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The biotransformation of diclofenac during wastewater treatment was investigated. Attached growth
biomass from a carrier-filled compartment of a hybrid-MBBR at the wastewater treatment plant (WWTP)
in Bad Ragaz, Switzerland was used to test the biotransformation. Laboratory-scale incubation experi-
ments were performed with diclofenac and carriers and high-resolution LCeQTof-MS was implemented
to monitor the biotransformation. Up to 20 diclofenac transformation products (TPs) were detected.
Tentative structures were proposed for 16 of the TPs after characterization by MS2 fragmentation and/or
inferring the structure from the transformation pathway and the molecular formula given by the high
resolution ionic mass. The remaining four TPs were unambiguously identified via analytical reference
standards. The postulated reactions forming the TPs were: hydroxylation, decarboxylation, oxidation,
amide formation, ring-opening and reductive dechlorination. Incubation experiments of individual TPs,
those which were available as reference standards, provided a deeper look into the transformation
pathways. It was found that the transformation consists of four main pathways but no pathway
accounted for a clear majority of the transformation. A 10-day monitoring campaign of the full-scale
plant confirmed an 88% removal of diclofenac (from approximately 1.6 mg/L in WWTP influent) and
the formation of TPs as found in the laboratory was observed. One of the TPs, N-(2,6-dichlorophenyl)-2-
indolinone detected at concentrations of around 0.25 mg/L in WWTP effluent, accounting for 16% of the
influent diclofenac concentration. The biotransformation of carriers was compared to a second WWTP
not utilising carriers. It was found that in contact with activated sludge, similar hydroxylation and
decarboxylation reactions occurred but at much slower rates, whereas some reactions, e.g. reductive
dechlorination, were not detected at all. Finally, incubation experiments were performed with attached
growth biomass from a thirdWWTP with a similar process configuration to Bad Ragaz WWTP. A similarly
effective removal of diclofenac was found with a similar presence of TPs.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The non-steroidal anti-inflammatory diclofenac (DCF) belongs
to the group of chemicals of emerging concern (CECs) and has an
elevated environmental relevance. In addition to the well-known
toxic effects of DCF to vultures (Oaks et al., 2004), renal and he-
patic toxicity has also been recorded in certain fish species at
concentrations in the low mg/L range (Fent et al., 2006; Triebskorn
et al., 2004). As a consequence of its environmental significance,
DCF has been included in the Watch List, which contains the can-
didates for a revised list of priority substances for the European
Ltd. This is an open access article u
Water Framework Directive (WFD, The European Parliament and
Council of the European Union (2013)). The well-documented
ecotoxicological effects of DCF have resulted in the proposal of a
relatively low environmental quality standard (EQS) of 0.1 mg/L as
an annual average for inland surface waters (The European
Commision, 2012).

It is well known that DCF is mainly discharged into the aquatic
environment via WWTPs (Luo et al., 2014). A review by Verlicchi
et al. (2012), of mainly European wastewater studies, reported a
median concentration in raw wastewater of 0.7 mg/L with a
maximum concentration of 11 mg/L. Conventional activated sludge
treatment is usually rather ineffective for the removal of DCF with a
median removal range of 20%e30% (Zhang et al., 2008). As a
consequence, an exceedance of the EQS in surface waters is likely if
the proportion of treated wastewater is higher than 10%. This has
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already been observed in European surfacewaters (Patrolecco et al.,
2015; N€odler et al., 2010). Therefore, going forward, an overall
improvement of municipal wastewater treatment would be crucial
to fulfil the requirements of the revised WFD. It is noted that this
applies not only to DCF but a whole range of CECs, both known and
unknown, which are emitted into receiving waters due to inade-
quate removal.

Although a low median removal for DCF is reported, there are
cases where biological treatment is able to remove this CEC. The
WWTP in Bad Ragaz, Switzerland, has previously been shown to be
effective at removing DCF and other, typically poorly biodegradable
CECs, including trimethoprim. In addition to a conventional nitri-
fying/denitrifying suspended sludge treatment stage, the WWTP is
equipped with a third biological compartment filled with carrier-
attached biofilms (hybrid-moving bed biofilm reactor, MBBR). The
carriers are small plastic disks with a mesh structure to provide a
high surface area to support biofilm growth. In the previous study,
the removal of DCF was attributed to biological degradation by
contact with the carrier biomass, while sorption was negligible
(Falås et al., 2013). MBBRs have been studied with respect to the
degradation of various CECs (Hapeshi et al., 2013; Escol�a Casas et al.,
2015) and an improved DCF removal of MBBRs over suspended
sludgewas also observed in laboratory-scale reactors (Zupanc et al.,
2013). However, the transformation pathway of DCF and the
transformation products (TPs) which may be formed are still
unknown.

