McKeague IW, Kiviranta HA, et  al. 2013. 
Maternal serum persistent organic pollutants in the Finnish 
Prenatal Study of Autism: a pilot study. Neurotoxicol 
Teratol 38:1–5.

Cole SR, Hernan MA. 2008. Constructing inverse probability 
weights for marginal structural models. Am J Epidemiol 
168(6):656–664.

Constantino J. 2005. Social Responsiveness Scale. Los 
Angeles, CA:Western Psychological Services.

de Cock M, Maas YG, van de Bor M. 2012. Does perinatal 
exposure to endocrine disruptors induce autism spectrum 
and attention deficit hyperactivity disorders? Review. Acta 
Paediatr 101(8):811–818.

De Roos AJ, Poole C, Teschke K, Olshan AF. 2001. An applica-
tion of hierarchical regression in the investigation of mul-
tiple paternal occupational exposures and neuroblastoma 
in offspring. Am J Ind Med 39(5):477–486.

Dingemans MM, van den Berg M, Westerink RH. 2011. 
Neurotoxicity of brominated flame retardants: (in)direct 
effects of parent and hydroxylated polybrominated diphe-
nyl ethers on the (developing) nervous system. Environ 
Health Perspect 119:900–907; doi:10.1289/ehp.1003035.

Engel SM, Miodovnik A, Canfield RL, Zhu C, Silva MJ, 
Calafat AM, et al. 2010. Prenatal phthalate exposure is 
associated with childhood behavior and executive func-
tioning. Environ Health Perspect 118:565–571; doi:10.1289/
ehp.0901470.

Eskenazi B, Chevrier J, Rauch SA, Kogut K, Harley KG, 
Johnson C, et al. 2013. In utero and childhood polybromi-
nated diphenyl ether (PBDE) exposures and neurodevel-
opment in the CHAMACOS study. Environ Health Perspect 
121:257–262; doi:10.1289/ehp.1205597.

Eubig PA, Aguiar A, Schantz SL. 2010. Lead and PCBs as risk 
factors for attention deficit/hyperactivity disorder. Environ 
Health Perspect 118:1654–1667; doi:10.1289/ehp.0901852.

Gelman A. 2008. Scaling regression inputs by dividing by two 
standard deviations. Stat Med 27(15):2865–2873.

Geyer H, Schramm K-W, Darnerud P, Aune M, Feicht A, 
Fried K, et al. 2004. Terminal elimination half-lives of the 
brominated flame retardants TBBPA, HBCD, and lower 
brominated PBDEs in humans. Organohalogen Compounds 
66:3867–3872.

Gioiosa L, Parmigiani S, vom Saal FS, Palanza P. 2013. The 
effects of bisphenol A on emotional behavior depend upon 
the timing of exposure, age and gender in mice. Horm 
Behav 63(4):598–605.



Braun et al.

520	 volume 122 | number 5 | May 2014  •  Environmental Health Perspectives

Greenland S. 1994. Hierarchical regression for epidemiologic 
analyses of multiple exposures. Environ Health Perspect 
102(suppl 8):33–39.

Greenland S, Poole C. 1994. Empirical-Bayes and semi-Bayes 
approaches to occupational and environmental hazard 
surveillance. Arch Environ Health 49(1):9–16.

Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester 
MH, Andersson PL, et al. 2006. In vitro profiling of the 
endocrine-disrupting potency of brominated flame retar-
dants. Toxicol Sci 92(1):157–173.

Hammock EA, Young LJ. 2006. Oxytocin, vasopressin and pair 
bonding: implications for autism. Philos Trans R Soc Lond 
B Biol Sci 361(1476):2187–2198.

Henrichs J, Ghassabian A, Peeters RP, Tiemeier H. 2013. Maternal 
hypothyroxinemia and effects on cognitive functioning in 
childhood: how and why? Clin Endocrinol (Oxf) 79(2):152–162.

Herbstman JB, Sjödin A, Kurzon M, Lederman SA, Jones RS, 
Rauh V, et  al. 2010. Prenatal exposure to PBDEs and 
neurodevelopment. Environ Health Perspect 118:712–719; 
doi:10.1289/ehp.0901340.

