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Abstract
Arctic warming over the Barents–Kara Seas and its impacts on the mid-latitude circulations have
been widely discussed. However, the specific mechanism that brings the warming still remains
unclear. In this study, a possible cause of the regional Arctic warming over the Barents–Kara Seas
during early winter (October–December) is suggested. We found that warmer sea surface
temperature anomalies over the western North Atlantic Ocean (WNAO) modulate the transient
eddies overlying the oceanic frontal region. The altered transient eddy vorticity flux acts as a
source for the Rossby wave straddling the western North Atlantic and the Barents–Kara Seas
(Scandinavian pattern), and induces a significant warm advection, increasing surface and lower-
level temperature over the Eurasian sector of the Arctic Ocean. The importance of the sea surface
temperature anomalies over the WNAO and subsequent transient eddy forcing over the WNAO
was also supported by both specially designed simple model experiments and general circulation
model experiments.
1. Introduction

The rapid increase in Arctic temperature and retreat of
sea ice have been reported and widely discussed in the
scientific literatures (Comiso et al 2008, Stroeve et al
2012, Vihma 2014). The increase in Arctic temperature
is most pronounced during early winter (October-
–December) and is not spatially uniform, but exhibits
several particular regional warm cores (Screen and
Simmonds 2010) including the Barents–Kara Seas,
East Siberian–Chukchi Seas, and northeast Canada
and Greenland. Interestingly, the atmospheric warm-
ing over each location in the Arctic is known to lead to
mid-latitude cooling, but with quite different spatial
patterns (Mosley-Thompson et al 2005, Cohen et al
2012, Francis and Vavrus 2012, Hanna et al 2014, Kim
et al 2014, Mori et al 2014, Kug et al 2015,
Nakanowatari et al 2015, Lim et al 2016). Therefore,
© 2017 IOP Publishing Ltd
the peculiar recent phenomena called ‘Warm Arctic-
Cold Continents’ (Overland andWang 2010, Overland
et al 2015) can be effectively categorized by the
regional warm cores in the Arctic.

Although there are many studies on how the
above-mentioned regional Arctic warming and re-
duced sea ice cover over those regions could induce
cold winter extremes in mid-latitudes, relatively few
studies have been devoted to finding the driving
mechanism for those regional Arctic warming events.
Recently, a linkage between the oceanic thermal
condition of the North Atlantic Ocean and Arctic
surface temperature has been suggested (Zhang et al
2013, Nakanowatari et al 2014, Sato et al 2014, Luo
et al 2016), which is supported by other findings that
show both the surface air temperature over the
Barents–Kara Seas (BKSAT) and sea surface tempera-
ture (SST) over the western North Atlantic Ocean

mailto:baekmin@gmail.com
https://doi.org/10.1088/1748-9326/aa5f3b
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aa5f3b&domain=pdf&date_stamp=2017-3-13
https://doi.org/10.1088/1748-9326/aa5f3b


Environ. Res. Lett. 12 (2017) 034021
(WNAO) have rapidly increased in recent decades
(Wu et al 2012, Pershing et al 2015, Saba et al 2016). It
is also found that the warming over the WNAO is in
association with the northward shift of SST front over
the Gulf Stream (Minobe et al 2008, Wu et al 2012).

Among these studies, we revisit Sato et al (2014)
which provides a close observational link between the
Barents–Kara Seas and the WNAO, over which the
northern part of the Gulf Stream passes. Using linear
baroclinic model experiments, Sato et al (2014)
suggested that the changes in the local diabatic
heating in association with the poleward shift of the
Gulf Stream can induce a large-scale circulation
pattern travelling into the Arctic inducing significant
Arctic warming. However, the linear response shown
in figure 5(d) of their paper was quite weak and more
importantly, missed a possible contribution from the
large baroclinic eddy activities over the region, which
is amply noted by other studies (Sampe et al 2010,
Frankignoul et al 2011, Sung et al 2014). As the
transient eddy forcing in the North Atlantic tends to
induce the large-scale teleconnection pattern, called
the Scandinavian pattern (SCAND), travelling over
the north Atlantic and Arctic (Bueh and Nakamura
2007), it is important to take into account baroclinic
eddy activities.