One main focus of current research in the area of CECs is the
elucidation of TPs during biological wastewater treatment, since
this provides useful clues to elucidate i) transformation processes
(Quintana et al., 2005) and ii) potential formation of stable TPs,
which might pose ecotoxicological effects even after a complete
removal of the parent CEC (Escher and Fenner, 2011). Several
studies have previously investigated the transformation of DCF in
municipal WWTPs (Vieno and Sillanp€a€a, 2014). Hitherto identified
TPs include nitro- and nitroso-derivatives of DCF (P�erez and
Barcel�o, 2008) and an indolinone derivative resulting from intra-
molecular ring closure (DCF-lactam) (Kosjek et al., 2009). Studies
with soil/sediment systems have found 40-hydroxy-DCF (4HD), 5-
hydroxy-DCF (5HD) and a 5HD derivative, 5HD-quinone imine
(5HDQI) (Gr€oning et al., 2007). Another study dealing with the fate
of DCF in soil identified the formation of 5HD and several isomers of
dichlorobenzoic acid (Dodgen et al., 2014). The principal human
metabolites of DCF are 4HD and 5HD (Stierlin et al., 1979). HDQIs
are also known metabolites (Poon et al., 2001) as well as the acyl
glucuronide conjugate of DCF (Seitz and Boelsterli, 1998). A study of
mouse metabolism found numerous metabolites of DCF including
hydroxylated DCF, the aforementioned lactam, a benzoic acid de-
rivative resulting from decarboxylation and subsequent oxidation
(DCF-BA) also referred to as DCF-carboxylic acid, as well as several
different conjugates of these metabolites (Sarda et al., 2012).

The transformation pathways in biological wastewater treat-
ment reported thus far stop mostly at the level of primary TPs
(direct TPs of DCF) and do not include secondary or tertiary TPs,
although the biodegradability of some primary TPs is already
known (Lee et al., 2012). The slow and incomplete transformation
of DCF poses a challenge to identify TPs, since long incubation pe-
riods are needed and the TP concentrations are rather low. Due to
major differences in the reported DCF transformation pathways
(Gr€oning et al., 2007; Kosjek et al., 2009), the question arises
whether parts of the transformation pathway are specific to the
system studied or can be generalized across all types of microbial
degradation.

In this study, we investigated the biotransformation DCF in two
hybrid-MBBR systems in Bad Ragaz, Switzerland and Klippan,
Sweden. Specifically, the study looked at whether special primary
degradation reactions were responsible for the high degradability
of DCF and if these treatment processes were capable of degrading
primary TPs as well as DCF. The aims were to i) identify TPs and
transformation pathways ii) measure the formation of any formed
TPs in full-scale WWTPs and iii) compare the hybrid-MBBRs to
conventional activated sludge systems without carriers. To model
the full-scaleWWTPs, laboratory-scale bioreactors were inoculated
with biomass from the hybrid-MBBRs and activated sludge-based
WWTPs. High-resolution mass spectrometry was employed to
identify TPs and monitor transformation kinetics.

2. Methods

2.1. Chemicals

Diclofenac (DCF) was purchased from Sigma Aldrich and diclo-
fenac-d4 (CAS: 153466-65-0) was purchased from Dr. Ehrenstorfer
(Teddington, UK). DCF transformation products (TPs) 4HD (40-hy-
droxy-DCF, CAS: 64118-84-9), 5HD (5-hydroxy-DCF, CAS: 69002-
84-2), DCF-lactam (N-(2,6-dichlorophenyl)-2-indolinone, CAS:
15362-40-0) and DCF-BA (DCF-Benzoic Acid, CAS: 13625-57-5)
were purchased from TRC (Toronto, Canada). All chemical stan-
dards were >95% purity grade. Acetonitrile (LC-MS grade) was
received from Merck (Darmstadt, Germany) and water was pre-
pared with a Milli-Q system (Merck Millipore).

2.2. Wastewater treatment plants

The municipal WWTP in Bad Ragaz (WWTP-BR) has 25 500 PE
(person equivalents) connected and an average influent load of
3200 m3/d. The WWTP is equipped with a biological activated
sludge treatment stage, which is separated into a series of three
compartments by low walls, i.e. cascades. The first compartment is
a denitrifying compartment and the second is aerobic (2 mg/L O2).
In both compartments the biomass is suspended in sludge flocs.
The third compartment is the nitrifying stage with a higher aera-
tion rate (3 mg/L O2). It contains carriers (Biofilm Chip M, Anox-
Kaldnes, 35% filling ratio, z 420 m2/m3) for biofilm growth
(hybrid-moving bed biofilm reactor, MBBR). The carriers are
retained in the third compartment by a screen. A recirculation of
roughly 0.7 parts (ratio to influent) takes place from the 3rd to the
1st compartment.

In addition to the Bad Ragaz WWTP, two further WWTPs were
studied. Both WWTPs were sampled to provide inoculant for batch
experiments. One is located in Klippan, Sweden (WWTP-KL), with
13 000 PE connected and has a similar configuration to WWTP-BR
(hybrid-MBBR). In one of its treatment lines, two denitrifying
compartments are followed by an aerobic compartment with
2 mg/L O2. All three are activated sludge compartments without
carriers. These are followed by a forth compartment (nitrifying)
with 3 mg/L O2 containing carriers (Biofilm Chip M, 40% filling
ratio, z 480 m2/m3) for biofilm growth. The third WWTP is
located in Koblenz, Germany (WWTP-KO), with 220 000 PE con-
nected and an average load of 61 000 m3/d. This plant has deni-
trifying, followed by nitrifying (1.5 mg/L O2, 4 g/L), suspended
sludge compartments, but does not make use of carriers in any
stage of the treatment.

