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a b s t r a c t

The transformation of selected phenolic substances was investigated during biological

wastewater treatment. A main emphasis was put on the relevance of abiotic processes

leading to toxic nitrophenolic transformation products (TPs). Due to their environmental

relevance, the antiseptic ortho-phenylphenol (OPP), the plastics additive bisphenol A (BPA)

and the psychoactive drug dextrorphan have been studied. Batch experiments confirmed

that nitro- and nitroso-phenolic TPs can be formed under acidic conditions when nitrite is

present. HNO2, N2O3 and �NO and �NO2 radicals are likely involved in the abiotic process. It

was found that the process was promoted by the freezing of water samples, since this can

lead to an unexpected pH drop. However, under conditions present at wastewater treat-

ment plants (neutral pH, low nitrite concentrations), the formation of appreciable con-

centrations is rather unlikely through this process, since HNO2 concentrations are

extremely low and �NO and �NO2 radicals will also react with other wastewater constitu-

ents. Thus, the transformation of phenolic substances such as OPP and BPA is mainly

caused by biotic transformation. In addition to hydroxylation as a common reaction under

aerobic conditions, the formation of sulfate conjugates was detected with the original

compounds as well as with nitrophenolic TPs. Therefore, even when nitro-phenolic sub-

stances are formed it is likely that they are further transformed to sulfate conjugates. In

raw wastewater and WWTP effluent nitrated BPA and NO2-dextrorphan were not detected.

Only nitro-OPP was found in the influent of a WWTP with 2.3 ng/L, but it was not identified

in the WWTP effluents. The concentrations of dextrorphan increased slightly during

WWTP passage, possibly due to the cleavage of the glucuronide-conjugate, its human

metabolite form, or demethylation of the prodrug dextromethorphan.

ª 2013 Elsevier Ltd. All rights reserved.
1. Introduction streams. During wastewater treatment, biological and chem-
An important source of micropollutants in surface waters is

municipal or industrial wastewater, which is usually emitted

via wastewater treatment plants (WWTPs) into rivers and
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of easily biodegradable organic compounds may additionally

transform refractory micropollutants. As a consequence,

transformation products (TPs) of micropollutants are formed
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and emitted via WWTP effluents into the aquatic environ-

ment. Micropollutants containing phenol moieties have

received particular attention in this regard, both due to the

range of transformation processes which befall many phenols

during wastewater treatment (Beel et al., 2013; Chen et al.,

2011; Quintana et al., 2005; Skotnicka-Pitak et al., 2008) and

their potential for having toxic effects on aquatic organisms,

including antibacterial and endocrine disrupting properties

(Garg et al., 2001). Understanding of the transformation pro-

cesses of phenolic micropollutants aids i) their quantification

in WWTP effluents and ii) identifying sources of TPs. During

biological wastewater treatment, metabolic or co-metabolic

reactions can impact the fate of many phenolic compounds.

Biotic degradation reactions of phenolic compounds include

ring hydroxylation reactions or oxidation of ring substituents,

followed by ring cleavage, for example via the ortho or meta

pathway (Reineke and Beek, 2001). Additionally, abiotic re-

actions, e.g. hydroxylation of an a, b-unsaturated ketone

(Wick et al., 2011) or the formation of a nitrobenzene from an

anilinemoiety in the presence of nitrite (Nödler et al., 2012) are

potential transformation routes of micropollutants. Hence,

both biotic and abiotic transformation processes could

transform these substances in biological wastewater

treatment.

An abiotic transformation process of recent interest is

the nitration of phenol moieties and the formation of

nitrophenolic TPs during biological wastewater treatment

(Chiron et al., 2010; Sun et al., 2012). Wick et al. (2011) re-

ported the formation of nitrophenolic TPs in activated

sludge batch experiments spiked with morphine. Due to

their elevated (eco)toxicity, nitrophenols are of environ-

mental concern (Tomei et al., 2003). For instance, the

phenolic compound bisphenol A (BPA) exhibited estrogenic

effects to goldfish (Toyoizumi et al., 2008) and other aquatic

organisms (Oehlmann et al., 2006), but after transformation

to dinitro-BPA the estrogenic activity decreased while gen-

otoxicity increased (Toyoizumi et al., 2008). Recent studies

on nitration of phenolic compounds during wastewater

treatment have found evidence for different mechanisms

but a similar extent of nitration. Acetaminophen for

instance, had a reported transformation of 5% to nitro-

acetaminophen (Chiron et al., 2010) and BPA of 0.2% to

dinitro-BPA (Sun et al., 2012) during wastewater treatment

in two different WWTPs. In both studies, concentration of

substrate phenols was in the 2e6 mg/L range and trans-

formation was reported to occur mostly during biological

treatment, in nitrifying reactors or oxidation ditches.

Currently, it is unclear which WWTP conditions and agents

are favoring the nitration process and which phenolic

compounds are more likely to be transformed. Previous re-

ports have attributed two possible agents for the nitration of

phenols in WWTPs: nitrite and peroxynitrite. Gaulke et al.

(2009) proposed that nitrous acid is a reactive species for

the nitration of phenols via nitrite. Nitrite is an intermediate

for both ammonium oxidation and nitrate reduction and is

usually found in low concentrations in nitrifying reactors

(0.5e1.0 mg/L NO2
�eN (Randall and Buth, 1984)). The nitra-

tion of phenolic compounds by nitrite is known and has

been studied under extreme acidic aqueous conditions

(pH < 1). The reaction mechanism, initially proposed by Al-
Obaidi and Moodie (1985) and then further underlined by

Beake et al. (1994), involves the formation of nitrogen di-

oxide radicals from nitrous acid. The formation of nitrogen

dioxide and nitric oxide radicals from nitrous acid is known

to occur in aqueous solution without the influence of an

oxidative agent or photolysis (Vione et al., 2004; Khalafi and

Rafiee, 2010).

