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Abstract
Temperature data are commonly used to estimate the sensitivity of many societally relevant
outcomes, including crop yields, mortality, and economic output, to ongoing climate changes. In
many tropical regions, however, temperature measures are often very sparse and unreliable, limiting
our ability to understand climate change impacts. Here we evaluate satellite measures of near-surface
temperature (Ts) as an alternative to traditional air temperatures (Ta) from weather stations, and in
particular their ability to replace Ta in econometric estimation of climate response functions. We
show that for maize yields in Africa and the United States, and for economic output in the United
States, regressions that use Ts produce very similar results to those using Ta, despite the fact that
daily correlation between the two temperature measures is often low. Moreover, for regions such as
Africa with poor station coverage, we find that models with Ts outperform models with Ta, as
measured by both R2 values and out-of-sample prediction error. The results indicate that Ts can be
used to study climate impacts in areas with limited station data, and should enable faster progress in
assessing risks and adaptation needs in these regions.
1. Introduction

Historical data on climatic variables such as tempera-
ture and precipitation are key for understanding how
human and natural systems respond to climatic
change. While many global-scale gridded weather
datasets do exist for this purpose [1, 2] and have
provided fundamental insights into climatic
responses, accuracies are often limited by the
underlying station data availability which can vary
substantially over time and space. For instance,
according to our measure of quality, defined as
stations with at least 10 years of data and missing less
than 30% of daily observations, high-quality station
density in the Global Historical Climatology Network
(GHCN) database peaked in Africa in 1976 and
peaked globally in 2001 (figure 1). By 2010 the
database contained just 215 high-quality weather
stations in all of Africa. This combination of low
spatial density of stations, and stations that go on and
offline at different times, can lead to substantial
measurement error in interpolated datasets which in
turn can bias estimates of societal impacts [3].
© 2017 IOP Publishing Ltd
An alternate and less-common approach is to use
satellites rather than ground-based measures to study
climate variables of interest. For instance, several
satellites measure surface emission of thermal energy,
which can be converted into estimates of surface skin
temperature (Ts)—a product that the Moderate
Resolution Imaging Spectroradiometer (MODIS)
has provided at 1 km resolution daily for over a
decade. Past studies have evaluated agreement between
MODIS and weather stations on daily time scales,
often finding weak correlations for daytime temper-
atures because factors other than Ta, such as
cloudiness and soil moisture, can affect Ts [4–6].
However, these results could be of limited relevance for
estimating how societal outcomes respond to climatic
change, since estimates of societal impacts often rely
on year-to-year variations in seasonally aggregated
measures of temperature exposure, and correlations
between station and satellite data tend to increase as
the period of aggregation lengthens. For instance, in
the United States, the R2 value associated with
regressing daytime Ts on maximum Ta is 30% higher
for seasonal averages than for 8-day averages (figure 2).
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Figure 1. Daily weather station availability from the Global Historical Climatology Network. (a): density of stations in the GHCN
database that have at least 10 years of data between 1960 and 2010. Stations are color coded according to the share of daily temperature
observations that are missing across available years. (b): number of stations online globally and in Africa that have at least 10 years of
data and are missing less than 30% of total observations in available years (i.e. non-red stations on the map). (GHCN-daily available
at: www.ncdc.noaa.gov/oa/climate/ghcn-daily/).
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Figure 2. Ta vs. Ts Anomalies for U.S. Counties at Different Time Scales, including (a) 8-day, (b) monthly, and (c) three-month
seasonal averages (June–August) for years 2003–2014. Red points indicate daily maximum temperatures, blue points daily minimum
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Direct evaluation of Ts in societal applications thus
appears warranted. Although a previous study
evaluated Ts in cross-sectional regressions [7], most
econometric studies rely on time-variation to identify
climate response functions.

Another motivation for using Ts is that it may be a
more direct measurement of the relevant temperature
for certain applications. In agricultural settings, Ts
measures canopy temperature, and the deviation of
canopy temperature from Ta is often used as an
indicator of plant water stress for drought monitoring
or irrigation scheduling [8, 9]. Tsmay therefore better
represent environmental conditions for predicting
2

crop yields than Ta, as illustrated for wheat experi-
ments in Europe [10].
2. Methods

To better understand how satellite-based temperature
models could inform our understanding of societal
responses to climatic change, we revisited three
previous studies that had used standard measures of
Ta to study impacts: maize yields in Africa [11], maize
yields in the US [12], and gross domestic product
(GDP) in the United States [13]. In each of these

http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/


Table 1. Overview of data sources.

Variable Data Details

Surface Temperature (Ts) (Africa and U.S.) MODIS Aqua

MYD11C2 v5

8-day composited average day and night land surface temperatures,

released as 0.05° × 0.05° grids, available July 2002–present [17].

Air Temperature (Ta)
and Precipitation

(Africa) Interpolated ground

stations

Daily minimum and maximum temperatures and precipitation for each

field trial were estimated by interpolation of daily measurements made in

the World Meteorological Organization, World Weather Watch Program,

available 1999–2007 [11].