2.3. Aerobic laboratory incubation experiments

Incubation experiments in batch mode up to two weeks in
durationwere conducted in bench-top vessels using either biofilms
on carriers from WWTP-BR or WWTP-KL or, for comparison, acti-
vated sludge from WWTP-KO as inoculant. In these experiments
400 mL of WWTP effluent (from WWTP-KO) was inoculated with
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carriers from WWTP-BR to a concentration of 35 carriers/L
(z 300 m2/m3, 2.2 g/L total biomass, Section 2.3.1). Carriers were
sampled from WWTP-BR on 2nd March, 18th May and 9th July
2015. The experiments were started one day after sampling due to
transport time. After inoculation of the reactors the system was
equilibrated for at least 3 h, after which DCF was spiked to con-
centrations of 5 mg/L or 200 mg/L and DCF-TPs were spiked to in-
dividual reactors to concentrations of 200 mg/L. The experiments
with low DCF spike concentrations were conducted in triplicate.
The other experiments were run at least as duplicates. During the
incubation period, the vessels were constantly stirred and purged
with air (flow rate: 50 mL/min). To maintain a constant pH, either
by CO2 added to the purge air mixture (z 1:1000) or NaOH solution
(1 mol/L) was added drop-wise. Water samples of 2 mL were taken
at defined intervals (for 200 mg/L spike: at the start, after 2 h and 1 d
and then approximately every 2 d; for 5 mg/L spike: approximately
every 3 h for the first day and then every 3 d). After sampling, the
water samples were immediately filtered (0.45 mm regenerated
cellulose, Whatman) and then frozen at�25 �C. In a previous study,
sorption of DCF to this filter material was investigated and was
observed to be low, z 8% (Hebig et al., 2014). Sorption of DCF
(pKa ¼ 4.15 (Sangster, 1997)) to sludge or biomass was estimated
based on distribution coefficients for activated sludge, Kdz 0.03 L/g
(Stevens-Garmon et al., 2011; Fernandez-Fontaina et al., 2014) and
was likely to be small, �6% (Schwarzenbach et al., 2005b).

Experiments with activated sludge from WWTP-KO were con-
ducted in parallel under exactly the same conditions as those with
carriers from WWTP-BR. Sludge was taken from the nitrifying
reactor of WWTP-KO and diluted by a factor of two with effluent
from WWTP-KO (final sludge concentration 1.6 g/L, Section 2.3.1).
Incubationexperiments inbatchmodewith carriers fromWWTP-KL
were conducted in 6 L vessels using 62.5 carriers/L (z 525 m2/m3)
and WWTP effluent as the liquid phase (4.75 g/L total biomass).
Thesewere also aerated tomaintain oxic conditions. DCFwas spiked
to 1 mg/L. Sampleswere taken at defined intervals (every 2 h) during
an incubation time of 24 h. Thewater samples from all experiments
were analysed without further sample preparation (i.e. direct in-
jection) by LCeQToF-MS as described in Section 2.5.

2.3.1. Determination of carrier-attached biomass and suspended
sludge concentration

To determine the amount of carrier biomass, 5 replicates each of
5 carriers were dried overnight at 105 �C thenweighed. The carriers
were then soaked in 2 mol/L HCl overnight, cleaned with sonicat-
ion, stirring and scrubbing, twice with 2 mol/L HCl, twice with
detergent and three times with Milli-Q water over the course of
several days (including overnight soaking periods). Finally, the
cleaned carriers were again dried overnight and weighed again. To
determine the suspended sludge concentration, WWTP sludge
(25 mL) was filtered onto dried and pre-weighed glass fiber filters
(GF6, Whatman) followed by overnight drying at 105 �C and finally
weighed (5 replicates).

2.4. Monitoring campaign at WWTP Bad Ragaz and WWTP Koblenz

Flow-proportional composite samples of WWTP influent and
effluent during 10 consecutive 24 h periods as well as grab samples
of each reactor compartment were taken in July 2015 fromWWTP-
BR. During collection the samples were refrigerated at 4 �C in
automated sample collectors. After collection was complete the
composite samples were filtered (0.45 mm regenerated cellulose,
Whatman) and stored at �25 �C. PP and PE plastics used in sam-
pling and storage have been reported to not significantly sorb DCF
(Hebig et al., 2014). As was the case for the batch experiments,
sorption of DCF to reactor biomass was calculated to be low (15%
based on carrier biomass and suspended sludge concentrations of
4.7 g/L and 1.2 g/L (Falås et al., 2013)) and not significant for
removal (see section 2.5). Most DCF-TPs contain similar structural
moieties and have lower chromatographic retention times than
DCF indicating they should have similar or lower sorbed fractions.
TPs such as DCF-lactam, which do not have a carboxylic acid moiety
show slightly higher sorption, this was tested in a batch experiment
with sterilized sludge. Water samples were analysed for the pres-
ence of DCF and DCF-TPs without further preparation by LCeQToF-
MS as described in Section 2.5. During the sampling period there
were no major rain events. The average hydraulic load was
(2800 ± 300) m3/d with a hydraulic retention time (HRT) of 16 h for
the whole system. The sludge age was 5 d, the average water
temperature 21 �C and the ammonium removal was >99%. For
WWTP-KO, time-proportional composite samples of WWTP
influent and effluent were taken on 2 consecutive 3 d (72 h) periods
in December 2015. These were prepared and analysed analogously
to the monitoring campaign at WWTP-BR.
2.5. Analytical methods

