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Abstract
Human impacts increasingly affect the global hydrological cycle and indeed dominate
hydrological changes in some regions. Hydrologists have sought to identify the human-impact-
induced hydrological variations via parameterizing anthropogenic water uses in global
hydrological models (GHMs). The consequently increased model complexity is likely to
introduce additional uncertainty among GHMs. Here, using four GHMs, between-model
uncertainties are quantified in terms of the ratio of signal to noise (SNR) for average river
flow during 1971–2000 simulated in two experiments, with representation of human impacts
(VARSOC) and without (NOSOC). It is the first quantitative investigation of between-model
uncertainty resulted from the inclusion of human impact parameterizations. Results show that
the between-model uncertainties in terms of SNRs in the VARSOC annual flow are larger
(about 2% for global and varied magnitude for different basins) than those in the NOSOC,
which are particularly significant in most areas of Asia and northern areas to the
Mediterranean Sea. The SNR differences are mostly negative (�20% to 5%, indicating higher
uncertainty) for basin-averaged annual flow. The VARSOC high flow shows slightly lower
uncertainties than NOSOC simulations, with SNR differences mostly ranging from �20% to
20%. The uncertainty differences between the two experiments are significantly related to the
fraction of irrigation areas of basins. The large additional uncertainties in VARSOC
simulations introduced by the inclusion of parameterizations of human impacts raise the
urgent need of GHMs development regarding a better understanding of human impacts.
Differences in the parameterizations of irrigation, reservoir regulation and water withdrawals
are discussed towards potential directions of improvements for future GHM development. We
also discuss the advantages of statistical approaches to reduce the between-model uncertainties,
and the importance of calibration of GHMs for not only better performances of historical
simulations but also more robust and confidential future projections of hydrological changes
under a changing environment.
© 2017 IOP Publishing Ltd
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1. Introduction

Human activities have greatly affected the hydrological
cycle [1, 2], whereas the simulation of human water
uses and model uncertainties therein are still great
challenges for global hydrological modeling [3].
Model simulations have shown that discharge has
been increasingly disturbed by human water uses in
the late 20th century [4]. In the recent decade,
hydrologists have made large efforts to identify the
human impacts on hydrological cycle under a
changing environment [5–11]. The major human
impacts (e.g. irrigation and reservoirs) have beenmore
or less parameterized in many global hydrological
models (GHMs) [12–18].

However, large discrepancies among models result
from the differences in model input, algorithms,
parameters, etc. [3, 19]. The parameterizations of
human impacts vary greatly across GHMs and thus
possibly bring extra discrepancies among models.
Hydrologists are aware of the uncertainties among
GHMs and some intercomparison projects have been
initialized to profile them. For example, the between-
model uncertainties for naturalized simulations of
GHMs have been investigated through the Water
Model Intercomparison Project (WaterMIP) [20] and
the Inter-Sectoral Impact Model Intercomparison
Project (ISIMIP) Fast-track [21, 22]. The humanwater
uses such as irrigation are remarkable in some regions
with intensive human impacts (e.g. western United
States, China, and South Asia), and can induce
considerable uncertainties in hydrological projections
for the future [9, 23]. All these prior studies showed
large discrepancies among GHMs in future hydro-
logical projections, however, these uncertainties might
result from numerous differences among GHMs, e.g.
different input data and model algorithms, which
makes it difficult to clarify the uncertainty sources. The
ISIMIP phase 2 provides a framework for comparing
and evaluating multiple GHMs based on consistent
input data, e.g. meteorological forcings, human
impacts (reservoirs and irrigation area), and drainage
network for flow routing. In view of the potential
influence of human impacts on the GHMs simu-
lations, it is now possible to examine the changes of
between-model uncertainty induced by the inclusion
of human impacts in GHMs quantitatively, based on
the ISIMIP2 simulation protocol.

In this study, we use four GHMs to investigate the
uncertainty changes in the simulations with and
without human impact parameterizations. On this
basis, we further provide discussions on the differences
in the parameterization of human impacts, which are
associated with between-model uncertainties. This
paper is organized as follows: description of models,
experiments and methods are presented in section 2;
results are presented in section 3; the implications of
the results are discussed in section 4 and a summary is
presented in section 5.
2

2. Data and Methodology
2.1. Models and experiments
River flow simulations from four GHMs, i.e. DBH
[24–26], H08 [12, 27], LPJmL [28, 29], and PCR-
GLOBWB [30, 31], forced by four meteorological
forcing data, namely Princeton [32], GSWP3 [33]
(http://hydro.iis.u-tokyo.ac.jp/GSWP3/), WFDEI [34]
and WATCH [35], for the historical period 1971–2000
are used in this study. A description of the models is
given in table S1 (available at stacks.iop.org/ERL/12/
025009/mmedia). Two experiments were conducted
for all GHMs and forcings: (1) simulations under
natural condition without human impacts (i.e.
naturalized simulations, refer to NOSOC) and (2)
simulations with human impacts including irrigation
and reservoir regulation, which is related to varied
socioeconomic information (refer to VARSOC).