In this regard, Sato et al (2014)’s study is
incomplete, although their finding casts considerable
light on the divergent perspectives about ‘Warm
Arctic-Cold Continents’ by revealing that apparent
links between the Barents Sea ice cover and cold
Eurasian winters form just a sector of a tele-
connection pattern that originates remotely in the
North Atlantic Gulf Stream region (Simmonds and
Govekar 2014). Therefore, it is worthwhile evaluating
whether the warming over the WNAO induces a
sufficient transient eddy forcing for the large-scale
teleconnection pattern over the North Atlantic and
Arctic region.

In this study, we aim to provide a more plausible
explanation on how the warm SST anomaly in the
WNAO sector modulates the Eurasian teleconnections
and affects warming over the Arctic, and in particular,
the Barents–Kara Sea in early winter. Special attention
will be devoted to the role of transient eddy forcing,
which was not studied by Sato et al (2014). The relative
importance of transient eddy forcing to the thermal
forcing was assessed by a simple model specially
designed to treat each forcing separately. General
circulation model experiments were also conducted to
support observational findings and simple model
results.
2. Datasets and methods

The primary observational dataset used in this study
includes Hadley Centre Sea Surface Temperature
(HadISST) data with 1° � 1° horizontal resolution
2

(Rayner et al 2003) and the re-analysis dataset obtained
from the U.S. National Centers for Environmental
Prediction (NCEP)/National Center for Atmospheric
Research (NCAR), which has a 2.5° � 2.5° horizontal
resolution (Kalnay et al 1996). Both the daily and
monthly mean dataset for the 1979–2013 period were
utilized in this study.

In order to investigate distinguishable influences
from several independent SST modes of the North
Atlantic Ocean separately, Empirical Orthogonal
Function (EOF) analysis was applied for early
winter (October–December) mean SST anomalies
over the North Atlantic Ocean domain (95°W∼15°E,
20.5°N∼88°N). Latitude weighting was applied by
multiplying the square root of the cosine prior to the
EOF analysis. North’s rule of thumb (North et al
1982) was used to test the significance of EOF modes.
Regression analysis was conducted using the obtained
EOF principal component (PC) time series to retrieve
the associated circulation patterns.

In this study, interannual variability of surface air
temperature over the Atlantic sector of the Arctic
region in early winter is represented by the
detrended time series of area-averaged BKSAT.
The boxed area indicated in figure 1(a) was used
as the area average.

The stationary wave model (hereafter SWM, Ting
and Yu (1998)) was employed to examine the
dominant forcing mechanism of stationary Rossby
waves. This SWM is the dry dynamical core of a fully
nonlinear baroclinic model. The prognostic variables
include vorticity, divergence, temperature and log-
surface pressure with R30 truncation in the horizontal
and L14 vertical levels on sigma coordinates. The main
forcings in this model were diabatic heating, conver-
gence of transient eddy vorticity fluxes and transient
eddy heat fluxes. The forcing terms can be tested using
idealized distribution or diagnosed forcing fields
derived from observations. In this study, the latter
approach was used (see supplementary information
available at stacks.iop.org/ERL/12/034021/mmedia).
The three forcing terms can be defined as:

TFvor ¼ �DðV 0; j0 Þ ð1Þ
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where j is the vorticity, V is the horizontal wind, p is
pressure, v is the pressure vertical velocity, and TFvor

and TF temp indicate the non-linear transient eddy
vorticity flux convergence and transient eddy heat flux
convergence, respectively. Q1 indicates the monthly
mean diabatic heating. Note that Q1 used in this study
is different from that in Sato et al (2014) because of the
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Figure 1. Regression of early winter mean (OND mean) (a) SST and (b) 250 hPa geopotential height and wave activity on the
detrended BKSATregion ( 30°∼70°E, 70°∼80°N), denoted by the black box in figure 1(a). (c) Normalized time series of Scandinavian
teleconnection index (SCAND, green line) and detrended BKSAT (black line). Hatch represents significance at 95% level of
confidence.
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existence of TF temp in (3). The bar represents the
monthly mean and prime shows the deviation from
the monthly mean. Further details of the model
equations or information can be found in Ting and Yu
(1998) and Wang and Ting (1999).