At pH < 6 Chiron et al. (2010) reported that the nitration of

acetaminophen by nitrite occurs through a different process

similar to a Michael Addition (Matsuno et al., 1989) whereby

nitrite adds nucleophilically to the b-carbon of the oxidized

benzoquinone imine of acetaminophen. A similar processwas

suggested for catechols (Khalafi and Rafiee, 2010). In activated

sludge at neutral pH, Chiron et al. (2010) suggested a phenolic

nitration process involving peroxynitrite, while a nucleophilic

nitration of acetaminophendidnot occur. Peroxynitrite is a by-

product of cell respiration and is known to be formed through

the combination of superoxide and nitric oxide (Ferrer-Sueta

and Radi, 2009). The nitration mechanism by peroxynitrite

also involves the initial formation of nitrogen dioxide radicals.

It is reported that high AOB (ammonium oxidizing bacteria)

activity promotes the formationof peroxynitrite. Studies of the

nitration of estrogens, BPA and nonylphenol in activated

sludge proposed that nitrite (Sun et al., 2012) or the protonated

form, nitrous acid (Gaulke et al., 2009) is the reactive species

(Table 1). Nitritewasmeasured at 0.08e0.34mg/LNO2
�eN in an

oxidation ditch where BPA nitration was detected (Sun et al.,

2012). The evidence for a radical mechanism proposed by

Moodiewas reportedbyVioneet al. (2004) for phenol at pH2e5,

while an alternative reactionmechanism in which nitrosation

of phenol is followed by oxidation to nitrophenol (Ridd, 1991)

was ruled out. However, it is still an open question as to what

extent and by which mechanisms, phenolic compounds

entering WWTPs are nitrated and to what extent they are

discharged into rivers and streams. Furthermore, it is not clear

how the discharge of nitrophenolic compounds can be avoided

or minimized.

The objective of the current study was to elucidate the

transformation of selected phenolic substances during bio-

logical wastewater treatment. The main emphasis was put on

the relevance of processes leading to an abiotic nitration in

comparison to their enzymatic transformation. Since nitrite is

an intermediate in ammonium oxidation, it is possibly

responsible for the nitration of phenolic micropollutants. Due

to their environmental relevance, the phenolic antiseptic

ortho-phenylphenol (OPP), the plastics additive and estrogenic

compound BPA and the psychoactive drug dextrorphan were

selected. OPP is an anti-fungal agent used for the preservation

of citrus fruit. It is degraded in WWTPs (Rudel et al., 1998),

however it is unknown to what extent the degradation is due

to an abiotic nitration in activated sludge. Kinetic and mech-

anistic studies were conducted using OPP as the model

phenolic micropollutant, comparisons were then made to the

phenolic compounds BPA and dextrorphan. BPA is a well-

known micropollutant due to its endocrine disrupting activ-

ity (Oehlmann et al., 2006). Dextrorphan is a human metabo-

lite of the antitussive prodrug dextromethorphan and has

been detected in WWTP effluents (Thurman and Ferrer, 2012),

however its potential transformation during wastewater

treatment has not been studied so far.

http://dx.doi.org/10.1016/j.watres.2013.10.010
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2. Experimental

2.1. Chemicals

ortho-Phenylphenol (OPP) was purchased from TCI Europe

(Eschborn, Germany) and bisphenol A (BPA) from Dr. Ehren-

storfer GmbH (Augsburg, Germany). Dextrorphan tartrate,

acetaminophen, carboxy-2-phenyl-4,4,5,5-tetramethyl-imi-

dazolin-1-oxyl-3-oxid (cPTIO), N-acetylcysteine and NaNO2

were purchased from Sigma Aldrich (Schnelldorf, Germany).

LCeMS grade solvents were purchased from LGC Promochem

(Wesel, Germany). Purified water was obtained from a Milli-Q

water purification system (Millipore, Darmstadt, Germany).

The transformation products 4-nitro-6-phenylphenol, 2-nitro-

6-phenylphenol and 3,30-dinitro-bisphenol A were synthe-

sized in the laboratory. Details of the syntheses are given in

the Supplementary Data.
2.2. Analytical methods

Quantification of phenols and nitrophenols via LCeMS/MS

was carried out on an Agilent HPLC system (1200 Series, Agi-

lent Technologies, Waldbronn, Germany) equipped with a

Synergi Polar-RP column (150 � 3.00 mm, 4 mm; Phenomenex,

Aschaffenburg, Germany), coupled to a quadrupole-MS/MS

(AB Sciex API 4000, Applied Biosystems, Langen, Germany)

with ESI operated in positive and negative ionization mode.

Mobile phases for gradient elution were A: 0.05% acetic acid in

water and B: acetonitrile (gradient for phase A: 0e2 min. 92%,

5e14 min. 60%, 15e18 min. 5%, 19e23 min. 92%). Quantifica-

tion via UVeVIS was carried out on a Knauer Smartline HPLC
Table 1 e Reported processes for the nitration of phenolic mic

Precursor compound Nitration

17a-Ethinylestradiol

Acetaminophen

Bisphenol A
(Knauer GmbH, Berlin, Germany) coupled to a UVeVis detec-

tor. Nitrophenols were detected at 300 nm and phenols at

254 nm. High-resolution mass spectrometry for the identifi-

cation of TPs was carried out on an Agilent HPLC system (as

above) coupled to a QToF-MS (AB Sciex TripleToF 5600,

Applied Biosystems) with ESI operated in positive and nega-

tive ionization mode and by an Accela HPLC coupled with ESI

to an LTQ-Orbitrap-MS (LTQOrbitrap Velos, Thermo Scientific,

Bremen, Germany).