2.2. Human impacts in GHMs
In the experiment, human impacts are considered in
terms of irrigation and reservoir regulation. Time-
varying areas of both irrigated and rainfed cropland are
represented as the combination of present-day (year
2000) areas of crop types from MIRCA2000 [36] and
backward trends of agricultural land cover fromHYDE
[37]. The reservoir (dam) information is derived from
theGlobal Reservoir andDam (GRanD)Database [38],
with the locations re-arranged to half-degree grid cells
based on the global drainage direction map (DDM30)
[39]. The reservoirs are included or not for regulation
according to the documented year of completion.
Reservoirs and irrigation areas used in the experiment
are shown in figure S1. The river basin delineations
defined by the DDM30 data [39] are used for analysis at
basin scale. The parameterizations of human impacts in
the four GHMs are summarized in table S1 by referring
to the relevant literature, e.g. [9, 30], who have
documented the human water uses in several state-
of-the-art GHMs specifically including those used here.

2.3. Uncertainty measurement
Streamflow simulations from the experiment with
human impacts are compared with the observed
station data from the Global Runoff Data Centre [40]
to evaluate the performances of GHMs. Annual flow
(AF) and highest monthly flow (HMF) for each year,
and their means over the study period, i.e. mean
annual flow (MAF) and mean highest monthly flow
(MHMF) are computed. Relative errors between
simulated and observed MAF and MHMF, and the
correlation coefficients between simulated and ob-
served AF and HMF are calculated for each station.
The respective simulated streamflow is picked out
from the global grids according to the latitudes and
longitudes of stations. The stations (1235 in total) with
record lengths of more than 20 years and catchment
areas larger than 10 000 km2 are used for comparison
(see figure S2).

http://hydro.iis.u-tokyo.ac.jp/GSWP3/
http://stacks.iop.org/ERL/12/025009/mmedia
http://stacks.iop.org/ERL/12/025009/mmedia
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Figure 1. Evaluation of the ensemble discharge means across all GHM-forcing combinations with GRDC observations: (a) ensemble
means of simulated (MHMF_Sim) versus observed MHMF (MHMF_Obs), (b) ensemble means of simulated (MAF_Sim) versus
observedMAF (MAF_Obs), (c) correlation between simulated and observed HMF (HMF_corr) versus correlation between simulated
and observed AF (AF_corr). The colors of data points indicate the catchment areas of hydrological stations.
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The signal to noise ratio (SNR), defined as the
mean divided by the standard deviation, is used as an
indicator of uncertainty among the multimodel
simulations. SNR is calculated for global and basin-
averaged MAF and MHMF from model grid cells to
address the uncertainty in the simulations with and
without human impacts. SNR differences between the
experiments with and without human impacts are
interpreted as the change of uncertainty caused by the
inclusion of human impacts in GHMs. Annual SNR is
also computed for global AF and HMF for temporal
change analysis during the 1971–2000 period.
3. Results
3.1. Evaluation of GHMs
Figure 1 shows the observed MHMF (figure 1(a)) and
MAF (figure 1(b)) versus the ensemble means of
simulations across all GHM-forcing combinations.
Both MHMF and MAF simulations show large
deviations at many stations with relatively small
catchment areas, while stations with large catchment
areas tend to show little deviation. For the ensemble
means, about 10% of the stations show small relative
errors of �10% to 10%, while more than 40% of
stations show relative errors of �50% to 50% for both
MHMF and MAF. For the ensemble of individual
GHM, no more than 10% (15%) of stations show
3

small relative errors of �10% to 10% for MHMF
(MAF), and about 20% to 30% have relative errors of
�50% to 50% for both MHMF and MAF (see table
S2). The simulations of MAF show generally better
performance than those of MHMF at most stations,
but both of them seem to be overestimated at many
stations.