Analysis was conducted with a high-resolution LCeQToF-MS
system (HPLC: Agilent 1260 series, MS: Sciex 5600 TripleTOF). The
HPLC consisted of a degasser, a binary pump to provide the gradient
mobile phase flow, a second pump to provide an isocratic flow to
the MS while the divert valve was in use, an autosampler with a
refrigerated vial tray and a column oven. The HPLC was equipped
with a ZORBAX Eclipse Plus C18 column (150mm� 2.1mm, 3.5 mm,
Agilent Technologies). The chromatographic method used a
gradient elution with water and acetonitrile both with 0.1% formic
acid buffer. The HPLC was coupled to the MS via electrospray
ionization (DuoSpray Source, Sciex). Data was acquired in both
positive and negative ionization modes, separate injections were
used for each mode. The instrument was automatically recalibrated
every 2.5 h using an automated Calibrant Delivery System (CDS)
which injected a calibration solution into the MS via the APCI probe
of the DuoSpray source. A divert valve was used to divert the first
1.5 min and the last 7 min of each chromatographic run to the
waste. MS scans in each scan cycle included one full scan (100 u to
1200 u) and eight data-dependant MS2 scans, which were product
ion scans of the most intense peaks from the full scan (mass range
of 30 u to mass of the precursor ion). An exclusion list was used to
avoid acquiring MS2 scans of background signals and a precursor
mass list was used to ensure that MS2 scans of known TPs were
acquired. Further details of the chromatography and acquisition
method can be found in Schlüsener et al. (2015) and Nürenberg
et al. (2015). For analysis of the high-resolution MS data, Peak-
View andMasterView software were used for the identification and
structural characterization of TPs and MultiQuant software was
used to obtain peak areas (all provided by Sciex). Datawas analysed
and presented using R (R Core Team, 2015) and the ggplot2 package
(Wickham, 2009). For compounds with available standards, Mul-
tiQuant was used for quantification. These were DCF and the TPs
4HD, DCF-lactam and DCF-BA. The concentration of the TP 5HDwas
estimated based on the calibration of 4HD. DCF-d4 was used as an
internal standard (2 mg/L) and the linear calibration ranged from
5 ng/L to 5000 ng/L. Recoveries and LOQs for the method are pro-
vided in Table 1. The degradation of DCF removal during the incu-
bation experiments was modelled by pseudo-first-order kinetics
according to (Schwarzenbach et al., 2005a) (Equation (1)).

dCDCF
dt

¼ �kbiolCDCFXSS (1)

where kbiol is the first-order rate constant in L/(g d) (g biomass or



Table 1
Recoveries and LOQs for the analysis method for DCF and TPs inwastewater samples.

DCF 4HD DCF-lactam DCF-BA

Recovery influent (%) 107 ± 4 73 ± 3 114 ± 6 114 ± 2
Recovery effluent (%) 115 ± 4 93 ± 5 125 ± 5 117 ± 4
LOQ (ng/L) 10 5 10 20

K.S. Jewell et al. / Water Research 105 (2016) 559e567562
suspended sludge), CDCF is the DCF concentration in mg/L and XSS is
the carrier-attached biomass concentration or suspended sludge
concentration in g/L. A simplifiedmodel of a completely stirred tank
reactor was used to estimate residual fraction of DCF (Sout/SWW) in a
full-scale reactor assuming negligible removal due to sorption
(Equation (2)), (Joss et al., 2006), where qh is the HRT of the reactor.
The removal of DCF due to excess sludge productionwas previously
modelled by Falås et al. (2013) for WWTP-BR and found to be not
significant.

Sout
SWW

¼ 1
1þ kbiolXSSqh

(2)
3. Results and discussion

3.1. Transformation of diclofenac in lab-scale experiments
containing carriers from a WWTP employing an MBBR

3.1.1. Elevated diclofenac concentrations (200 mg/L) to elucidate
transformation products

To study the influence of an MBBR on the removal of diclofenac
(DCF), laboratory-scale incubation experiments were conducted
with carriers taken from WWTP-BR and WWTP-KL (see Section 3.3
for WWTP-KL experiments). In initial experiments with WWTP-BR
carriers, 200 mg/L DCF was spiked to the bioreactors and the for-
mation of TPs was studied over a period of 12 d by analysing the
aqueous phase with LCeQToF-MS. Within the first 24 h of incuba-
tion the DCF concentration was reduced by >99%. However, the
elimination of DCF was concurrent with the appearance of a large
number of TPs. In total, more than 20 different TPs were observed
(Fig. 1). The identification of each TP was based on the high reso-
lution ion mass and isotopic pattern, which was used to calculate a
plausible molecular formula, and the MS2 fragmentation spectrum
providing structural fragments of the TP. Details of the TP identifi-
cation, including the MS2 spectrum and structural elucidation are
provided in the Supplementary Data. Confidence levels (1e4) for the
structures, based on the categorization proposed by Schymanski
et al. (2014) are given in Fig. 1 with level 1 indicating a confirmed
structure. For confidence levels 2e4 an alternative characterization
method is needed to confirm their identity. However, accumulated
concentrations were not high enough for the isolation of TPs.