2.3. Experimental setup for kinetic and mechanistic
studies of OPP nitration

The phenolic substance OPP was added in varying concen-

trations (0.5e1.2 mmol/L) to a NaNO2 solution (5e15 mmol/L)

in buffered, purified water (31 mmol/L sodium acetate, pH

2e6). To avoid the photocatalytic formation of radicals, re-

actions were performed in amber glass flasks. The reaction

was monitored by taking 250 mL samples, which were

neutralized by diluting to 1 mL with buffered water (pH 12,

50 mmol/L phosphate). Dinitro-BPA was used as an internal

standard in the kinetic and mechanistic studies. Analysis of

the samples was carried out by LCeMS/MS for the identifica-

tion of transformation products and both HPLC-UV and

LCeMS/MS for their quantification.

2.4. Batch experiments with activated sludge

To study the transformation characteristics of phenols under

conditions found in an activated sludge reactor, 400 mL batch

experiments were set-up in amber glass flasks. Activated

sludge was taken from the nitrifying stage of a municipal
ropollutants in activated sludge.

conditions Reference

Gaulke et al., 2009

Khunjar et al., 2011

Chiron et al., 2010

Sun et al., 2012

http://dx.doi.org/10.1016/j.watres.2013.10.010
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WWTP with a capacity of 320,000 population equivalents and

a daily flow rate of 61,000 m3. The activated sludge stage is

operatedwith a hydraulic retention time of approximately 7 h,

a solids retention time of 12 d and achieves a yearly averageN-

removal of around 81%, measured as total bound N. The

sludge was diluted 20:1 with effluent or used undiluted.

Throughout the experiment, the solution was stirred and

purged with a mixture of air and CO2 through a diffuser. CO2

was added to the gasmixture to stabilize the pH, which would

otherwise increase due to purging of dissolved CO2. For a

detailed description of the setup see Wick et al. (2009). The pH

was maintained between 6.5 and 7.5 by regulating the gas

mixture. In some cases, nitrite concentration and pH were

adjusted by addition of acetic acid and NaNO2. After pH

equilibration, OPP, BPA and dextrorphan were spiked to the

sludge. Samples were filtered (regenerated cellulose, 0.45 mm)

and stored at þ4 �C. A matrix-matched calibration curve was

used for the quantification of OPP and NO2-OPP. For the cali-

bration and matrix compensation, the sludge was filtered and

aliquots were spiked with increasing concentrations of both

analytes. This enabled quantification of samples from the

batch experiments by LCeMS/MS. Nitrite, nitrate, ammonia

and DOC concentrations were measured separately on a DR

5000 photometer (Hach-Lange, Düsseldorf, Germany) using

test kits from the same supplier.

2.5. Effect of freezing samples during storage

To test the effect of freezing samples as a means of storage,

batchexperimentsweresetupwith0.6mg/LNO�
2eNand1mg/L

OPP and BPA in buffered water (50 mmol/L phosphate). Sam-

ples were then stored either by refrigeration at þ4 �C, acidifi-
cation to pH 2 with HCl or frozen at �20 �C. The samples were

then analyzed for nitrophenols by LCeMS/MS using the same

analytical procedure as described for environmental samples

(see below).

2.6. Environmental sampling at WWTPs

Two German WWTPs equipped for denitrification and nitrifi-

cation were sampled for the detection of TPs. Technical pa-

rameters of the WWTPs are described in the Supplementary

Data. NO2-OPP, dinitro-BPA and the phenolic precursors were

quantified by the standard addition method. Special care was

taken to avoid freezing samples or exposing them to acidity.

24-hmixed samples of influent (flow proportional) were taken

at the start of the treatment process (after grit removal) and

after primary clarification. Mixed samples of effluent were

taken after secondary settling at WWTP 1 and after sand

filtration at WWTP 2. During sample collection the samples

were stored at 4 �C. On the day of collection both samples and

a blank (Milli-Q) were filtered (GF/6, Whatman). The influent

was split into 4 � 150 mL aliquots and the effluent and blank

into 4 � 500 mL aliquots. These were stored overnight at 4 �C.
Three aliquots of influent, effluent and blankwere spikedwith

increasing amounts of the analytes as standards for quanti-

fication via the standard addition method. All aliquots were

loaded onto SPE cartridges (Oasis HLB 6 cc, Waters, Eschborn,

Germany), which were conditioned with groundwater. The

SPE cartridges were elutedwith acetone and the organic phase
was reduced to 100 mL by evaporation under a light nitrogen

gas flow. The samples were filled to 500 mL with Milli-Q water

and analyzed by LCeMS/MS. Details of the analytical method

are given in the Supplementary Data.
3. Results and discussion

3.1. Abiotic nitration of ortho-phenylphenol at varying
pH values

To study the abiotic nitration and to exclude biological

transformation processes, batch experiments without the

addition of activated sludge were conducted in buffered so-

lution containing nitrite and ortho-phenylphenol (OPP). The

initial rates of reaction decreased rapidly when increasing the

pH from 2.0 to 4.5. In Fig. 1a the initial rates of OPP elimination

and of nitro-phenylphenol (NO2-OPP) formation are plotted

against the pH. Above pH 5 the formation of NO2-OPP was not

detectable by HPLC-UV. The dotted curves show the results of

fitting the experimental data to the equilibrium concentration

of nitrous acid (Eqs. (1)e(3)). The quotient in Eq. (3), where

[NO2
�]0 is the initial nitrite concentration, is the nitrous acid

concentration at equilibrium (for derivation see

Supplementary Data Eqs. S1-6). This approach has been re-

ported previously by Vione et al. (2004). The pH-trend for OPP

nitration closely mirrors the acidebase equilibrium of nitrous

acid, pointing to this as a reactive species.