The correlation coefficients between the simulated
and the observedHMF andAF are shown in figure 1(c).
The correlation coefficients for AF are significantly
larger than those for HMF. Nearly 70% (85%) stations
have correlation coefficients greater than 0.6 for HMF
(AF). The proportions are larger than those for
individual models (see table S3). This brief evaluation
indicates that improvements of GHMs are necessary to
capture river flows, particularly in small catchments,
and ensemblemeans ofmultimodel simulations usually
fit better to observations.

3.2. Uncertainty assessment
Figure 2 shows the SNRs for the experiment with
human impacts and the SNR differences between the
experiments with and without human impacts for
global HMF and AF. During the 1971–2000 period, the
all-ensemble SNR of global HMF ranges from 4 to 5,
and SNR of global AF ranges from 4.5 to 5.5. SNRs
show large spread among different meteorological
forcings (see figures 2(a) and (c)): the WATCH’s SNR
is the smallest (∼4 for HMF and 4.5–5 for AF) over the
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historical period; WFDEI’s SNR shows the same value
as WATCH’s before 1979 (WFDEI and WATCH share
the same data for this period) and then increases
greatly to be the largest (∼5.5 for HMF and ∼7.5 for
AF) among those of the four forcings; the PGMF’s
SNR and the GSWP3’s SNR are very close (5–5.5) for
HMF, but the former (from 6.5 to 5.5) is slightly
smaller than the latter (from 7.5 to 6.5) for AF. This
indicates that the uncertainties in historical climate
data bring large discrepancies to GHMs simulations,
which agrees with previous studies [41].

The SNR for the simulations with human impacts
is generally larger (smaller) than for the naturalized
simulations regarding global HMF (AF). SNR differ-
ences for global HMF (figure 2(b)) increase over time,
whereas the ensemble SNR difference ranges from 0.1
to 0.3 (2%–6%); the WATCH’s SNR difference is the
smallest, ranging from 0.1 to 0.2, while SNR differ-
ences for other forcings mostly range from 0.2 to 0.5,
which show relative large interannual variations. SNR
differences for global AF (figure 2(d)) show consider-
able interannual variation. The all-ensemble SNR
difference ranges from �0.12 (2%) to zero; the
WATCH’s SNR difference is also the smallest, and the
other SNR differences mostly ranges from 0.05 to 0.15.

Figure 3 shows the SNR differences between
the simulations with and without human impacts for
the basin averagedMHMF andMAF, respectively, over
the 1971–2000 period. The SNR differences for HMF
at basin scale shows many negative values (indicating
larger uncertainties), e.g. some basins in Europe,
North India, and South China (figure 3(a)). There are
4

generally small changes in the basins with a few
reservoirs and irrigation areas, but considerable
positive SNR differences (lower uncertainties) are
found for the Yenisey and Lena basins. Lower
uncertainties are also found in some major basins
with great human impacts, such as the Liao River and
Hai River of China, the Don River of Russia, the Amu
Darya River in Central East, the Tigris-Euphrates
River in West Asia, the Zambezi River in Africa, and
the São Francisco River in South America. However,
only a relatively weak relationship (with a correlation
coefficient of 0.18) is found between the basin
MHMF’s SNR difference and reservoir storage
capacity, as shown in figure 3(c).

SNRs for MAF simulations with human impacts
are mostly smaller than naturalized simulations at
basin scale. Large differences are observed in some
major river basins with great human impacts, such as
the Chang Jiang and Huang River basins of China, the
Ganges, Godavari and Krishna Rivers of India, the
Indus River of Pakistan, the Amu Darya River in
Central East, the Tigris-Euphrates River in West Asia,
and the Danube River in Europe. It indicates that
uncertainty increases in MAF simulations with human
impacts in these regions. Only a few positive SNR
differences (lower uncertainty) are found, e.g. in the
Hai and Liao River of China and the East Coast of
Caspian Sea. The SNR differences for MAF are
relatively well related to the basin irrigation area
(correlation coefficient �0.41; figure 3(d)), indicating
that between-model uncertainty is higher for the
basins with larger irrigation area.