The TPs DCF-lactam, 4HD (40-hydroxy-DCF), 5HD (5-hydroxy-
DCF) and DCF-BA (DCF-benzoic acid) were identified as primary
TPs. Fortunately, they were available as analytical reference stan-
dards and hence they were also individually incubated in separate
bioreactor experiments. It was found that in the lab-scale systems
with carriers from WWTP-BR, the biodegradation of these four
primary TPs led to the formation of all other TPs observed in the
experiments where DCF was spiked. Each primary TP was trans-
formed into several secondary TPs (Table S23 in the supplementary
data) which in turn were frequently further converted. The overall
outcome of these experiments was a complex web of trans-
formation pathways, which can be predominantly explained by six
reactions: a hydroxylation of the aromatic rings A and B, an intra-
molecular amidation/de-amidation, a sulfate conjugation of
phenolic hydroxyl groups, a reductive dechlorination of the aro-
matic ring A, an oxidative ring-opening of ring B and oxidations by
dehydrogenation of phenolic moieties. TP structures, their time
courses during the experiment and their position in the overall
transformation pathway are shown in Fig. 1, along with a catego-
rization of the reactions leading to the individual TPs. It must be
noted that except for TP343, TP243 and TP287, all TPs are in-
termediates since they are further degraded. The subsequent TPs
are unknown since no further TPs could be detected. The concen-
trations of TP343 and TP243 reached a plateau after a few days,
while those of TP287 increased constantly until day 12. However, it
was estimated from the peak areas that these did not account for a
significant proportion of the transformed DCF.

The four primary TPs were formed within the first 24 h in the
carrier-based, lab-scale experiment, but were quickly converted to
secondary TPs. Hence, the sum of the primary TPs did not close the
mass balance of DCF transformation (Fig. S23 in the Supplementary
Data). DCF-lactam reached the highest concentration of the four
primary TPs and had the highest peak area of all TPs (9 mg/L, 4.5% of
the spiked DCF). This TP is formed by intramolecular amidation of
the carboxylic acid with the primary amine. The primary TP DCF-BA
is formed by a formal decarboxylation and an oxidation of the
aliphatic CH2 moiety to a carboxylic acid group. In these experi-
ments the concentration reached 0.5 mg/L which accounts for 0.25%
of the spiked DCF. The ring hydroxylation of DCF led to 4HD and
5HD, known as both bacterial and mammalian TPs of DCF (Gr€oning
et al., 2007; Sarda et al., 2012; Stülten et al., 2008). Both are formed
and dissipated within the first 2 d of incubation and many sec-
ondary TPs are formed from these compounds.

3.1.1.1. 4HD. Six DCF-TPs formed via 4HD and are shown on the left
side of Fig. 1. TP293b is formed via intramolecular amidation while
TP297 is formed via decarboxylation and oxidation. A sulfate
conjugation of the phenolic hydroxyl group of 4HD led to the for-
mation of TP391b. The molecular formulas and isotopic patterns of
TPs 259 and 225 show that these were formed through dechlori-
nation reactions. A lactam structure is postulated to account for the
fragmentation pattern and loss of oxygen while to account for the
additional hydrogen, a reductive dechlorination reaction is pro-
posed (further details are in the Supplementary Data Section 1.10).
A dechlorination did not occur via any other primary TP, suggesting
the hydroxy group on ring A is necessary for dechlorination. This
may be explained by electron-donor effects or the ability to bind
into an enzyme active site. Finally, TP275 could be explained by a
formal oxidation by dehydrogenation of 4HD, due to the similar
fragmentation spectrum. All the secondary TPs of 4HD appeared
during the first day of incubation but were quickly dissipated,
indicating that these were all intermediates of a larger trans-
formation pathway leading to small molecules. However, no further
TPs could be found, most likely because i) their concentrationswere
below the limits of detection of the instrument and ii) small, highly
polar TPs were formed that are not detectable with the analytical
method used or degradation proceeded to a mineralization.

3.1.1.2. 5HD. Nine TPs were formed via 5HD and are shown on the
right side of Fig. 1. TP293a is formed via intramolecular amidation. A
sulfate conjugation of the phenolic hydroxyl group of 5HD formed
TP391a. An oxidation of 5HD by dehydrogenation was responsible
for the formation of 5HDQI (hydroxy diclofenac quinone imine).
5HD was already converted into 5HDQI in ultra-pure water by an
abiotic reaction (Gr€oning et al., 2007), and this was also observed to
occur in standards of 5HD prepared for this study. However, the
conversion is quite slow compared to the biological conversion. A
sterile control with autoclaved carriers did not show conversion of
5HDwithin a 6 d incubation period (data not shown), indicating that