NO�
2 þHþ#HNO2 pKa ¼ 3:26 (1)

Ka ¼ ½Hþ��NO�
2

�
½HNO2� (2)

initial rate ¼ k$
Hþ½ � NO�

2

� �
0

Ka þ Hþ½ � (3)

Three products were identified via LCeHRMS, the ortho-

and para-isomer of nitro-2-phenylphenol (NO2-OPP), and one

isomer of nitroso-2-phenylphenol (NO-OPP). For the latter, the

location of eNO substitution is unknown, but is assumed to

occur at the para-position since in similar experiments with

BPA and dextrorphan, where the para-position is blocked,

nitrosation was not detected. Both isomers of NO2-OPP had

similar rates of formation (see Supplementary Data Fig. S6).

Further discussion of NO2-OPP formation is based on para-

NO2-OPP, however ortho-NO2-OPP appears to be formed

analogously.

The results confirm a strong pH trend and that the rate of

abiotic nitration at higher pH (>5) is expected to be extremely

low. Furthermore, the results do not support a mechanism in

which the nitration occurs via nitrosation by nitrosonium ion

followed by an oxidation of the nitrosophenol to the nitro-

phenol as described by Ridd (1991), since under conditions in

which both products are formed (Fig. 1b), the rate of NO2-OPP

formation did not increase with increasing NO-OPP concen-

tration (i.e. an initial rate of zero for NO2-OPP was not

observed). NO-OPP concentrations were also stable for >10 h

after reaching equilibrium (data not shown). This implies that

NO2-OPP is, at least to a large degree, a direct product from

http://dx.doi.org/10.1016/j.watres.2013.10.010
http://dx.doi.org/10.1016/j.watres.2013.10.010


Fig. 2 e The effect of the antioxidant AcCySH on the

nitration and nitrosation of OPP; Conditions: pH 4,

[OPP]0 [ 1 mmol/L, [NaNO2]0 [ 5 mmol/L. Left: No addition

of AcCySH. Right: Addition of 1 mmol/L AcCySH (duplicate

experiment).

Fig. 1 e (a) pH trend of the initial rate of abiotic OPP elimination and NO2-OPP formation (absolute values). Conditions:

[OPP]0 [ 1 mmol/L, [NaNO2]0 [ 5 mmol/L. Dotted lines are curves of the acidebase equilibrium of HNO2, fitted to the

experimental data. (b) Formation of NO2-OPP and NO-OPP, characteristic of two parallel reactions. Conditions: pH 3.5,

[NaNO2]0 [ 5 mmol/L.
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OPP. To confirm this, experiments were carried out using the

antioxidant N-acetylcysteine, which reacts with HNO2 and

N2O3, and the nitrogen radical scavenger carboxy-PTIO.

3.2. Impact of N-acetylcysteine and c-PTIO on OPP
abiotic nitration and nitrosation

In the presence of the antioxidant N-acetylcysteine (AcCySH),

NO2-OPP was not formed, whereas no change was observed in

the formation of NO-OPP (Fig. 2). By LC-Orbitrap-MS, using

high-resolutionmass spectra, bothAcCySNOandAcCySSCyAc

dimer where identified in the aqueous nitrite solution, con-

firming that both N2O3 and HNO2 react with AcCySH (Eqs.

(4)e(6)), analogously to cysteine (CySH), which forms CySNO

and the dimer CySSCy (Grossi and Montevecchi, 2002). HNO2

oxidizes AcCySH to AcCyS$ radicals, which combine to form

the dimer AcCySSCyAc. N2O3 is present due to the dissociation

of HNO2 in aqueous solution, (Eqs. (7) and (8)) (Park and Lee,

1988) but reacts with thiols. Thus, excess AcCySH effectively

eliminates HNO2 and N2O3.

AcCySHþHNO2/AcCyS$þ $NOþH2O (4)

2AcCyS$/AcCySSCyAc (5)

AcCySHþN2O3/AcCySNOþNO�
2 þHþ (6)

2HNO2#$NOþ $NO2 þH2O (7)

$NOþ $NO2 #
kþ

k�
N2O3 (8)

Therefore, it can be suggested that HNO2 and/or N2O3 are

the predominant agents for the formation of NO2-OPP. Since

the NO-OPP formation was not affected by AcCySH addition,

different processes must be involved. It can be assumed that

AcCySNO leads to the formation of NO-OPP since S-
nitrosothiols are known to act as nitrosating agents of

phenolic compounds (Noble and Williams, 2002). NO-OPP

formed via AcCySNO appeared stable with respect to oxida-

tion to NO2-OPP in the presence of O2, again suggesting that a

consecutive mechanism OPP / NO-OPP / NO2-OPP does not

take place. Furthermore, the product AcCyS-OPP could also be

observed by LC-Orbitrap-MS using high resolution MS and the

MS2 fragmentation spectrum (see Supplementary Data),

which may be resulting from radical coupling of �OPP and

AcCyS$, suggesting the involvement of �OPP radicals in the

reaction.

N2O3 is known not only to nitrosate thiols (Eq. (6)) but also

to nitrosate phenolic substances (Noble and Williams, 2002).

N2O3 is in equilibrium with the dissociated form (�NO þ �NO2,

Eq. (8)), but the equilibrium favors N2O3 with

kþ ¼ 1.1 � 109 M�1 s�1 versus ke ¼ 8.1 � 104 s�1) (Goldstein

et al., 2003). Due to the equilibrium, the impact of AcCySH is

likely to be similar on both forms. It is reported that the

http://dx.doi.org/10.1016/j.watres.2013.10.010
http://dx.doi.org/10.1016/j.watres.2013.10.010
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formation of nitrosophenol is likely caused by N2O3 rather

than �NO reacting with phenol (Noble and Williams, 2002),

however the formation of NO-OPP through the radical

coupling of �NO and �OPP radicals cannot be excluded. A

radical mechanism including �NO2 might also be responsible

for the formation of NO2-OPP.