–0.5 –0.4 –0.3 –0.2 –0.1 0.0 0.1 0.2 0.3 0.4 0.5

SNR difference

(a)

(c)

(d)

MHMF_SNR_diff

MAF_SNR_diff(b)

Reservoir storage capacity(106m3)

Ratio of irrigation area

S
N

R
_d

iff
 (

%
)

S
N

R
_d

iff
 (

%
)

60

40

20

0

–20

–40

30

20

10

0

–10

–20

–30

100  101  102  103  104  105 106

0 0.05 0.1 0.2 0.250.15

y = 1.89x – 5.13

y = –59.79x – 1.44

r = 1.18, p = 0.0003

r = 0.41, p = 0.0000

Figure 3. SNR difference (VARSOC – NOSOC) for basin MHMF (a) and MAF (b) simulations. SNR is computed for the basin
averages across all GHM-forcing combinations. Blue (red) color indicates that SNRs from experiment with human impacts are smaller
(larger) than SNRs from naturalized experiments. That is, the blue color indicates higher uncertainty while red color indicates lower
uncertainty. The inner plots show the SNR differences (in %) for basin averagedMHMF versus logarithm of reservoir storage capacity
(c) and basin averaged MAF versus logarithm of irrigation areas (d), respectively. Basins with none reservoir or irrigation area are not
included in the inner plots; SNR differences above or below three standard deviations are omitted.

0.0 0.2 0.4 0.6 0.8 1.0
SNR_HI/SNR_NOSOC

Figure 4. The ratios of SNR of human-impact-induced MAF differences (NOSOC–VARSOC) to SNR of naturalized MAF
simulations. SNR_HI: the SNR of the MAF differences (NOSOC–VARSOC) between the simulations without and with human
impacts at basin scale; SNR_NOSOC: the SNR of MAF simulations without human impacts at basin scale.

Environ. Res. Lett. 12 (2017) 025009
Figure 4 shows the ratios of the SNR of human-
impact-induced MAF differences to the SNR of
naturalized MAF at basin scale. The numerator is the
SNR of MAF differences between the simulations with
5

andwithouthuman impacts. The smaller the ratio is, the
larger uncertainty in human impact simulations is,
and vice versa. The ratios are less than one (mostly
< 0.5) for many basins (particularly those with
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numerous irrigation areas and reservoirs), that is, the
SNR of human-impact-induced MAF differences are
obviously smaller than the MAF SNRs (see figure S3).
The southern basins and the Hai River basin in China
and many basins in Europe with intensive human
activities show very small ratios that less than 0.2.
Only several basins show large ratios greater than one,
such as the Tarim Interior of China, the Volga of Russia,
St Lawrence in North America, and the Shebelli–Juba
and some northern basins in Africa where irrigation
areas are small and reservoirs are few. It indicates that the
human impact simulations—i.e. the human-impact-
induced MAF differences—show larger uncertainties
compared to the naturalized simulations in these
regions.

Unlike the SNR differences in figure 3, the ratios in
figure 4 are very weakly related to both the fraction of
irrigation area and reservoir storage capacity. Never-
theless, uncertainty in irrigation—as the largest
human water use—perhaps plays a key role for the
small SNRs. For example, the actual water withdrawal
for irrigation (IRRWW) simulated by GHMs shows
considerable differences and is significantly under-
estimated compared to reported data (see figure S4).
4. Discussion

The simulated river flows show large deviations with
overestimation at many hydrological stations com-
pared to GRDC observations. This may be due to
regional overestimation of runoff generation and the
underestimation of anthropogenic water uses (e.g. see
figure S4) and soil water storage [42]. The between-
model uncertainties are measured in terms of SNR,
which are larger (a bit smaller) in the annual flow (high
flow) simulations with human impacts than in the
naturalized simulations. The differences of between-
model uncertainty from the two experiments are
relatively small (2%–4%) at global scale but are more
significant for some regions. Previous studies showed
that human intervention (e.g. irrigation water
withdrawal) largely altered regional water cycle
[9, 43]. The human impacts are primarily represented
by anthropogenic water uses (irrigation, industrial
domestic, etc.) and reservoir regulation in the GHMs,
which increase the model complexity with respect to
model structure and parameters.

The different model algorithms and various
parameters should be responsible for the large
between-model uncertainties [3]. The uncertainties
due to the different responses of GHMs to climate
input are beyond the scope of this paper. However, it is
noted that the differences in naturalized simulations
resulted from the different responses also will
influence the simulation of human water uses (e.g.
irrigation). Regarding to the simulations of human
impacts, the severely lack of water uses data primarily
in developing countries should be one of the major
6

reasons leading to great deviations to observations and
uncertainties among GHMs. Here, we focus on the
differences of the between-model uncertainties be-
tween the experiments with and without human
impacts, and the discussion of the potential major
sources of the uncertainties associated with the
different parameterizations of human impacts in
GHMs.

