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PERSPECTIVE

Climate change predicted to lengthen transatlantic travel times

Isla R Simpson
Climate andGlobalDynamics Laboratory, National Center for Atmospheric Research, Boulder, CO,USA
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Abstract
Among themany consequences of rising atmospheric greenhouse gas concentrations, is a change to
themedium throughwhich planesfly. An emerging area of research is the impact that these changes
may have on the airline industry, with studies addressing aspects ranging from the impact of rising
temperatures on aeroplaneweight restrictions (Coffel andHorton 2015Wea. Climate Soc. 7 94–102)
to the impact of changingwind shears on the occurrence of clear air turbulence (Williams and Joshi
2014Nat. Clim. Change 3 644–8). Now, a recent study by PaulWilliams (2016Environ. Res. Lett. 11
024008), assesses the impact that changingwindsmay have on the duration of transatlantic flights.

Most people who have taken a round trip flight across
the Atlantic are aware that it typically takes longer to
travel from east to west than fromwest to east. This is a
consequence of the prevailing westerly winds or jet
streams that circle the planet in themid-latitudes (e.g.,
figure 1(a)). As the planet warms under rising green-
house gas concentrations, these winds are expected to
change. This has consequences, not only for regional
climate and weather in the mid-latitudes, but also, as
pointed out by Williams [1], for transatlantic travel
times.

The possible impact of changing atmospheric cir-
culation on flight duration was previously assessed in a
study last year by Karnauskas et al [2] who examined
flight durations between Hawaii and the continental
US. By comparing interannual variability in the wes-
terly winds with flight duration records, they found, as
one might expect, stronger westerly winds favour
shorter eastbound journeys and longer westbound
journeys. The impacts on the westbound and east-
bound legs do not completely cancel, however, leaving
a net residual amounting to an overall lengthening of
round trip journeys under increased westerly winds.
The reason behind this residual remained illusive,
although it was key to the overall conclusion that pre-
dicted future increases in westerly winds in the East
Pacific will lengthen round trip flight durations in that
region.

Williams now explains this curious residual
through simple arguments, making it clear that, for a
flight on a direct great circle path, the residual is a sim-
ple consequence of the fact that flight duration is

inversely proportional to the sum of the air speed of
the plane and the tail wind speed. strengthened wes-
terly winds in the mid-latitude upper troposphere, as
is commonly simulated to occur under climate change
(e.g. [3] and figure 1(b)), should then be expected to
lengthen round trip transatlantic travel times. As a
simple example, take the approximate distance
between London and New York as 5500 km, present
day westerly wind speeds of 20 m s−1 and a future
increase in westerly wind speed of 3 m s−1. Assuming
the flight time is simply the distance divided by the
plane speed plus the tail wind speed, one finds that
under the increased westerly wind speed of 3 m s−1,
the eastbound journey is shortened by approximately
3 min 53 s, whereas the westbound journey is length-
ened by 5 min 16 s. The overall round trip is, therefore,
lengthened by 1 min 23 s.

But how does one go about quantifying themagni-
tude of this effect or the impact it will have? The reality
is not as simple as in the above example. The planning
of flight routes is complex with the optimal route
deviating from the direct great circle path according to
day to day variability in the wind field. To consider
how flight durations will change in the future, one
must not only consider how the winds are expected to
change, but also how the optimal flight paths, as deter-
mined by flight planners,may change.

To address this issue, Williams applies a flight
planning algorithm, used by the airline industry, to
examine the optimal routes and flight durations for
journeys between London and New York. Wind fields
generated from a global climate model under a
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doubling of pre-industrial atmospheric CO2 are fed in
to this algorithm day by day for 20 years to accumulate
statistics of the optimal flight paths and journey times
under doubled CO2 wind conditions. These are then
compared with similar calculations performed using
wind output from a control simulation at pre-indus-
trial CO2 levels. Results indicate that round trip jour-
ney times will increase throughout the year, with
minimum increases during summer of 33 seconds,
maximum increases during autumn of 1 min 51 s and
an annual average increase of 1 min 6 s. In addition,
the probability of eastbound journeys taking under 5
hours 20 minutes is found to increase from 3.5% to
8.1% while the probability of a westbound crossing
taking over 7 hours increases from8.6% to 15.3%.

These changes are small and are unlikely to be
noticed by even the most frequent of flyers, but the
impact that they could have on fuel consumption and
the air industry are not negligible. Considering all trans-
atlantic flights, William’s estimates that this would
amount to an extra 2000 flight hours per year, burning
7.2 million extra US gallons of jet fuel at a cost of $22
millionUS dollars to the airline industry and resulting in
an additional 70 million kg of CO2 emitted into the
atmosphere. To put these numbers in perspective, US
airlines spent a total of $16.6 billionUSdollars on jet fuel
for scheduled international flights in 20141 and the glo-
bal airline industry is currently responsible for around
705 billion kg CO2 emissions annually2. So these are
relatively small, but non-negligible changes.

The numbers predicted by Williams are not with-
out their uncertainties. A strengthening of the westerly
winds in the upper troposphere is expected as a con-
sequence of the fact that, increasing CO2 concentra-
tions, warm the upper troposphere (and

preferrentially so in the tropics) and cool the strato-
sphere [4]. This leads to a strengthening of the equa-
tor-to-pole temperature gradient in the upper
troposphere and an associated increase in the westerly
winds. However, there is considerable spread among
models, as to the exactmagnitude and spatial structure
of these wind changes, as indicated by figure 1 (c) (see
also [3]). The calculations performed by Williams are
very computationally intensive and so wind fields
from only one such model were used. This uncertain
future of the wind field, therefore, leads to uncertainty
in the exact values that this calculation produces.
Nevertheless, this is one of the first studies that has
made a comprehensive attempt to assess the impact
that future circulation change may have, through the
use of flight planning algorithms. It will no doubt spur
future research in this area as well as research into
other aspects such as the impact that changes in atmo-
spheric variability or extremes may have on flight
delays etc. Such research will improve our overall esti-
mates of the impact that changes to our atmosphere
may have on the aviation industry.
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Figure 1.Upper tropospheric (200hPa) zonal winds, averaged overDecember, January and February, as simulated by 35models
participating in the CoupledModel Intercomparison Project, Phase 5. Thismakes use of all available ensemblemembers for each
model. (a)Themulti-modelmean climatology averaged from1979–2005 of historical simulations. (b)Themulti-modelmean
difference between 2070–2099 under the RCP8.5 forcing scenario and the historical (1979–2005) period. (c) gives an indication of the
uncertainty in the future projections in (b) by showing the, acrossmodel, standard deviation in the Future-Past difference. Contour
intervals are: (a) 10m s−1, (b) 1m s−1 and (c) 1m s−1.
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