To test the involvement of �NO2 and �NO, the nitration re-

actions were repeated with the addition of carboxy-2-phenyl-

4,4,5,5-tetramethyl-imidazolin-1-oxyl-3-oxide (cPTIO), which

is a known radical scavenger for both �NO and �NO2 (Eqs.

(9)e(11); Goldstein et al., 2003). In the presence of cPTIO the

equilibrium concentrations of NO-OPP and NO2-OPP are

significantly reduced by 78% and 65%, respectively, and the

initial rate of NO-OPP formation is much lower than that for

NO2-OPP formation (Fig. 3). The concentration of cPTIO was

not high enough to cause a complete inhibition of the reaction

but in a further experiment at lower OPP concentrations, a

complete inhibition of NO-OPP was observed (see

Supplementary Data Fig. S7). Since cPTIO scavenges specif-

ically �NO and �NO2 radicals, this confirms that at pH 4 both
�NO and �NO2 are involved in the reactions leading to NO-OPP

and NO2-OPP. N2O3 is known to react as a nitrosating species,

however the involvement of the dissociated form of N2O3

(�NO þ �NO2) could not be excluded considering the impact of

cPTIO.

cPTIOþ $NO/cPTIþ $NO2 (9)

cPTIOþ $NO2#cPTIOþ þNO�
2 (10)

cPTIOþ þ $NOþH2O/cPTIOþNO�
2 þ 2Hþ (11)

In summary, NO2-OPP formation was impacted when

either HNO2, N2O3 or possibly �OPP were scavenged by

AcCySH, and the involvement of �NO2 or �NO radicals was

shown by the cPTIO experiment, therefore NO2-OPP should be

formed by a radical reaction. Since it is not formed via

oxidation of NO-OPP, these experiments support a two-step

mechanism in which NO2-OPP is being formed by oxidation

of OPP by HNO2, followed by reaction of �OPP with �NO2 radical

to form the nitrophenol, shown by Eqs. (1), (7) and (8) and

Scheme 1, as described by Beake et al. (1994) for the nitration

of para-methoxyphenol by HNO2. �NO2, although being
Fig. 3 e The formation of NO2-OPP and NO-OPP from two

experiments, Left: without cPTIO, Right: with 100 mmol/L

cPTIO. Peak areas are relative to an internal standard.

Conditions: pH 4, [OPP]0 [ 1 mmol/L, [NaNO2]0 [ 5 mmol/L.
present at a low concentration, would be constantly replen-

ished due to the equilibrium in Eq. (8).

3.3. Kinetics and mechanism of OPP nitration

Atconditions typical foraGermanWWTP, (WWTP1,seeSec. 3.6)

i.e. neutral pH and nitrite concentrations below 1 mg/L NO2
�eN

in the biological wastewater treatment stage, the nitration of

phenolic compounds should be extremely low following the

abiotic mechanism suggested above. Only when technical

problems atWWTPs lead to a drop of pH or an accumulation of

nitrite (Randall and Buth, 1984) might an appreciable formation

of NO-OPP or NO2-OPP occur. In order to predict the potential of

NO2-OPP formation, a model was developed based on kinetic

studies at different pH and nitrite concentrations.

The reaction order determined by the method of initial

slopes (Atkins & de Paula, 2002) indicated that at pH 4 the rates

of para- and ortho-NO2-OPP formation were first order with

respect to HNO2 and half order with respect to OPP (Fig. 4). The

fractional order of 1/2 with respect to OPP is an indication that

a dissociation is taking place (Houston, 2006), e.g. formation of

OPP radicals by HNO2. This would also account for the first

order dependence on HNO2. In a separate experiment, the rate

of HNO2 elimination was found to be second order in HNO2

(Fig. 5a). Assuming that the reaction of OPP with nitrous acid

(HNO2 þ PhPhOH / PhPhO� þ �NO þ H2O) is the rate-limiting

step, the following rate laws can be described based on NO2-

OPP formation and HNO2 elimination (Eqs. (12) and (13)).

d½NO2 �OPP�
dt

¼ k1½HNO2�½OPP�1=2 (12)

�1
2
d½HNO2�

st
¼ k2½HNO2�2 (13)

The rate constant k2 is the slope of the reciprocal nitrous

acid concentration over time (Fig. 5a). Integration of Eq. (13)

and solving for [HNO2] gives:

½HNO2� ¼
�
2k2tþ 1

½HNO2�0

��1

(14)

If the OPP concentration is high compared to HNO2 and/or

conversion to NO2-OPP remains low, then [OPP] can be

approximated by [OPP]0. Substituting Eq. (14) into Eq. (12) and

integrating gives:

½NO2 �OPP� ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffi½OPP�p
0

2k2
ln
�
2k2t½HNO2�0 þ 1

�
(15)
Scheme 1 e Postulated mechanism for the nitration and

nitrosation of OPP.
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Fig. 4 e Correlation of the initial rate of NO2-OPP formation with changing initial concentrations of reactive species (from the

method of initial slopes). Left: Rate of NO2-OPP formation with respect to OPP concentration. Conditions: pH 4, 22 �C,
[NaNO2]0 [ 9 mmol/L, [OPP]0 [ 0.6e1.5 mmol/L. Right: Rate of NO2-OPP formation with respect to HNO2 concentration.

Conditions: pH 4, 22 �C, [NaNO2]0 [ 0.8e2.5 mmol/L, [OPP]0 [ 1 mmol/L.
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The rate constant k1 (2.5$10
�4 L0.5 mole0.5 s�1) was found by

fitting the calculated concentration to the experimental

results of Fig. 4. Eq. (15) was tested by carrying out an exper-

iment at a longer duration and was found to accurately model

the experimentally determined concentrations of NO2-OPP

(Fig. 5b).