4.1. Uncertainties in irrigation simulations
The simulation of irrigation, the largest anthropo-
genic water use, is likely to contribute to the
discrepancies in the simulations of human impact
by GHMs, as indicated by the relationship between
the SNR difference and irrigation area (figure 3(d)).
Irrigation water demand is usually estimated as the
difference of potential crop evapotranspiration and
local available soil (green) water. Therefore, uncer-
tainties in IRRWW simulations are largely associated
with the estimation of crop evapotranspiration, soil
moisture, and irrigation efficiency. Though all four
GHMs use the FAO Penman-Monteith equation to
estimate the potential crop evapotranspiration, the
simulated potential water withdrawal for irrigation
can be significant different (see figure S4(c) and (d)).
The irrigation efficiency (the ratio of irrigation water
use to the total water withdrawal) varies across the
GHMs (see table S1) and may significantly influence
the estimation of potential and actual water
withdrawal for irrigation. On the other hand, the
implementations of water withdrawals in GHMs may
be different in several aspects, which are partly
responsible for the differences in IRRWW, such as the
accessibility to available water for a grid cell, the
proportion of withdrawal from river, reservoir and
groundwater, and the allocation of the water supplies
for different sectors from a reservoir. Hence,
irrigation schemes and associated parameters need
to be reconciled against the observed regional
conditions to provide more consistent IRRWW
simulations at both global and regional scales.

4.2. Uncertainties in reservoir simulations
Reservoir regulation scheme is critical in coupling
human-induced and natural hydrological changes in
GHM simulations. Human impacts on hydrological
processes could be much more complex than the
simulations in this study for they are associated with
many socioeconomic factors. For instance, irrigation is
linked to reservoir regulation and regional water
allocation, while reservoir regulation rules are mostly
defined by energy demand, flood control, various
water supplies, and even the energy and food prices
[44]. The role of reservoir regulation therein makes the
simulation be relatively uncertain. Water losses due to
evaporation are particularly significant for some small
reservoirs [45], which may result in uncertainty in
reservoir regulations since not all GHMs consider this
process (table S1).
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The different reservoir regulation schemes inevi-
tably bring uncertainties to river flow simulations.
Though the GHMs more or less take the reference of
[46] or [47] in their reservoir regulation development,
the adapted rules are still (perhaps largely) different
[15, 48, 49]. The reservoir regulation may produce
significantly different simulated hydrographs of the
dammed rivers by the GHMs [50]. Nevertheless, the
uncertainty differences for both annual flow and
high flow are weakly related to the reservoir storage in
this study. It is noted that the simulations of high flow
are less discrepant among GHMs in some basins
(figure 3(c)) with large storage capacity of reservoirs
(e.g. the Bratsk, Irkutsk reservoirs in the Yenisey basin
and Vilyui reservoirs in the Lena basin) and small
irrigation areas, where the reservoir regulation greatly
determine the variations of downstream flow [51]. At
global scale, the slightly higher consistency in the high
flow simulations with human impacts perhaps results
from the universal flood control rules in GHMs which
are greatly associated with reservoir storage capacity
and annual average inflows.

4.3. Uncertainties in simulations of groundwater
withdrawal
Groundwater withdrawal is also a key source for to the
IRRWW in some regions [52]. However, modeling of
groundwater availability remains a challenge due to
the complex interactions between surface water and
groundwater [10, 53], and the large differences in the
implementation of groundwater withdrawal give rise
to significant discrepancies among GHMs [54]. The
proportion of withdrawals from groundwater (Rgrd) is
a key parameter associated with the groundwater
withdrawal estimation. In current GHMs, due to
insufficient historical data at global scale, the
proportion of groundwater withdrawal is often
estimated according to water use demand and surface
water availability—in this case the amount of
groundwater pumping was often unlimited [55]—or
further constrained by estimated groundwater avail-
ability and historical groundwater pumping data
[30, 56–58]. Leng et al [59] showed that the calibrated
Rgrd using historical census data could largely improve
the simulation of irrigation amount in the USA
(see their figure 3). The PCR-GLOBWB model limits
the groundwater withdrawal according to its availabil-
ity and the reported groundwater pumping data based
on the International Groundwater Resources Assess-
ment Centre, and obtains better performances in the
simulations of groundwater withdrawal [30], although
it may result in deviation in the IRRWWestimates in
regions like India and Pakistan where groundwater
pumping remains unreported in many parts. This
studies suggested that Rgrd could be determined from
historical data and is useful for improving the
simulation of groundwater withdrawal, and thus
reduce the uncertainty among GHMs. Besides, the
uncertainties in estimated water use demand, surface
7

water and groundwater availability will be propagated
to the groundwater withdrawal estimation. The
groundwater use efficiency usually was taken the
same as the surface water, but it was supposed to be
higher [60]. Potential uncertainty resulted from this
parameter needs further investigation.