Hertz-Picciotto I, Bergman Å, Fängström B, Rose M, 
Krakowiak P, Pessah I, et al. 2011. Polybrominated diphenyl 
ethers in relation to autism and developmental delay: a 
case-control study. Environ Health 10(1):1; doi:10.1186/1476-
069X-10-1.

Hoffman K, Webster TF, Weisskopf MG, Weinberg J, 
Vieira  VM. 2010. Exposure to polyfluoroalkyl chemi-
cals and attention deficit/hyperactivity disorder in U.S. 
children 12–15 years of age. Environ Health Perspect 
118:1762–1767; doi:10.1289/ehp.1001898.

Hornung RW, Reed LD. 1990. Estimation of average concentra-
tion in the presence of nondetectable values. Appl Occup 
Environ Hyg 5(1):46–51.

Howdeshell KL, Wilson VS, Furr J, Lambright CR, Rider CV, 
Blystone CR, et al. 2008. A mixture of five phthalate esters 
inhibits fetal testicular testosterone production in the 
Sprague-Dawley rat in a cumulative, dose-additive man-
ner. Toxicol Sci 105(1):153–165.

Jones R, Edenfield E, Anderson S, Zhang Y, Sjödin A. 2012. 
Semiautomated extraction and cleanup method for mea-
suring persistent organic pollutants in human serum. 
Organohalogen Compounds 74:97–98. 

Jones RM, Lord C. 2013. Diagnosing autism in neurobiological 
research studies. Behav Brain Res 251:113–124.

Kalkbrenner AE, Daniels JL, Chen JC, Poole C, Emch M, 
Morrissey J. 2010. Perinatal exposure to hazardous 
air pollutants and autism spectrum disorders at age 8. 
Epidemiology 21(5):631–641.

Kapadia R, Yi JH, Vemuganti R. 2008. Mechanisms of anti-
inflammatory and neuroprotective actions of PPAR-
gamma agonists. Front Biosci 13:1813–1826.

Kuklenyik Z, Needham LL, Calafat AM. 2005. Measurement 
of 18 perfluorinated organic acids and amides in human 
serum using on-line solid-phase extraction. Anal Chem 
77(18):6085–6091.

Landrigan P, Lambertini L, Birnbaum L. 2012. A research strat-
egy to discover the environmental causes of autism and 
neurodevelopmental disabilities [Editorial]. Environ Health 
Perspect 120:A258–A260; doi:10.1289/ehp.1104285.

Meeker JD, Missmer SA, Altshul L, Vitonis AF, Ryan L, 
Cramer DW, et al. 2009. Serum and follicular fluid organo-
chlorine concentrations among women undergoing 
assisted reproduction technologies. Environ Health 8:32; 
doi:10.1186/1476-069X-8-32.

Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, et al. 
2011. Endocrine disruptors and childhood social impair-
ment. Neurotoxicology 32(2):261–267.

Mitchell MM, Woods R, Chi LH, Schmidt RJ, Pessah IN, 
Kostyniak PJ, et al. 2012. Levels of select PCB and PBDE 
congeners in human postmortem brain reveal possible 
environmental involvement in 15q11-q13 duplication autism 
spectrum disorder. Environ Mol Mutagen 53(8):589–598.

Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, 
Butenhoff JL, et al. 2007. Half-life of serum elimination 
of perfluorooctanesulfonate, perfluorohexanesulfonate, 
and perfluorooctanoate in retired fluorochemical pro-
duction workers. Environ Health Perspect 115:1298–1305; 
doi:10.1289/ehp.10009.

Patterson DG Jr, Wong LY, Turner WE, Caudill SP, Dipietro ES, 
McClure PC, et al. 2009. Levels in the U.S. population of 
those persistent organic pollutants (2003–2004) included 
in the Stockholm Convention or in other long range trans-
boundary air pollution agreements. Environ Sci Technol 
43(4):1211–1218.