The developed model enables the calculation of the NO2-

OPP concentrations formed in the batch systems by the re-

action of OPP with HNO2/�NO2 radicals. As other wastewater

constituents (e.g. further phenolic compounds) are probably

also reacting with HNO2/�NO2 this model allows prediction of

the upper limit of formation (maximum concentration). For

instance, at pH 7, a maximum concentration of NO2-OPP of

1 ng/L is predicted after 6 h for 1 mg/L OPP and 1 mg/L NO2
�eN.

However, if the nitrite concentration is increased to 20 mg/L

NO2
�eN and the pH reduced to 6.5, a maximum of 80 ng/L NO2-

OPP is predicted to be formed under this idealized case where

only OPP is reacting with HNO2. During certain treatment

processes, such as the SharoneAnammox for nitrification of

digester effluents, nitrite concentration reaches 600 mg/L

NO2
�eN (van Dongen et al., 2001). In another example,

ammonium oxidation in urine wastewater has been observed

at pH 4 and it is reported that at this acidic pH, nitrite
Fig. 5 e (a) Plot of reciprocal nitrous acid concentration as a funct

0.31 L/s$mol. (b) Estimated NO2-OPP concentration using eq. (15)

[OPP]0 [ 1 mmol/L, [NaNO2]0 [ 5 mmol/L.
oxidation is a chemical process resulting from the same

decomposition reaction of nitrous acid that leads to the for-

mation of �NO2 radicals (Udert et al., 2005). Under such

extreme conditions (low pH, elevated nitrite concentration),

higher concentrations of nitrophenolic transformation prod-

ucts are expected (Sec. 3.5).

3.4. Uncontrolled nitration of phenolic substances
during sample storage

Freezing of neutral (pH 7) water samples containing nitrite

(0.6mg/L) and phenolic compounds (1 mg/L BPA andOPP) led to

formation of NO2-OPP, NO2-BPA and dinitro-BPA (Fig. 6C and

D). The extent of nitration was similar to an acidified sample,

where a significant formation of NO2-OPP (>100 ng/L) can be

estimated from Eq. (15) (Fig. 6B). Storage at 4 �C did not cause

the artificial formation of nitrophenolic compounds (Fig. 6A).

An explanation could be found in publications reporting a

shift to lower pH values when freezing buffered solutions

(Sundaramurti et al., 2010; Goyal and Hafez, 1995). Thus,

freezing is an inappropriate storage method for samples to be

analyzed for phenolic compounds. Sample storage should

occur at 4 �C instead.
ion of time. The second order rate constant 2k2 is the slope,

(dotted line) versus experimental results. Conditions: pH 4,

http://dx.doi.org/10.1016/j.watres.2013.10.010
http://dx.doi.org/10.1016/j.watres.2013.10.010


wat e r r e s e a r c h 4 8 ( 2 0 1 4 ) 4 7 8e4 8 9 485
3.5. Batch experiments with activated sludge

In activated sludge from a municipal WWTP, the formation of

nitrophenolic compounds cannot reach the maximum con-

centration estimated by the kinetic studies, since it i) contains

microorganisms enabling an additional biotic transformation

of the phenolic compounds and ii) it contains several com-

ponents that are also able to react with HNO2 or �NO2. Dissi-

pation of phenolic compounds and the formation of

nitrophenolic substances were monitored in batch experi-

ments with diluted nitrifying activated sludge under varying

conditions (pH and nitrite). In addition to OPP, bisphenol A

and dextrorphan were spiked to investigate whether the OPP

results can be transferred to further phenolic substances.

In batch experiments without alteration of the pH and

without artificial addition of nitrite or ammonium, the con-

centrations of BPA and OPP decreased rapidly, while dextro-

rphan was found to be more recalcitrant as its concentration

remained mainly constant (Fig. 7a). No evidence of nitro-

phenol formation from any of these three phenolic substances

was found. The elimination of BPA and OPP under these

conditions is attributed predominantly to biotic trans-

formation processes, as shown below.

To rule out the possibility that other processes associated

with ammonium oxidation (e.g. build-up of peroxynitrite)

were causing a significant nitration, as found by Chiron et al.

(2010), the experiment was repeated with an increased

ammonium concentration of 240 mg/L NH4
þ-N. During 4 days,

inwhich the systemwas continually purgedwith air, it caused

nitrate concentrations to increase from 9 to 76 mg/L NO3
�eN

while the ammonium concentration decreased to 210 mg/L

NH4
þeN. The formation of nitrophenolic compounds was not

detected in this experiment.

3.5.1. TPs formed under neutral pH conditions
Via their LCeMS/MS fragmentation patterns using LC-QToF-

MS, several TPs could be identified (Scheme 2), giving in-

sights into the relevant transformation or degradation path-

ways of these compounds in nitrifying activated sludge.