To investigate the impact of SSTwarming over the
WNAO in a more realistic modelling framework, we
used a fully coupled general circulation model (GCM),
Climate Model Version 2.1 (CM2.1) developed by the
Geophysical Fluid Dynamical Laboratory (GFDL)
(Delworth et al 2006). As a control run, we conducted
climatological equilibrium simulations with 400 ppm
CO2 for 100 years. In a forced simulation, SSTover the
WNAO region (the box in figure 5(a), i.e. 38oN–48oN,
55oW–75oW) was restored toward the prescribed
warm SST conditions with 5 day restoring time scale.
According to Pershing et al (2015), the WNAO region
is the highest warming place on the earth and, in the
last decade, there was 2 °C increase of SST.
Accordingly, we prepared the warm SST condition
over the WNAO region by adding the observed SST
trend of the recent 11 years (2004–2014) to the
climatological SST fields of control run. Note that the
model freely evolves except for the boxed region in
figure 5(a) in the forced run. To estimate the response
to the SST forcing over the WNAO, we will analyze
differences between the results of the forced run and
the control run.
3. Results
3.1. Warming over Barents–Kara Seas and SCAND
teleconnection pattern
As suggested by Sato et al (2014), during early winter,
changes in surface air temperature, especially over the
Barents–Kara Seas in the Atlantic sector of the Arctic
Ocean, were closely related to changes in SST
variability over the WNAO (figure 1(a)). In addition
to the warming of WNAO, a colder regional SST
anomaly over the Labrador Sea was observed in
association with the warmer BKSAT constituting the
warm–cold–warm tri-polar pattern over a large area of
3

the North Atlantic and European sector of the Arctic
Ocean.

The warming over the Barents–Kara Seas in early
winter accompanies a well-defined upper-level circu-
lation pattern (figure 1(b)). This upper level circula-
tion pattern resembles the EU1 or the SCAND pattern
(Barnston and Livezey 1987). In fact, among the
teleconnection indices archived at the National
Oceanic and Atmospheric Administration (NOAA)/
National Center for Environmental Prediction
(NCEP)/Climate Prediction Center (CPC), the
SCAND index shows the highest correlation with
BKSAT. The correlation coefficient between the time
series of BKSAT and the early winter mean SCAND
index is 0.4, with greater than 95% confidence (figure
1(c)).

Interestingly, the wave activity flux vectors (Plumb
1986) in figure 1(b) indicate that the wave source
region is over the WNAO, not over the Barents–Kara
Seas where sea ice loss is pronounced. A large-scale
wave pattern with an anticyclonic centre over the
WNAO emanates and exhibits a travelling Rossby
wave pattern toward eastern Europe, the Barents–Kara
Seas, and eventually reaching northeast Asia. In
particular, a strong positive upper level geopotential
height anomaly over the western North Atlantic region
matches the positive SST anomaly over the WNAO.
Therefore, the warm SST in figure 1(a) over the
western North Atlantic region seems to play an
important role in the teleconnection. Furthermore, the
cold SST anomaly over the Labrador Sea and warm
SST anomalies over the Barents–Kara Seas in figure 1
(a) also match well with the geopotential height
anomalies in figure 1(b).

