
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 210.77.64.105

This content was downloaded on 05/04/2017 at 04:05

Please note that terms and conditions apply.

Humid tropical forest disturbance alerts using Landsat data

View the table of contents for this issue, or go to the journal homepage for more

2016 Environ. Res. Lett. 11 034008

(http://iopscience.iop.org/1748-9326/11/3/034008)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

National satellite-based humid tropical forest change assessment in Peru in support of REDD+

implementation

P V Potapov, J Dempewolf, Y Talero et al.

Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from

deforestation and forest degradation under REDD+

Scott J Goetz, Matthew Hansen, Richard A Houghton et al.

Quantifying changes in the rates of forest clearing in Indonesia from 1990 to 2005 usingremotely

sensed data sets

Matthew C Hansen, Stephen V Stehman, Peter V Potapov et al.

Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012

A Tyukavina, A Baccini, M C Hansen et al.

Satellite-based primary forest degradation assessment in the Democratic Republic of the Congo,

2000–2010

I Zhuravleva, S Turubanova, P Potapov et al.

Using spatial statistics to identify emerging hot spots of forest loss

Nancy L Harris, Elizabeth Goldman, Christopher Gabris et al.

Remotely sensed forest cover loss shows high spatial and temporal variation acrossSumatera and

Kalimantan, Indonesia 2000–2008

Mark Broich, Matthew Hansen, Fred Stolle et al.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-9326/11/3
http://iopscience.iop.org/1748-9326
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1748-9326/9/12/124012
http://iopscience.iop.org/article/10.1088/1748-9326/9/12/124012
http://iopscience.iop.org/article/10.1088/1748-9326/10/12/123001
http://iopscience.iop.org/article/10.1088/1748-9326/10/12/123001
http://iopscience.iop.org/article/10.1088/1748-9326/4/3/034001
http://iopscience.iop.org/article/10.1088/1748-9326/4/3/034001
http://iopscience.iop.org/article/10.1088/1748-9326/10/7/074002
http://iopscience.iop.org/article/10.1088/1748-9326/8/2/024034
http://iopscience.iop.org/article/10.1088/1748-9326/8/2/024034
http://iopscience.iop.org/article/10.1088/1748-9326/aa5a2f
http://iopscience.iop.org/article/10.1088/1748-9326/6/1/014010
http://iopscience.iop.org/article/10.1088/1748-9326/6/1/014010


Environ. Res. Lett. 11 (2016) 034008 doi:10.1088/1748-9326/11/3/034008

LETTER

Humid tropical forest disturbance alerts using Landsat data

MatthewCHansen1,7, AlexanderKrylov1, Alexandra Tyukavina1, PeterVPotapov1, SvetlanaTurubanova1,
BryanZutta2, Suspense Ifo3, BelindaMargono4, Fred Stolle5 andRebeccaMoore6

1 University ofMaryland, College Park, USA
2 National Forest Conservation Program for Climate ChangeMitigation,Ministry of the Environment, Lima, Peru
3 UniversiteMarienNguabi, Brazzaville, Republic of Congo
4 Ministry of Environment and Forestry, Jakarta, Indonesia
5 World Resources Institute,Washington, DC,USA
6 Google,MountainView, CA,USA
7 Author towhomany correspondence should be addressed.

E-mail:mhansen@umd.edu

Keywords: global change, deforestation,monitoring, Landsat, remote sensing

Abstract
ALandsat-based humid tropical forest disturbance alert was implemented for Peru, the Republic of
Congo andKalimantan, Indonesia. Alertsweremappedon aweekly basis as new terrain-corrected
Landsat 7 and 8 imagesweremade available; results are presented for all of 2014 and through September
2015. The three study areas represent different stages of the forest land use transition,with all featuring a
variety of disturbance dynamics including logging, smallholder agriculture, and agroindustrial
development. Results for Peruwere formally validated and alerts found tohave very highuser’s
accuracies andmoderately highproducer’s accuracies, indicating an appropriately conservative product
suitable for supporting landmanagement and enforcement activities. Complete pan-tropical coverage
will be implemented during 2016 in support of theGlobal ForestWatch initiative. Todate,Global
ForestWatch produces annual global forest loss area estimates using a comparatively richer set of
Landsat inputs. The alert product is presented as an interimupdate of forest disturbance events between
comprehensive annual updates. Results from this study are available for viewing anddownload at
http://glad.geog.umd.edu/forest-alerts andwww.globalforestwatch.org.