Fig. 1. Formation of TPs from DCF during the incubation with carriers showing time courses and structures. Arrows indicate pathways elucidated by separate incubations of DCF and primary TPs. Abbreviations for postulated reaction
types: [m] mono-oxygenation, [o] oxidation (dehydrogenation), [a] amidation, [d] decarboxylation, [s] sulfate conjugation, [r] ring-opening reactions and [c] reductive dechlorination, [h] amide hydrolysis. Numbers at the bottom right
of each structure indicate the confidence level. 1: Confirmed structure based on reference standard. 2: Proposed structure based on MS2 characterization and evidenced by plausible transformation reactions. 3: Tentative structure
similar to level 2 confidence, but alternative structures cannot be totally ruled out. 4: Plausible chemical structure could not be derived from the MS2 spectrum. The molecular formula and only one structural moiety (ring A) could be
confirmed. Transformation to unknown TPs is indicated by +.
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Fig. 2. Formation and dissipation of DCF-TPs in incubations with carriers fromWWTP-
BR (left) versus suspended sludge from WWTP-KO (right).
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the biological reaction dominates in this environment. Via 5HD, six
further TPs were observed whose MS2 spectra indicated an oxida-
tive opening of the non-chlorinated ring, B. This was postulated due
to the large number of oxygen atoms on the right side of the
molecule and consecutive CO2, CO, and CH2 neutral losses while ring
A was left unchanged. Due to the ring opening there were several
potential chemical structures based on the MS2 spectra. For TP285, a
plausible structure was found, while for the others the fragmenta-
tion was more ambiguous so the data could provide only the sum
formula of the cleaved ring B.

3.1.1.3. DCF-lactam. The reactions of DCF-lactam are associated
with an opening of the lactam ring and a subsequent reaction such
as oxidation (two electron transfer) to 4HDQI or decarboxylation to
DCF-BA. In addition, a hydroxylation of the chlorinated ring A led to
the formation of TP293b. The 4HDQI TPwas not observed as a direct
TP of 4HD, but rather only via DCF-lactam. This might be due to the
fast dissipation kinetics of 4HD in this environment, allowing little
oxidation to take place, while DCF-lactam is more stable, allowing
the formation of 4HDQI over a different route, e.g. by combined
mono-oxygenation and deamination.

3.1.1.4. DCF-BA. This TP is transformed by hydroxylation intoTP297
(which is also formed by decarboxylation of 4HD) as well as to two
further TPs (TP285 and TP287) where the non-chlorinated ring B is
oxidatively opened. Both of these TPs are also formed by the ring
opening of 5HD as was discussed previously.

3.1.2. Environmental diclofenac concentrations (5 mg/L)
Lab-scale experiments at DCF concentrations of 5 mg/L with

carriers from WWTP-BR exhibited similar results as obtained by
spiking 200 mg/L: The DCF concentration was reduced by > 99%
within the first 24 h with a similarly high degradation rate con-
stant (Table 2). In total, 11 TPs were detected from DCF (Fig. S22 in
the Supplementary Data), all of which were already seen at the
200 mg/L spike level as the most intense peaks at that level. Thus,
the reduced number of detected TPs is most likely caused by the
detection limits of the LCeQToF-MS measurements. It can be
concluded that the results obtained with 200 mg/L DCF spike can be
transferred to lower concentrations with respect to both the ki-
netics of DCF removal and the transformation pathways. The ki-
netics of TP formation and removal were in some cases different,
both TP285 and 4HDQI show more persistence in these experi-
ments suggesting these might be present in WWTP effluent.

3.2. Incubation experiments with activated sludge from WWTP
Koblenz

Incubation experiments were conducted with suspended sludge
from WWTP-KO, which does not use carriers anywhere on the
treatment train. The removal rate of DCF in contact with this
biomass was significantly slower in comparison to the incubation
with carriers from WWTP-BR (Fig. 2 and Table 2). These experi-
ments were conducted in parallel and in duplicate using the same
reactor set-up and similar biomass concentrations. A long
Table 2
Pseudo-first-order rate constants of DCF in different biomass types.

Source of biomass Concentration of DCF (mg/L) kbiol (L/(g d))

WWTP-BR 5 1.4 ± 0.1
WWTP-BR 200 �1.5a

WWTP-KL 1 1.4
WWTP-KO 200 0.03 ± 0.01

a Estimate, not enough data points for a precise determination.
incubation time was chosen to be able to see a significant removal
of DCF in the suspended sludge reactors. Even after 12 d only 50% of
DCF was dissipated, while in experiments with carriers from
WWTP-BR DCF was completely removed after 24 h.

In contact with suspended sludge, the same primary TPs (4HD,
5HD, DCF-lactam and DCF-BA) and a few secondary TPs (4- and
5HDQI and TP293) were observed as were found in the carrier-
inoculated experiments. The formation rates of primary TPs were
much slower, as could be expected due to the slower DCF removal
rate. However, also the rates of dissipation of the primary TPs were
slower compared with the incubation with carriers (Fig. 2). Re-
actions occurring in both systems are hydroxylation of the aromatic
rings, the intramolecular amidation, decarboxylation and oxidation



Table 3
Identification of TP285 and TP259 in WWTP-BR effluent samples by comparison to
lab-scale experiments.