Combining the results displayed in figure 1, we set
a series of working hypotheses that can be tested by
simple numerical modelling experiments: 1) interan-
nual variability of the BKSAT is, in fact, largely
originated from theWNAO. 2) Awarmer SSTanomaly
over the WNAO causes warm temperature anomalies
over the Barents–Kara Seas via upper-level planetary
wave propagation, similar to SCAND and associated
warm advection.
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3.2. EOF analysis on North Atlantic SST variabilities
Prior to verifying the above hypotheses, we conducted
EOF analysis to determine whether there exists an
identifiable North Atlantic SST variability linked to the
Arctic warming over the Barents–Kara Seas. The early
winter averaged SST anomalies during the 1979–2013
period were decomposed into three dominant modes:
the first mode (EOF1) explains 36.6% of the total
variance and exhibits a strong linear trend. The
spatial pattern of EOF1 shows apparent warming
over the entire North Atlantic basin. Although the
pattern contains significant SST warming over the
Barents–Kara Seas, the correlation between the PC1
and BKSAT is low (0.07). Note that BKSAT is a
detrended index.

The second mode explains 14.5% of the variance,
and has three centres of action which are located over
the western North Atlantic Ocean, the northern North
Atlantic Ocean, and the eastern North Atlantic (figure
2(c)). The temporal correlation coefficient between the
second PC and BKSAT time series is very low (0.03)
indicating no significant relationship, as with EOF2
showing no anomalies in the Arctic Sea region. The
4

most similar pattern to the regressed pattern depicted
in figure 1(a) is described in EOF3, which shows a tri-
polar pattern with warm SST anomaly over the
WNAO; cold over the south of Greenland and
Labrador Seas, and warm over the Barents–Kara Seas.
The similarity is quite remarkable. As expected by the
warm centre over the Barents–Kara Seas in figure 2(e),
the PC3 time series shows a significant correlation
with the BKSAT time series (corr. = 0.4) at 99%
confidence level (figure 2(f)). The PC3 timeseries also
has a high correlation coefficient with the SCAND
index (corr. = 0.57) (table 1). According to North’s
rule of thumb, the three EOF modes are well separated
(North et al 1982).

It is notable that the SSTanomaly over the WNAO
lies over the northern edge of the Gulf Stream, which
shows a strong SST gradient (see isotherms in figure 2
(e)). The warm SST anomaly over this region may
represent the poleward shift of the Gulf Stream and
intense baroclinic zone. Since it is well-known that the
SST gradient associated with the western boundary
current is known to be a great source of baroclinicity
(Minobe et al 2008), it is the source of available



Table 1. Correlation coefficients among the atmospheric
teleconnection modes and the PC time series.

SCAND EAWR NAO

PC1 0.1 0.29 0.37

PC2 0.1 0.48a 0.02

PC3 0.57a 0.10 0.4

a Statistically significant at p < 0:01.
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potential energy for the growth of transient eddies.
This leads us to investigate the role of transient eddies
in the large-scale teleconnection pattern that links the
North Atlantic and the Arctic regions.

3.3. Physical mechanism of Atlantic origin of Arctic
warming
Atmospheric circulation features related with the
EOF3 of SST variability are depicted in figure 3.
Geopotential height anomaly at 250 hPa representing
the upper-level circulation features a wave train
pattern emanating from the WNAO toward
Eurasia across the north-eastern Atlantic and the
Barents–Kara Seas (contour in figure 3(a)). As
expected by the similarity between the SST anomaly
regressed on to the BKSAT (figure 1(a)) and the EOF
third mode (figure 2(e)), this upper-level circulation
pattern is similar to the SCAND pattern in figure 1
(b). The response is equivalent barotropic (contour in
figures 3(a) and (b)) and, therefore, the regressed
surface air temperature anomaly (shaded in figure 3
(a)) is in general in phase with the upper-level
geopotential height anomaly. The significant warm-
ing over the Barents–Kara Seas can partly be
explained by the enhanced warm advection along
the western edge of the anticyclonic anomaly over
western Europe induced by this barotropic large-scale
anomaly at lower-levels (figure 3(b)).