Introduction

Research on remote sensing-based land change is
focused on providing relevant and accurate informa-
tion on dynamics impacting the functioning of human
and natural land systems. To date, much of this
research has concerned demonstrating accurate quan-
tification of land change through improved algorithms
and data inputs. As methodsmature and are proven to
work at scale, they can be implemented within
operational monitoring programs. Operational land
change mapping methods, in contrast to research,
have additional objectives of systematic data set
production within a fixed product delivery schedule.
The standards for operational implementation of land
monitoring products are high, as methods must be
repeatable over time while maintaining high product
fidelity. Operational monitoring is also typically

implemented over large areas, such as national scales.
Examples include the Brazilian Space Agency’s (INPE)
annual deforestation PRODES map product for the
Amazon rainforest and the United States Department
of Agriculture’s Cropland Data Layer, an annual crop
type map for the conterminous United States. Such
products support national statistical reporting pro-
grams and their generation typically correlates with a
seasonal dynamic, such as dry season burning or
growing season cultivated area. Another operational
application is near-real time alerts, which are
employed in a variety of modes; examples include
illegal deforestation monitoring in Brazil with the
Real-Time System for Detection of Deforestation
(DETER) (Shimabukuro et al 2012), tropical forest
disturbance with FORest Monitoring for Action
(FORMA) (Hammer et al 2014), near-real time global
floodmapping (Brakenridge and Anderson 2006), and
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active fire monitoring with the Fire Information for
Resource Management System (FIRMS) (Davies
et al 2009). Vegetation indices are used in near-real
time mode to monitor food security with the Famine
Early Warning System (FEWS) (Ross et al 2009), and
drought with the United States National Drought
Monitor (Svoboda et al 2002). In some cases, such as
with the official MODerate resolution Imaging Spec-
troradiometer (MODIS) active fire algorithm (Giglio
et al 2003), national agencies are able to implement
algorithms directly for local decision support activ-
ities. Another source of near-real time earth observa-
tion data concerns the coordinated tasking of
international earth observing assets in response to a
documented natural disaster or hazard, as with the
International Charter on Space and Major Disasters
initiative (Bessis et al 2004). Such systems are event-
based with imagery as the deliverable and no asso-
ciated derived land characterization product.

Operational alert systems can be signal or theme-
based. Signal based means the use of a radiometric
measure, such as greenness or brightness temperature,
as the primary observational input to the alert system.
Signal-based alerts have enhancedmeaning when cou-
pled with reference data, such as an anomalously low
normalized difference vegetation index (NDVI)
Tucker 1979) value over a core crop growing region, or
an active fire brightness temperature within a forest.
Theme-based means the characterization of a specific
land cover change dynamic, such as forest cover loss,
i.e. the removal of tree cover, or flooding, i.e. an
increase in the expanse of surface water beyond
the norm.

Most alert systems employ high temporal, coarse
spatial resolution data sets such as MODIS or Visible
Infrared Imaging Radiometer Suite (VIIRS) data.
Such systems have near-daily coverage that fulfills
the near-real time requirement for many monitoring
applications, given good atmospheric conditions.
The main limitation of MODIS and like sensors as a
source of near-real time land change is its coarse spa-
tial resolution. However, for many land applications,
MODIS’ spatial resolution is sufficient. For example,
drought monitoring systems often employ a compo-
site index that incorporates MODIS NDVI to quan-
tify short-term and long-term impacts of regional-
scale drought (Svoboda et al 2002). Conversely,
applications such as forest loss detection are limited
by MODIS’ coarse spatial resolution, as many
human-induced forest disturbances are fine-scaled.
In annual mapping of forest loss, Hansen et al (2012)
showed MODIS to detect only 50% of the area of
forest disturbance detected by Landsat which has a
30 m spatial resolution.