(U.S.) PRISM Climate Group,

Oregon State University

Climatologically-aided interpolation (CAI) from ground weather stations

carried out by the PRISM group and released as 2.5’ × 2.5’ daily grids,

available 1981-present [14].

Maize Yields (Africa) Field trial data Georeferenced data from more than 25 000 maize experimental field trials

across Eastern & Southern Africa, available 1999–2007 [11]. Paper

analysis draws on 15 164 trials since 2003.

(U.S.) United States Department

of Agriculture National

Agricultural Statistics Service

County-year maize yield data, available 1910–2015. Paper analysis draws

on 12 103 observations from 931 maize producing counties between 2003

and 2014.

Per-capita GDP (U.S.) Bureau of Economic

Analysis

County-year per-capita GDP from the Local Area Personal Income

Accounts data set, available 1969–2015 [18]. Paper analysis draws on

34 718 observations from 2 747 counties between 2003 and 2014.
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studies, we re-estimated relationships using both Ta
and Ts and compared model performance across
temperature measures.

We utilized MODIS Aqua MYD11C2 (8-day)
version 5 products as our estimates of land surface
temperature (Ts) for all three analyses (see table 1 for
more information on data sources). MODIS 8-day
composited averages have a resolution of 0.05°
(5.6 km) and are available from mid 2002 to the
present. We used Ts estimates from the Aqua satellite
because it captures images at approximately 1:30 AM
andPM local timewhichmore closely approximates the
timing of daily temperature extremes than the Terra
satellite schedule (10:30 AM and PM) [4]. Missing
observations were replaced with inverse distance
weighted averages of the nearest four non-missing cells.

For each analysis, Ts measures were constructed
analogously to theTameasures that hadbeenused in the
previous studies. The Africa analysis drew onmore than
15 000 historical maize trials including 12 500 fields
under optimal management and 2 500 fields under
drought management conditions.Ta and precipitation
data were previously interpolated from publicly
available daily weather station data using thin-plate
splines [11]. Following this previouswork,we estimated
a fixed-effects model with quadratic functions of
maximum temperature and total precipitation averaged
over field-specific 150-day growing seasons:

Y ist ¼ Tmaxist þ Tmax2ist þ Prist þ Pr2ist
þgs þ dt þ eit ð1Þ

where Yist is the natural logarithm of reported maize
yield for the ith trial at field station s in year t, Tmax is
maximum temperature averaged over the 150 days
following planting, Pr is total precipitation around
anthesis, g is a field site fixed effect, d is a year fixed
3

effect, and e is an error term. For each field site, Ts
observations were constructed by taking the inverse-
distance weighted average of the nearest 9 MODIS
cells. These values were then averaged over the 150 day
growing period at each field site. The precipitation
values interpolated from weather stations were
included in both Ta and Ts regressions.

The analogous analysis in the United States drew
on more than 12 000 county-year maize yield
observations from USDA’s National Agricultural
Statistics Service and the PRISM data set that consists
of high-resolution gridded daily maximum tempera-
ture and precipitation [14]. Regression analysis of
temperature impacts on US maize took the form:

Y it ¼ Tmaxit þ Tmax2it þ JulyMaxit þ Prit
þg i þ dt þ eit ð2Þ

where Yit is log yield in county i and year t, Tmaxit is
the maximum temperature averaged over the approx-
imate three month maize growing season (JJA),
JulyMax is the maximum temperature averaged across
July, Pr is the total precipitation across the growing
season, g is a county fixed effect, d is a year fixed effect,
and e is an error term. We estimated this simple
specification in order to facilitate tractable comparison
across temperature metrics and because model
performance was similar between our model and
more flexible growing degree models, such as used in
[12, 15]. For both Ts and Ta, grid cells were spatially
aggregated to the county level using agricultural area
weights and temporally averaged over JJA and July.
The same PRISM precipitation values were used in
both the Ta and Ts regressions.

For temperature-GDP relationships in the United
States, following [13] we utilized nearly 35 000 county-
year observations of GDP from the Bureau of
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Figure 3. Comparing air and surface temperature response functions for US and African maize. Panels (a) and (b) show results from
the estimation of equation 1 drawing on more than 15 000 African field trials carried out between 2002 and 2007. Panel (c) shows
results from the estimation of equation 2, an analogous analysis for the United States, based on more than 12 000 county-year
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Economic Analysis to estimate the regression:

Y it ¼ rY i;t�1 þ
X

m
bmTm

it þ amTm
it�1

� �

þPrit þ Pr2it þ g i þ dt þ eit ð3Þ
where Y it is county per-capita GDP in county i and
year t, Y i;t�1 is lagged per-capita GDP, bmTm

it is the
number of days in the mth 3-degree bin4 in county i
and year t, Pr is total precipitation in the year, g is a
county fixed effect, d is a year fixed effect, and e is an
error term. Population weights were used to spatially
aggregate MODIS and PRISM grid cells to the county
level and PRISM precipitation estimates were used in
both regressions.