In association with the downstream propagation of
SCAND toward East Asia, cold temperature anomalies
appear primarily over Central and East Asia, where
upper-level cyclonic response dominates (figure 1(b)).
In this case, the upper-level cyclonic response reduces
the thickness of the air column over East Asia and
therefore, the column average temperature drops.
Combined with the climatologically strong northerly
flow in this region, strongcoldadvection is induced.The
warm and cold anomalies explained above resemble
‘Warm Arctic-Cold Continents’ or ‘Warm Arctic-Cold
Siberia’ pattern (Overland et al 2011, Inoue et al 2012,
Kim et al 2014, Mori et al 2014, Kug et al 2015).

Returning to the North Atlantic, the source region
of the wave train seems to lie in the WNAO region
(box in figure 2(e)). Compared with the EOF3 in
figure 2(e), this wave activity source region coincides
with the warm SSTanomaly over theWNAO. Sato et al
(2014) examined the possible role of the diabatic
heating over the WNAO by calculating the apparent
heat source and resultant linear stationary eddy
response. In this work, we investigated another
5

possibility. The warm SST anomaly over the WNAO
can be interpreted as the northward extension of the
Gulf Stream (Wu et al 2012) indicating northward
shift of the ocean front. Since the WNAO region
exhibits strong SST gradients as shown in figure 2(e),
we expect that the warm SST anomaly could alter the
activities of synoptic-scale eddies which are sensitive to
the temperature gradient and diabatic heat sources
(Brayshaw et al 2008, Nakamura et al 2008). Indeed,
the transient eddy activities estimated by the variance
of the 300 hPa daily meridional wind anomaly
regressed to EOF3 also shifted eastward compared
with its climatological position (figure 3(c)) and the
northward shift of Atlantic sub-polar jet occurred at
the same time (figure 3(d)). These results are
consistent with the previous studies that addressed
the importance of the SST gradient in the alteration of
transient eddy activities (Sampe et al 2010, Frank-
ignoul et al 2011, Sung et al 2014).

Combined changes in the transient eddy activities
and Atlantic sub-polar jet in association with the SST
variability over the WNAO hint at the possible role of
transient eddy activities on large-scale teleconnection
patterns (Bueh and Nakamura 2007, Lim and Kim
2016). To investigate the relative role of transient
eddies linked to SST variability over the WNAO, we
used the SWM alternatively forced by diabatic
heating or transient eddy forcing and estimated the
relative importance of each forcing term by compar-
ing the SWM responses forced by each forcing term
separately (see supplementary information).

Forcings and associated responses of SWM
experiments are represented in figure 4. Within the
boxed region of the WNAO, the negative TFvor in
figure 4(a) was consistent with significant high
anomalies shown in figure 1(b). Interestingly, the
diabatic forcing in figure 4(c) and convergence of
transient eddy heat flux compensated each other,
meaning that the diabatic heating was largely balanced
by eddy heat transport.

As noted previously, the WNAO region is a key
region of strong SST variability and is associated with
the large changes in SST gradient and in storm track.
We examined the relative importance of these three
forcings in the excitation of large-scale circulation. As
shown in figure 4, a major response was obtained with
transient eddy vorticity forcing and this forcing
reproduced the SCAND wave structure remarkably
(compare figure 3(a) and figure 4(a)). In addition, the
wave-like feature in the model response had a high
pattern correlation with observed SCAND pattern
(0.62). A relatively weaker contribution was obtained
from the transient eddy temperature forcing and total
diabatic heating forcing. Considering that we only
applied the forcing in the restricted region (black box
in figure 4), the result is rather surprising and confirms
the important role of the storm activities in large-scale
teleconnection patterns. These results provide evi-
dence that transient vorticity flux related to the SST
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Figure 4. Model response of geopotential height at 300 hPa forced by (a) transient eddy vorticity forcing, (b) transient temperature
forcing and (c) diabatic heat source. Forcing is only applied to the boxed region (75°∼50°W, 35°∼50°N). In (a), transient eddy vorticity
forcing at 300 hPa is represented. Values are normalized by 1011. In (b) and (c), vertically integrated forcing terms from 925 hPa to 300
hPa are represented and again normalized by 106. Model streamfunction response is converted to geopotential height by multiplying
10�5 divided by gravity.
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Figure 5. General circulation model (CM2.1) response of (a) SST, (b) 250 hPa geopotential height during early winter
(October–December). The model response is defined as difference between early winter mean of forced run and control run. In forced
run, SST is nudged only in the boxed region in (a) (75°∼55°W, 38°∼48°N).
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interannual variability over the WNAO is a key factor
for the SCAND teleconnection pattern.