TP285 TP259

Lab-scale WWTP Lab-scale WWTP

Retention time (min) 8.6 8.7 10.1 10.2
[MþH]þ mass (u) 286.0035 286.0029 260.0465 260.0454
Isotope peak ratio (37Cl) (%) 67 64 37 29
Fragments of the MS2

spectrum
177.0330 177.0319 168.0800 168.0803
242.0118 242.0138 196.0758 196.0753

197.0840 197.0775

K.S. Jewell et al. / Water Research 105 (2016) 559e567 565
reactions. Several TPs, such as TP259 (the result of dechlorination)
and TP285 (the result of oxidative ring opening) are unique to the
carrier-inoculated system. The TP with mass 259 might require
anaerobic zones to be formed, which are more likely to occur in the
dense biofilm growth on carriers than in the suspended sludge
flocs. Reductive dehalogenation reactions are more commonly
observed in the absence of aerobic conditions (Zhang and Bennett,
2005; de Beer et al., 1997). No TPs were found to be unique to
degradation in contact with suspended sludge. A full list of the TPs
formed in suspended sludge can be taken from Fig. 2.

3.3. Lab-scale experiments with carriers from WWTP Klippan

To investigate the transferability of the results from WWTP-BR
to other MBBR systems, the removal of DCF was investigated in
WWTP-KL, which has a similar set-up to WWTP-BR and employs a
compartmentalized reactor with activated sludge and carrier-filled
compartments. Lab-scale incubation experiments were conducted
in lab-scale bioreactors inoculated with carriers from WWTP-KL.
DCF was spiked to 1 mg/L to the bioreactors. A fast dissipation of
DCF was observed, with a reaction rate constant of about 1.4 L/(g d),
which was similar to that found in the lab-scale experiments with
carriers from WWTP-BR (Table 2), while typical literature rate
constants for DCF in activated sludge are 0.01e0.5 L/(g d) (Tran
et al., 2009; Urase and Kikuta, 2005). The primary TPs DCF-
lactam and DCF-BA were identified as well as TP285, which were
observed in lab-scale experiments ofWWTP-BR and detected in the
effluent of WWTP-BR (for identification, see Table S24 in the sup-
plementary data). Signals for the other TPs were either tooweak for
proper identification, or they were not observed at all. In summary,
a fast degradation of DCF might be linked to hybrid-MBBR biomass,
and certain TPs might be markers for these processes, e.g. the for-
mation of TP285. The signal intensity of TP285 is nevertheless very
low and is unlikely to account for the majority of DCF removal.

3.4. Monitoring campaign at WWTP Bad Ragaz

To verify the transferability of the lab-scale results to full-scale,
WWTP-BR was monitored over a dry-weather period during the
summer of 2015. From ten consecutive days, 24 h-composite
samples of WWTP influent and effluent were analysed by
LCeQToF-MS. The results for compounds for which reference
standards were available are shown in Fig. 3. The DCF concentration
Fig. 3. Left: Analysis of samples fromWWTP-BR (hydrid-MBBR) for DCF and DCF-TPs for whi
and effluent based on peak areas (no available standards).
was reduced from amedian of 1.6 mg/L inWWTP influent to 0.2 mg/L
in WWTP effluent. This corresponds to an average removal of 88%
during the 10-day monitoring period.

The formation of TPs was also observed in the full-scale plant.
An average concentration of 0.25 mg/L DCF-lactam was detected in
the effluent of WWTP-BR, accounting for about 16% of the influent
DCF concentration. DCF-lactam was the most predominant TP in
both WWTP effluent and in lab scale experiments where DCF-
lactam reached 13% of spiked DCF (Fig. S22). The TP 4HD was
present at relatively high concentrations inWWTP influent but was
removed in the biological treatment as was the case in the lab-scale
experiments. The TP 5HD was also found in the influent, albeit at
lower concentrations and was no longer detected in the effluent.
Both TPs 4HD and 5HD are human metabolites of DCF explaining
their detection in WWTP influent. No evidence for the formation of
these TPs during the treatment process could be obtained due to i)
the high influent concentrations and ii) the fast transformation of
these TPs. The TP DCF-BA was observed at low concentrations of
23 ± 8 ng/L in WWTP effluent, whereas in the influent it was below
the LOQ of 20 ng/L. Thus, a minor fraction of DCF-BA might be
formed. The presence of several secondary TPs could be confirmed
based on their exact mass, retention time and fragmentation
spectrum, whichmatched verywell with the results of the lab-scale
experiments. These were TP293b, TP259 and TP285 (for identifi-
cation see Table 3). In all samples the signal intensities were rela-
tively low, comparable with the peak areas of DCF-BA, which was
present with about 20 ng/L. In the results of the lab-scale experi-
ments, TPs 259 and 285 had very high signal intensities compared
to all other secondary (or tertiary) TPs (Fig. 1), which hints at their
relative importance in the transformation pathway. Since standards
ch standards were available. Right: Comparison of concentrations of DCF-TPs in influent
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of these TPs could not be obtained, peak areas in the WWTP
influent and effluent were compared to estimate if a formation took
place (Fig. 3). Both TP259 and TP285 were only detected in WWTP
effluent, indicating that a formation is possible, whereas TP293b
was detected in both WWTP influent and effluent at similar in-
tensities. Making such comparisons between different matrices
without standards should be treated as an initial estimate and the
results should be taken with caution. In summary, out of 11 TPs
detected in the lab, 7 TPs were detected at the WWTP, the excep-
tions being the two HDQIs, TP 293a and TP 287.