Improving the cadence of medium or high spatial
resolution data delivery would offer an improved cap-
ability for a number of alerting applications. Since the
opening of the Landsat archive in 2008 (Woodcock
et al 2008), medium spatial resolution data have been

available for use in alert-based applications and several
studies on dense time-series change analyses reported
(Cohen et al 2010, Potapov et al 2012, Zue et al 2012,
DeVries et al 2015). Since 2013, two Landsat sensors,
the Enhanced Thematic Mapper Plus (ETM+)
onboard Landsat 7, and the Operational Land Imager
(OLI) onboard Landsat 8, have been systematically
acquiring global multi-spectral observations at a 30 m
spatial resolution. The orbits of the two spacecraft are
coordinated to enable potential 8 day repeat coverage
globally. Given this cadence, Landsat is a viable source
for land change alerting systems. In this paper, we
report on the use of Landsat ETM+ and OLI data in
quantifying humid tropical forest disturbance using
the most recent single land observation. The approach
is theme-based, similar to that of DETER, but imple-
mented at 30 m and quantifying all forest loss, not just
loss within intact forests. We defined forest cover as
5 m tall trees with a canopy closure exceeding 60%. An
alert is defined as any Landsat pixel that experiences a
canopy loss in excess of 50% cover. The initial alert
product, similar to the global forest cover loss product,
does not distinguish human-induced from natural
forest disturbances, nor deforestation from forestry
land use dynamics.

This alerting system is meant to complement a cur-
rent annual global forest cover loss product, imple-
mented in collaboration with Google and World
Resources Institute as part of Global Forest Watch. The
annual product is based on a calendar year update, first
prototyped using Landsat 7 data from 2000 through
2012 (Hansen et al 2013) and annually updated for 2013
and 2014 (http://globalforestwatch.org/ and http://
earthenginepartners.appspot.com/science-2013-global-
forest). An interim alert systemwould provide forest dis-
turbance updates as observed, with the objective of pro-
viding a conservative change detection system absent of
errors of commission. In other words, the alert system
would not provide area estimates. This is similar to the
complementary DETER and PRODES deforestation
mapping products of INPE. The 250mMODIS-derived
DETERproduct’s near-real time information is not used
to calculate deforestation area, but is used as an enforce-
ment tool in controlling illegal deforestation. The Land-
sat-derived PRODES product, produced on an annual
basis, is the official area estimationof deforestation.

The potential uses of medium spatial resolution
forest loss alerts range from enforcement to manage-
ment applications. Monitoring road building, logging,
clearing for agriculture and other dynamics can have
added value if reported in near-real time. In particular,
the humid tropical forest biome offers a valuable
environment for implementing and assessing the
value of such an alerting system. Humid tropical for-
ests are under threats of conversion to higher order
land uses, with deleterious impacts on climate, water
and biodiversity (Foley et al 2005). Efforts to identify
the last intact forest landscapes (Potapov et al
2008) and to systematically map protected areas
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(UNEP-WCMC 2015) can serve as references for for-
est disturbance alerting systems. The DETER alerts of
Brazil have been critical to increasing the capacities of
law enforcement and land management agencies in
reducing illegal deforestation in the Brazilian Amazon
(Nepstad et al 2014). The deployment of such a system
pan-tropically, with significantly higher spatial detail,
will offer such possibilities to other countries. We pre-
sent here a prototype system, applied to humid tropi-
cal Peru, Republic of Congo and the portion of Borneo
within Indonesia (Kalimantan). The application will
be extended pan-tropically and eventually globally,
given viable results and support for such a monitoring
systemwithinGlobal ForestWatch.

Study area

Our prototype alerts were implemented for humid
tropical Peru, Republic of Congo, and Kalimantan
(Indonesia). Indonesia is a high forest, high deforesta-
tion rate country. Kalimantan is second among Indo-
nesian island groups in forest cover loss, with
increasing conversion of wetlands to palm estates and a
considerable tract of intact forest in the center of the
island of Borneo.Kalimantan gross forest cover loss has
increased by nearly 50% since 2000with primary forest
loss accounting for nearly 40% of overall forest loss
(Margono et al 2014). Peru is a high forest, medium
deforestation rate country to date, but with a trend
towards increasingly high rates of forest conversion
consisting of smallholder agriculture, artisanal gold
mining and industrial agriculture, mainly palm oil.
Since 2000, forest disturbance in Peru has increased by
70% to approximately 200 kha yr−1. Of this total, the
area of primary forest loss is nearly double that of
secondary forest loss (Potapov et al 2014). TheRepublic
ofCongo is a high forest, lowdeforestation rate country
with selective logging and smallholder agriculture
being the primary drivers of forest loss. Low demo-
graphic pressure and underdeveloped infrastructure
limit deforestation to low annual rates compared to
more rapidly developing economies. However, agroin-
dustrial change in the form of palm oil estates is now
expanding within the Congo and the gross forest
disturbance rate has doubled since 2000 to over
60 kha yr−1, with 43% occurring within primary for-
ests. All three study areas include logging, smallholder
land uses, and agroindustrial conversions, occurring
within different stages of the forest land use transition.
By successfully demonstrating the method over these
three areas, we believe a pan-humid tropical forest alert
systemmay be readily implemented.