The last evidence of the importance of SSTover the
WNAO for the Arctic warming comes from fully
coupled model experiments (figure 5). In general,
model experiments successfully capture various
features depicted in the observational analysis results:
Model SST response in figure 5(a) shows the warm-
cold-warm SST pattern similar to the EOF3 pattern
(figure 2(e)). Considering that the SST nudging was
only applied to the boxed region in figure 5(a) in the
model simulation. Therefore, the warm SST anomaly
over the Barents–Kara Seas was internally generated by
the fully coupled model as a response. The upper-level
response was also reproduced reasonably well (figure 5
(b)). Therefore, the results from the regression analysis
(figures 1 and 3) are supported by the fully coupled
model experiments.
4. Summary and discussion

Sato et al (2014) showed that the poleward shift of the
Gulf Stream influences the increase (decrease) of
temperature (sea ice extent) over the Barents–Kara
Seas and cooling over Eurasia through planetary waves
triggered over the Gulf Stream region. In this study,
the origins of the planetary waves are investigated in
detail.

First, we show that the variability in the surface air
temperature over the Barents–Kara Seas is largely
controlled by two dominant SSTmodes in the domain
including the North Atlantic Ocean and the Atlantic
sector of Arctic Ocean. The warming trends in both the
Atlantic Ocean and the Barents–Kara Seas are largely
depicted by EOF first mode and this pattern resembles
the basin-wide warming pattern. On the other hand,
interannual variability is controlled by the tri-polar SST
pattern depicted as EOF third mode in this study. The
third SSTmode represents the poleward shift of theGulf
Stream and accompanying changes in storm track as
indicated by Sato et al (2014).

Through a simple modelling study using SWM, we
concluded that the altered upper-level transient eddy
vorticity forcing in association with the changes in the
storm track plays a major role in the generation of the
SCAND pattern and therefore, plays a bridging role
between the North Atlantic Ocean and the Atlantic
sector of Arctic in early winter at the interannual time-
scale. We could reproduce an upper-level circulation
pattern that was very similar to SCAND only with
altered transient eddy vorticity forcing in the upper-
level.

The surface warm advection along the high
pressure center of SCAND at the Barents–Kara Seas,
which is essentially barotropic, is an important source
of warming of BKSAT. The direct influence of the
diabatic heating over the WNAO sector was relatively
minor compared to the transient forcing.
7

Although this study emphasizes the importance of
the enhanced transient eddy forcing during the warm
period of the WNAO, it should be noted that a large
portion of the warming is also contributed by the
subsequent reduction of sea ice concentration over the
Barents–Kara Seas through the enhanced energy fluxes
from the Arctic Ocean (figure A1 in supplementary
information). However, in this study, we did not
conduct any quantitative assessments on that part
since we are only interested in the Atlantic origin of the
warming.

It is still unknown why the transient eddy activities
show those systematic behaviors responding to the
specific SST patterns over the North Atlantic Ocean.
To deal with this issue, we need to understand how
individual Atlantic storms respond to warm SST over
the WNAO by tracking storm intensity and its passage
(storm track) along the storm. Both systematic
changes in storm intensity and track in association
with the particular SST pattern over the North Atlantic
should collectively contribute to the monthly-time-
scale transient eddy forcing. We are currently
investigating this problem by tracking individual
Atlantic storms.
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