It can be concluded from the results that i) the laboratory in-
cubation experiments were able to accurately represent the treat-
ment process with respect to DCF, ii) DCF and its TPs were
substantially removed by the WWTP, and low concentrations of
some DCF-TPs were detected in the effluent, iii) although a wide
array of TPs were found using incubation experiments, the majority
of these were not detected in theWWTP, since their concentrations
were probably below the limits of detection.

The influent and effluent samples of the WWTP provide only a
picture of the full treatment process, which includes reactor com-
partments with activated sludge (no carriers) and a carrier-filled
MBBR. To test if the TP formation was occurring primarily in the
carrier-filled compartment, grab samples were taken from each
reactor compartment. By comparing the different compartments, it
was found that TPs 259, 285 and DCF-lactam showed the most
intense signals in the carrier-filled compartment (Fig. 4). DCF itself
had a much lower concentration in this compartment compared
with the aerobic and denitrification compartments. The high con-
centration decrease of DCF between the influent and the denitri-
fication stage is at least partly caused by dilution, since a
recirculation of approximately 0.7 parts took place in the reactor.
The expected concentration of DCF in the denitrifying stage
resulting from dilution alonewould be approximately 1 mg/L, which
is close to the detected concentration of 0.8 mg/L. The increased
concentrations of TPs in the denitrifying stage can also be explained
by the recirculation. The results as a whole support the conclusion
found by Falås et al. (2013), that the carrier-filled stage is mainly
responsible for the DCF removal. Here this can be seen from the
point of view of the TPs that are formed.

3.5. Monitoring campaign at WWTP Koblenz

To compare the relatively good removal of DCF observed at
WWTP-BR with a conventional WWTP not employing an MBBR, a
Fig. 4. Concentrations of DCF and DCF-lactam and peak areas of TP293b, TP259 and TP2
monitoring campaign of WWTP-KO was carried out. In composite
samples of WWTP influent and WWTP effluent no significant
removal of DCF was detected (<20%), while influent concentrations
were approximately 3.5 mg/L. This agrees with the slower removal
of DCF observed in lab-scale incubation experiments with activated
sludge not using carriers (Section 3.2 and Table 2). Using Equation
(2) to model the full scale reactor, a 3% (negligible) removal would
be expected based on the kbiol found (4 g/L sludge concentration
and 6 h HRT). Examining the measured data, although no detect-
able removal of DCF took place, low signals for several DCF-TPs and
human metabolites were observed. These included 4HD, 5HD and
TP293b, which were detected in both WWTP influent and effluent,
as was the case at WWTP-BR. DCF-lactam was detected in the
effluent of WWTP-KO, but not inWWTP influent, indicating a small
formation took place. As was the case with the lab-scale experi-
ments, TP285 and TP259 were not detected in the effluent of
WWTP-KO, which is consistent with these being unique to the
degradation of DCF in contact with the carrier biomass.

4. Conclusion

DCF can be removed effectively in a cascaded hybridmoving bed
biofilm reactor (hybrid-MBBR) achieving nitrification and denitri-
fication. The degradation primarily occurred in the last compart-
ment containing the carrier-attached biomass. In this study, a fast
dissipation was observed but many TPs were formed. Due to the
highly branched nature of the transformation pathway, these are
mostly present at very low concentrations in the WWTP effluent.
The sum of all quantifiable TPs did not explain the degraded
quantity of DCF, since thesewere further degraded. Estimating from
the peak intensities of the remaining TPs, these made up a small
fraction (<5%) of the transformed DCF. Hence, although ecotoxi-
cological studies of the complex TP mixtures formed from DCF are
missing, it is likely that biological degradation of DCF results in
significantly lowering its ecotoxicological impact.

After long incubation times, it was evident that the main re-
actions leading to DCF removal had the potential to also occur in
contact with conventional activated sludge (i.e. suspended sludge
with no biofilm carriers). However, based on the much slower re-
action rates the transformations were not observed to occur to a
significant degree in the full-scale activated sludge process. It can
be concluded that the observed transformation of DCF in hybrid-
MBBR systems is linked to different reaction kinetics of two very
similar transformation pathways rather than one system able to
85 in different compartments of the biological reactor of WWTP-BR (hydrid-MBBR).
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perform special reactions which the other system cannot. Some
reactions forming secondary TPs were unique to the carrier sys-
tems, but these did not appear to be the main drivers for the
removal of DCF. The underlying microbiological causes of the faster
kinetics are still an open question.

It could also be observed that not one but all the different re-
action types leading to DCF degradation were significantly faster in
the hybrid-MBBR compared with conventional sludge. Therefore, it
is likely that other reaction types are faster under these conditions
as well, and that in combination this might lead to an improved
removal of other CECs. This was indeed observed by Falås et al.
(2013) for CECs such as mefenamic acid, bezafibrate and valsartan.
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