Data

We employed the following Landsat 7 ETM+
bands: bands 3 (red: 0.626–0.693 μm), 4 (near-
infrared: 0.776–0.904 μm), 5 (shortwave infrared:

1.567–1.784 μm) and 7 (shortwave infrared:
2.097–2.349 μm); and corresponding bands from
Landsat 8 OLI: bands 4 (red: 0.630–0.680 μm), 5
(near-infrared: 0.845–0.885 μm), 6 (shortwave
infrared: 1.560–1.660 μm), and 7 (shortwave infra-
red: 2.100–2.300 μm). Shorter wavelength visible
blue and green ETM+ bands 1 and 2 and OLI bands
2 and 3 were not used due to deleterious atmo-
spheric effects on observation quality (Ouaidrari
and Vermote 1999). ETM+ band 6 (brightness
temperature: 10.40–12.50 μm) and TIRS band 10
(brightness temperature: 10.60–11.19 μm) were
used for time-series metric creation (see below), but
not as variables in mapping forest cover loss. NDVI
(Tucker 1979), normalized burned ratio, NBR (Key
and Benson 2006), and normalized difference water
index, NDWI (Gao 1996) were also used in generat-
ing time-series metrics.

Three steps were implemented to radiometrically
normalize all Landsat observations: (1) calculation of
top-of-atmosphere reflectance, (2)MODIS-based bias
adjustment, and (3) MODIS-based anisotropy adjust-
ment. Each Landsat image was converted to top-of-
atmosphere reflectance (Chander et al 2009) and
then normalized to spectral reflectance using MODIS
top-of-canopy reflectance data composite as a normal-
ization target (Potapov et al 2012). The MODIS refer-
ence was made from all 16 day MODIS composites
from 2000 through 2011. All composites were ranked
by NDVI and an average reflectance value for red, near
infrared, and shortwave infrared bands calculated
from composites corresponding to 50th–90th percen-
tile ranks. The next step of Landsat image normal-
ization was to apply a Landsat to MODIS bias
adjustment which largely accounted for atmospheric
scattering. The final step was a cross-track adjustment
to account for effects of surface anisotropy. To per-
form the cross-track adjustment, Landsat to MODIS
bias-adjusted spectral reflectance was modeled as a
function of sensor view angle per band and the derived
relationship applied to all pixels within the image. Our
per pixel quality assessmentmodels were applied to the
top-of-atmosphere corrected data. Cloud cover, haze,
water and shadow were separately identified and used
to create a pool of viable land observations which were
put through the full radiometric normalization. Radio-
metric processingmethods are outlined inHansen et al
(2008), Potapov et al (2012) and Hansen and
Loveland (2012).

The latest observation was added to a four-year
reference feature space of Landsat-derived time-series
metrics. Metrics are statistical measures derived from
a multi-temporal stack of good quality Landsat obser-
vations, and have been used to map large areas with
AVHRR (Reed et al 1994, DeFries et al 1995), MODIS
(Hansen et al 2002, 2005) and more recently Landsat
data (Broich et al 2011, Potapov et al 2012, 2015,
Hansen et al 2013). Their advantage is the creation
of a standard feature space independent of specific
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time of year or number of input observations. These
characteristics allow generic models to be built and
applied to large areas, in this case the humid tropical
forest biome. Because our prototype product was
implemented over humid tropical broadleaf evergreen
forests, no seasonalfilters were employed.