The TP hydroxy-OPP was formed in the batch experiments

containing activated sludge described above and was itself

eliminated, suggesting the degradation of OPP proceeds via

this catechol intermediate in activated sludge. This OPP-TP
Fig. 6 e Nitrophenol formation resulting from sample

storage or preparation: Batch experiments in pH 7 buffered

water were spiked with 1 mg/L BPA and OPP, and varying

nitrite concentrations: AeC: 0.6, D: 2.4 mg/L NO2
LeN.
was previously reported to be formed by a soil bacterium

and is the substrate for an oxidative meta cleavage leading to

degradation of OPP (Kohler et al., 1988). In the case of BPA, the

presence of hydroxy-BPA (1,2-bis(4-hydroxyphenyl)-1-

propanol) was identified by LC-QToF-MS as an intermediate

species. Fragmentation spectra of this TP suggest a structure

that is formed via rearrangement of the quaternary carbon

center of BPA (see Supplementary Data). Ike et al. (2000)

detected this TP in sludge enrichment cultures degrading

BPA (concentrations of 100 mg/L), but it was further degraded

to benzoic acid derivatives. Detection of the TPs of OPP and

BPA in the batch experiments of the current study confirms

the relevance of these degradation pathways in mixed cul-

tures from municipal WWTPs at substrate concentrations of

200 mg/L. Although the concentration of dextrorphan

remained relatively constant (w10% elimination), several hy-

droxylated dextrorphan-TPs were identified in small concen-

trations. In total four isomers of hydroxy-dextrorphan TPs

were identified with similar MS2 spectra, possibly due to the

formation of diastereomeric pairs from the chiral precursor.

Due to the low proportion of dextrorphan conversion, an

isolation of TPs for structure confirmation was impossible. In

addition, sulfate conjugation products of all three phenols

were detected. Sulfo-OPP was quickly eliminated, while the

others persisted in the batch experiment. Sulfate conjugation

is discussed below in more detail. The characterization of TPs

by MS/MS is described in the Supplementary Data.

Batch experiments were also conducted with the nitro-

phenolic TPs of OPP and BPA, to test their stability towards

(bio)degradation in activated sludge. NO2-OPP and dinitro-BPA

were transformed in the batch experiments during the 6-day

period to approximately 50% and 80%, respectively (Fig. 7b).

For both nitrophenols the phenolic hydroxyl group was con-

jugated with sulfate (eSO3; Scheme 2). Further TPs were not

observed.

The sulfate conjugation seems to be a very common mi-

crobial process occurring in activated sludge from biological

wastewater treatment with a wide substrate spectrum. Sul-

fate conjugation (sulfurylation) is a widely occurring biological

process in cells. It has various functions including detoxifi-

cation of xenobiotic substances (Maloj�ci�c and Glockshuber,

2010). Sulfurylation of estrogens has previously been

observed by mixed bacterial cultures from activated sludge

(Khunjar et al., 2011). Further studies have reported these

sulfate conjugates can also be de-conjugated in sludge with

resulting release of estrogens (Kumar et al., 2012), an indica-

tion of the reversibility of this type of transformation.

3.5.2. Formation of nitrophenols in activated sludge
In an activated sludge medium, a rapid formation of nitro-

phenols from the three precursor phenols was observed under

acidic conditions (pH 3.3e3.5). Fig. 7c shows the formation of

nitrophenols measured over time. The formation of NO-OPP

was also observed. However it was no longer detected in

samples after 6 h, no TPs of NO-OPP could be detected. After

50 h of incubation, nitrite was no longer present and the for-

mation of nitrophenols had slowed down or stopped.

In batch experiments with activated sludge the formation

of NO2-OPP was quantified at varying pH (3.3e7.0). Using the

initial nitrite and OPP concentration and pH, the predicted

http://dx.doi.org/10.1016/j.watres.2013.10.010
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Fig. 7 e (a) Concentration of phenolic parent compounds in a batch experiment: c0 [ 200 mg/L. Conditions: activated sludge

(0.2 gSS/L), pH 7.2e7.5. (b) Stability of nitrophenols to biodegradation. Conditions: activated sludge (0.2 gSS/L), pH 7.2e7.5,

dinitro-BPA and NO2-OPP, c0 [ 200 mg/L. (c) Formation of nitrophenols in activated sludge. Conditions: activated sludge (0.2

gSS/L), pH 3.3, 4.2 mg/L NO2
LeN.
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maximal formation of NO2-OPP was calculated with Eq. (15).

Only around 10% of the predicted maximum concentrations

were detected in the batch experiments with activated sludge

(Table 2), since HNO2 and �NO2 are probably reacting with

other sludge constituents (DOC of the sludge w10 mg/L).

Therefore, it can be concluded that the nitration process with

HNO2 can be neglected in contact with activated sludge. Other

processes leading to nitro-phenolic TPs could not be observed,

neither with elevated ammonium nor with elevated nitrite

concentrations. Thus, the formation of significant levels of

nitrophenolic TPs from BPA, OPP and dextrorphan can be
Scheme 2 e Biotic transformation products observed from BPA,

studies (Kohler et al., 1988; Ike et al., 2000).
ruled out in batch experiments with activated sludge at the

conditions expected at theWWTPs in this study. It seems very

unlikely that nitrophenolic substances are formed in biolog-

ical wastewater treatment.

3.6. Analysis of wastewater for the presence of
nitrophenolic TPs

The concentrations of three nitrophenolic substances, NO2-

OPP, dinitro-BPA, and NO2-dextrorphan, and their precursors

(OPP, BPA, dextrorphan) were analyzed in wastewater
OPP and dextrorphan. aTPs identified in enrichment culture

http://dx.doi.org/10.1016/j.watres.2013.10.010
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Table 2 e Quantification of NO2-OPP formed in batch experiments with activated sludge.

Batch experimenta pH [HNO2]0 [OPP]0
b [NO2-OPP] after 5 h NO2-OPP detected compared to modelingc

1 3.3 1.50$10�4 6.8 $10�7 3.7$10�8 8%

2 3.6 7.03$10�5 9.72 $10�7 2.0$10�8 9%

3 3.9 4.50$10�5 8.22 $10�7 8.9$10�9 9%

4 4.2 2.35$10�5 8.58 $10�7 3.2$10�9 6%

5 7.0 1.54$10�9 7.69 $10�7 n.d. e

a Conditions: activated sludge (batch 1: 0.2 gSS/L, 2e5: 4 gSS/L), nitrite addition: batch 1e4: 3 mg/L NO2
�eN, batch 5: no nitrite addition,

c0 ¼ 0.6 mg/L NO2
�eN.

b [OPP]0 < [HNO2]0, however due to low conversion, OPP concentration can be treated as constant.
c Theoretical formation according to Eq. (15). n.d. : not detected.