Estimates of equations (1) through (3) were then
used to plot the climate response functions shown in
figures 3 and 4. In order to plot the relationships shown
in figure 3, splines were fit to mean impacts at each
4 Since we used 8-day MODIS composites, Ts values falling into a
given bin were counted as 8 days in that bin.

4

temperature level estimated by equations (1) and (2).
Bootstrapped standard errors were then calculated and
used to estimate 95% confidence intervals. Figure 4
shows the coefficients for each temperature bin
estimated by equation (3). Ts has a different support
from Ta. Therefore, in order to facilitate a straightfor-
ward comparison, we mapped Ts to Ta by matching
distribution quantiles and plotting the two response
functions with Ta on the x-axis. The mapping was done
by calculating 1 000 equally spaced quantiles separately
for Ts and Ta then defining a function that matched Ts
quantiles to Ta quantiles. This procedure transformed
theTsdistribution into theTadistributionandallows for
a simple comparison in familiar units.
3. Results

For maize yields, we find downward sloping responses
to temperature for both temperature measures
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(figure 3). For the Africa analysis, Ts had slightly
higher explanatory power than Ta, with R2 values for
Ts 2.7% and 4.2% higher, respectively, for the optimal
and drought management trials examined in the
original study. For the United States, the R2 values are
virtually the same across models, consistent with a
dense and high-quality ground-station network. In
order to further assess model performance we also
calculated out-of-sample prediction error by repeat-
edly estimating the models on randomly selected 75%
subsets of locations, predicting values for the 25% of
locations that had been excluded from estimation, and
calculating the RMSE of out-of-sample predicted
values relative to actual values. For both optimal and
drought management systems in Africa we find that
the model with Ts has lower out-of-sample prediction
errors. However, for the United States, the prediction
RMSE values are nearly identical across temperature
measures. This finding is consistent with our assertion
that Ts is most useful in regions with poor station
coverage where Ta is measured with significant levels
of error.

While Ts predicts crop yields well, it is less clear
whether it could be used to estimate response
functions for non-agricultural applications. Recent
research suggests that a variety of economic activities
respond negatively to higher temperatures [13, 16]
and our findings suggest that Ts is, in fact, suitable for
estimating economic responses to temperature
changes. For our GDP analysis, we find similar
non-linear response functions using Ta and Ts over
most of the temperature support, particularly at the
upper end of the temperature distribution where
income appears to be most sensitive to temperature
(figure 4). The R2 values for the two models are similar
5

(0.541 for Ta model, 0.539 for Ts model) and the out-
of-sample prediction RMSE values are indistinguish-
able. One apparent difference across temperature
measures is that the model with Ta finds a positive
effect of extreme low temperatures on income while
the model with Ts finds no effect over the same range
of the temperature distribution. However, the confi-
dence intervals for the two estimates are overlapping at
low temperatures.
4. Discussion

Overall, we find that Ts is a suitable replacement for Ta
in all three applications considered, with Ts even
outperforming Ta with respect to prediction error in
the Africa study, a region of low station density.
Another approach to evaluating Ts performance is to
compare the aggregated impacts from 1°C warming
estimated with models using Ts and Ta (figure 5). In
doing so we again find similar estimates for all
applications. This overall consistency is perhaps
somewhat surprising, given the often low correlations
between anomalies in Ts and Ta at the daily or 8-day
time scale. We view four factors as important in
explaining the relative success of Ts. First, some of the
‘noise’ in Ts vs. Ta relationships stems from errors in
the Ta measures, particularly in regions such as Africa
where Ta is often interpolated from anomalies at
stations tens of kilometers away. Second, much of the
noise likely cancels out when aggregating temperatures
to the monthly or seasonal time scales that are used in
regressions that relate outcomes to temperature. For
applications that require finer temporal resolution of
temperature measures, the noise in Ts may become
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more important—although again, whether it is larger
than noise in high-temporal-resolution Ta remains an
empirical question. Third, unlike ground measure-
ments, satellite data come from a consistent sensor.
Relative spatial variations could therefore be captured
more precisely with satellites than with ground
measurements from different instruments. Fourth,
in vegetated areas much of the noise in the daytime Ts
vs. Ta relationship arises from anomalous canopy
transpiration rates, with stressed canopies often several
degrees warmer than Ta whereas healthy canopies are
typically several degrees below Ta [8, 10]. Thus, Ts
provides a more direct measure of crop condition than
Ta, and this represents an advantage of Ts for
agricultural applications that may compensate for
some of its deficiencies.

The substitutability of Ts for Ta suggests the
potential usefulness of Ts for future study in areas with
limited availability of reliable temperature data. For
example, widespread surveys of health and econom-
ic activity such as the Demographic and Health
Survey (DHS) and Living Standards Measurement
Study (LSMS) are available in areas throughout the
world with extremely poor weather station avail-
ability. Linking these measured outcomes to the
MODIS Ts record, which now spans over 13þ years,
will enable improved understanding of how climate
trends and extremes affect human livelihoods
around the world.
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