4.4. Potential of reducing uncertainties in
multimodel simulations
Validation and calibration of GHMs against historical
observations would advance model development, and
are perhaps a crucial means to refine the GHMs
simulations and to narrow the spread therein [61, 62].
Regarding the large spread in the simulations of
human water uses, validations of individual sectoral
water uses or hydrological components are necessary
to get access to more constrained and confident
hydrological modelling. Though the robust hydro-
logical response to climate change in GHMs during
historical period would not necessarily imply good
model performances—not necessarily narrow model
spread either—in future projections, the historical
credits of GHMs would benefit the assessment
presented by the ranges of hydrological changes with
higher confidence [3, 63].

On the other hand, to some degree, the discrepant
GHMs simulations further call for multimodel
assessment rather than that based on a single model
[64]. Before one can achieve better performing and
more consistent hydrological predictions by GHMs,
advanced statistical tools may be useful to improve the
projections from multimodel ensembles for the
assessment of climate change impact. For example,
the Bayesian model averaging scheme can be an
effective tool to obtain hydrological projections with
less between-model uncertainties by weighting the
individual model prediction with their likelihood
measures [64].

Modeling of the dynamics of human water uses is
still a great challenge since sectoral water use
efficiencies are kept changing (improving) in the
wake of technological developments and management
changes. Döll et al [3] pointed out that the major
challenges in modeling human water uses in GHMs
come from input data, model algorithms, scaling
issues, and etc. (see their table 1). Particularly, more
data of human water uses are urgently needed to
further understand the human disturbances on
hydrological cycle and therefore to derive better
descriptions of them in terms of mathematical models.
We noted that capturing the linkages between sectors
in terms of water use would also be a major challenge.
Two-way coupling of human water uses at different
scales as well as the natural hydrological processes in
GHMs is perhaps necessary to mimic the connected
and competitive water uses among sectors. Therefore,
full representation of human impacts in global
hydrological modeling under climate change raises
the request of dynamically coupling the so-called
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nexus of climate-water-energy-food [65, 66]. This
would be more essential for future projections of water
resources and uses with regard of various socioeco-
nomic scenarios [31, 67].
5. Conclusions

Global river flows simulated by four GHMs are
validated and the between-model uncertainties in
terms of SNR are investigated with respect to the
inclusion of human impacts in the GHMs. The GHMs
show relatively poor performances with considerable
between-model uncertainties in the simulations of
annual (AF) and high flow (HMF). Main conclusions
can be drawn as follows.
1.
 Over the historical period (1971–2000), the
GHMs show limitations in modeling AF and
HMF at many stations—particularly for those
from small basins, while relatively better perfor-
mance is observed at many large basins. The
multimodel ensemble means fit better to observa-
tions than individual models.
2.
 With consideration of human impacts (irrigation
and reservoirs in this paper), the between-model
uncertainties of simulated annual flow are higher
(∼2% on average globally in terms of SNR)
compared to those from naturalized simulations,
but are lower (2∼4% globally) for the simulated
high flow. The uncertainty differences are largest
in most areas of Asia and northern countries of
the Mediterranean Sea, and they appear to be
significantly related to the fractional irrigation
area of river basins.
3.
 The consistency of human impacts simulations
between GHMs is much less pronounced than in
the naturalized simulations, probably due to
differences in the parameterizations of human
impacts (especially the irrigation).

The large uncertainties in human impact param-
eterizations put forward the need for further
development of GHMs (not only for the models used
in this paper) to reduce between-model uncertainties
associated with irrigation and reservoir regulation. It is
the first quantitative investigation of between-model
uncertainty resulting from the inclusion of human
impact parameterizations, and the quantitative meth-
od may be used to examine uncertainty caused by
other parameterizations in GHMs. In this study, we
emphasize that calibration of GHMs including
representations of the anthropogenic effects on the
water cycle are essential for global hydrological
modeling of a changing environment. Reconciliation
of human water uses schemes and associated
parameters in GHMs with global and regional
observations would facilitate improvement of human
8

impact parameterizations. Ensemble prediction
approaches are promising tools for reducing uncer-
tainty in model intercomparison projects, and would
benefit future hydrological projections in assessment
of climate change impact.
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