Table 3 e Concentrations of parent phenols and
nitrophenols detected in two German WWTPs [ng/L].a,b

WWTP 1
influent

WWTP 1
effluent

WWTP 2
influent

WWTP 2
effluent

OPP 1660 12 1590 30

NO2-OPP 2.3 <LOQ (2) <LOQ (2) <LOQ (2)

BPA 6000d 100 1170 19

Dinitro-BPA <LOQ (2) <LOQ (1) <LOQ (2) <LOQ (2)

Dextrorphan 4 39 5 15

NO2-dextrorphan
c n.d. n.d. n.d. n.d.

a Samples before and after the primary clarifier gave similar con-

centrations so only the latter is given.
b LOQs are given in brackets.
c Due to a lack of an authentic standard no LOQ could be deter-

mined. n.d. : not detected.
d Concentration out of range for standard addition, estimated by

matrix-matched calibration curve.
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samples from two German WWTPs. Flow-proportional com-

posite samples were taken from the influent and the final

effluent over a 24 h period.

Concentrations of OPP and BPA decreased from the low mg/L

range before the activated sludge reactor to the low ng/L range

in the WWTP effluent in both sites studied (Table 3). The

removal of these compounds is mainly caused by biodegrada-

tion as sorption to sludge is negligible (Zhao et al., 2008; Zheng

et al., 2011). Several TPs detected in batch experiments,

hydroxylated-OPP, sulfo-OPP and sulfo-BPA (Scheme 2) were

also identified by LCeMS/MS in raw wastewater and WWTP

effluents, suggesting that transformation processes identified

in batch experiments may also be occurring during drainage

and wastewater treatment. For TP identification, quadrupole-

MS/MS in MRM mode was used with characteristic MS2 frag-

ments for each TP (See Supplementary Data for MS2 spectra).

However, itwas impossible toquantify theseTPsdue to the lack

of authentic standards. Nitrophenolic TPs of OPP, dextrorphan

and BPA were not detected in WWTP effluents as shown in

Table 3. Only NO2-OPP was detected in raw wastewater with

2.3 ng/L atWWTP 1 andwas not found in theWWTP effluent. It

can be assumed that NO2-OPP originated from sources other

thanbiologicalwastewater treatment. For instance, if favorable

conditions in the sewer system were present, e.g. a local acid-

ification, this could lead to a nitration of OPP. Alternatively, UV

radiation can also promote OPP nitration (Suzuki et al., 1990).

This could occur during surface run-off before entering the

sewer system. The slight increase of the dextrorphan concen-

trations, e.g. from5ng/L to 15 ng/L inWWTP2,might be caused

by the hydrolysis of O-glucuronide conjugates as suggested by

Thurman and Ferrer (2012), who detected dextrorphan in

WWTP effluent and a US river. O-Demethylation of dextrome-

thorphan, the prodrug of dextrorphan, during treatmentwould

also lead to dextrorphan formation.

These results underline the prediction that NO2-OPP and

dinitro-BPA are not formed in appreciable concentrations

during biological wastewater treatment. According to a pre-

diction of NO2-OPP concentrations using Eq. (15) for the con-

ditions found in WWTP 1, taking into consideration the

influence of the sludgematrix, notmore than 0.1 ng/LNO2-OPP

would be expected. Thus, these concentrations would be far

below the quantification limits of the method (see Sec. 2 and

Supplementary Data for details). It might be possible that the

formation of dinitro-BPA (1.9e3.7 ng/L) reported by Sun et al.

(2012) and of nitro-acetaminophen (180e320 ng/L) reported

by Chiron et al. (2010) might be caused by different treatment

processes, such as the formation of peroxynitrite. However, in
our study no indication for the peroxynitrite mechanism was

found. Nitro-acetaminophen was included in the analytical

method described above and acetaminophen was also spiked

into a neutral batch experiment (Table 2, experiment 5).

Neither in batch experiments, nor in rawwastewater orWWTP

effluents was nitro-acetaminophen found despite acetamin-

ophen being permanently present in the raw wastewater.
4. Conclusions

The transformation processes of three model phenolic

micropollutants, bisphenol A (BPA), ortho-phenylphenol

(OPP) and dextrorphan, during wastewater treatment has

been studied with emphasis on the role of abiotic nitration.

It was found that the reaction leading to nitro-phenols is

most likely due to the formation of radicals from nitrous

acid.

� Kinetic studies under idealized conditions revealed that a

significant nitrophenolic TP formation can only be expected

in cases of nitrite build-up and/or pH reduction.

� Batch experiments with activated sludge indicated that a

significant formation of nitrophenols could be ruled out

under typical conditions at the WWTPs included in this

study, i.e. neutral pH and low nitrite concentration.

� Since nitrophenols are immediately formed under acidic

conditions as well as during freezing or thawing of aqueous

http://dx.doi.org/10.1016/j.watres.2013.10.010
http://dx.doi.org/10.1016/j.watres.2013.10.010


wat e r r e s e a r c h 4 8 ( 2 0 1 4 ) 4 7 8e4 8 9488
samples containing nitrite, such conditions have been

avoided to prevent an artificial formation of nitrophenolic

TPs during sample preparation.

� In batch experiments under neutral conditions, the trans-

formation of OPP, BPA and dextrorphan was observed via

biotic pathways including hydroxylation and sulfurylation.

� In accordance with the batch experiments, the formation of

nitrophenolic TPs was not observed in WWTPs. Previous

findings reporting the contrary may be the result of pro-

cesses specific to those sites studied.
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