Power MC, Webster TF, Baccarelli AA, Weisskopf MG. 2013. 
Cross-sectional association between polyfluoroalkyl 
chemicals and cognitive limitation in the National Health 
and Nutrition Examination Survey. Neuroepidemiology 
40(2):125–132.

Reiersen AM, Constantino JN, Volk HE, Todd RD. 2007. Autistic 
traits in a population-based ADHD twin sample. J Child 
Psychol Psychiatry 48(5):464–472.

Roberts EM, English PB, Grether JK, Windham GC, Somberg L, 
Wolff C. 2007. Maternal residence near agricultural pesti-
cide applications and autism spectrum disorders among 
children in the California Central Valley. Environ Health 
Perspect 115:1482–1489; doi:10.1289/ehp.10168.

Ronald A, Pennell CE, Whitehouse AJ. 2010. Prenatal mater-
nal stress associated with ADHD and autistic traits in 
early childhood. Front Psychol 1:223; doi:10.3389/
fpsyg.2010.00223.

Safe SH. 1998. Hazard and risk assessment of chemical 

mixtures using the toxic equivalency factor approach. 
Environ Health Perspect 106(suppl 4):1051–1058.

Sagiv SK, Thurston SW, Bellinger DC, Tolbert PE, Altshul LM, 
Korrick SA. 2010. Prenatal organochlorine exposure and 
behaviors associated with attention deficit hyperactiv-
ity disorder in school-aged children. Am J Epidemiol 
171(5):593–601.

Schisterman EF, Cole SR, Platt RW. 2009. Overadjustment bias 
and unnecessary adjustment in epidemiologic studies. 
Epidemiology 20(4):488–495.

Silva MJ, Samandar E, Preau JL, Jr., Reidy JA, Needham LL, 
Calafat AM. 2007. Quantification of 22 phthalate metabo-
lites in human urine. J Chromatogr 860(1):106–112.

Sjödin A, Wong LY, Jones RS, Park A, Zhang Y, Hodge C, et al. 
2008. Serum concentrations of polybrominated diphenyl 
ethers (PBDEs) and polybrominated biphenyl (PBB) in the 
United States population: 2003–2004. Environ Sci Technol 
42(4):1377–1384.

Stein CR, Savitz DA, Bellinger DC. 2013. Perfluorooctanoate 
and neuropsychological  outcomes in  chi ldren. 
Epidemiology 24(4):590–599. 

Van den Berg M, Birnbaum LS, Denison M, De  Vito M, 
Farland W, Feeley M, et al. 2006. The 2005 World Health 
Organization reevaluation of human and mammalian 
toxic equivalency factors for dioxins and dioxin-like com-
pounds. Toxicol Sci 93(2):223–241.

Wechsler D. 1999. Wechsler Abbreviated Scale of Intelligence. 
San Antonio, TX:Psychological Corporation.

Witte JS, Greenland S, Kim LL. 1998. Software for hierar-
chical modeling of epidemiologic data. Epidemiology 
9(5):563–566.

Wolff MS, Zeleniuch-Jacquotte A, Dubin N, Toniolo P. 2000. 
Risk of breast cancer and organochlorine exposure. 
Cancer Epidemiol Biomarkers Prev 9(3):271–277.

Wolstenholme JT, Edwards M, Shetty SR, Gatewood JD, 
Taylor JA, Rissman EF, et al. 2012. Gestational exposure 
to bisphenol  A produces transgenerational changes 
in behaviors and gene expression. Endocrinology 
153(8):3828–3838.

Woodruff TJ, Zota AR, Schwartz JM. 2011. Environmental 
chemicals in pregnant women in the United States: 
NHANES 2003–2004. Environ Health Perspect 119:878–885; 
doi:10.1289/ehp.1002727.

Ye X, Bishop AM, Needham LL, Calafat AM. 2008. Automated 
on-line column-switching HPLC-MS/MS method with peak 
focusing for measuring parabens, triclosan, and other 
environmental phenols in human milk. Anal Chim Acta 
622(1–2):150–156.