Metrics used in this study consisted of individual
ranks, means and regressions of red, near infrared, both
shortwave infrared bands, as well as ranks of normalized
ratios of near infrared and red (NDVI), near infrared and
shortwave infrared (2.2 μm) (NBR), and near-infrared
and shortwave infrared (1.65 μm) (NDWI). Each of
these individual measures were also ranked by NDVI,
NDWI, and thermal brightness temperature and
corresponding ranks and means used as input metrics.
Metrics consist primarily of measures derived from all
input observations, for example the mean NDVI of all

good observations during the study period. Metrics can
also be calculated by interval quantile, for example the
interquartilemean (meanof all observations between the
25th and 75th quartiles). Alternatively, metrics can be
calculated for an individual band as a function of green-
ness or thermal rankings. For example, red reflectance is
low at times of high greenness, and generally high for
times of low greenness. A 90–100 interquantile mean of
red reflectance ranked by NDVI typically yields a red
reflectance value of <5% for forest cover for periods of
one year or greater. A second type of metric is time-
sequential, for example the change of reflectance over
time (regression slope). A third type consists of compo-
sites where a compositing rule is applied to a defined
interval in order to create a time-stamped, cloud-free
image. For this study, example composite metrics
include median of first three good observations and
median of last three good observations. For the purpose
of the forest disturbance alert algorithm, the metrics
are used largely as a reference in identifying stable forest
pixelswithin thepreceding four-year period.

Methods

The first step in implementing an alert system is to
define its meaning from a technical standpoint. For
our purposes, an alert is something triggered based on
a single observation, meaning the date of the latest
observation is the date of the alert if triggered. While
multiple alerts over the same location are used to build
confidence, the alert itself is a function of the latest

Figure 1. Flowchart of forest disturbance alertmethod.

Figure 2. For confirmed alerts,mean forest cover loss
likelihood of six subsequent observations.
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quality Landsat observation. In the presented method,
the latest Landsat image is downloaded, all pixels are
quality assessed, the image radiometrically normal-
ized, and all viable land observations input to an
algorithm for flagging forest disturbance. The Landsat
metrics plus latest single-date Landsat image are our
independent variables, related to forest cover loss, the
dependent variable, through a classification tree algo-
rithm. Classification trees have been used to classify
land cover (Hansen et al1996, Friedl andBrodley 1997)
and are popular in characterizing global land cover
(Friedl et al 2002, Hansen et al 2003). Training sites
were derived using image interpretation and employed
to create a generic model for characterizing forest loss
based on the metric/single-date feature space. We
employed 1268 single-date images compared with the
2010–2013 metric set to extract 953 k training pixels.
All training pixels and corresponding spectral data
from different dates were aggregated in a single
training array from which we derived classification
models. Training data were collected to characterize
change within humid tropical forest pixels exhibiting
high canopy loss (>50%) based on expert image
interpretation in an active learning mode (Tuia
et al 2009, Egorov et al 2015). In this approach, the
algorithm is iterated until a stable model is achieved as
determined by expert evaluation.

Figure 1 is a schematic of the general method. A set
of bagged decision trees was applied to each new Land-
sat observation and antecedent Landsat metrics. Each
tree output a per pixel likelihood of forest cover loss
class membership. We employed three bagged tree
models in order to reduce processing time, as the algo-
rithm will be applied pan-tropically and eventually
globally. Themedian likelihoodwas calculated from the

three models and thresholded at>50% to identify for-
est disturbance alert pixels. Alerts were reported imme-
diately and labeled as ‘possible’ forest disturbance if no
antecedent alert for the same location existed. Sub-
sequent observations were characterized and a rolling
total out of four tracked in order to allow for errors of
omission due to observation quality or other issues
impacting algorithm sensitivity. If only one observation
of the four was labeled as forest loss, the pixel remained
as a ‘possible’ alert. If two or more out of four observa-
tions were flagged as alerts, then the alert was labeled as
‘confirmed.’ A four observation limit was applied in
order to avoid observations of vegetation regrowth that
are common in the humid tropics and can quickly
obscure the disturbance signal. Figure 2 shows the
attenuation of the disturbance signal for six total obser-
vations following a flagged disturbance alert. Figure 3
illustrates this same idea by days after initial alert. The
four consecutive observation approach seeks to balance
the value of repeated alerts with the likely attenuation of
the disturbance signature. The method was applied to
all 2014 Landsat images using a 2011–2013 metric fea-
ture space and was recently completed for 2015. A total
of 1506, 898 and 2559 images for 2014 were processed
in testing the method over humid tropical Peru, the
Republic of Congo and Kalimantan, Indonesia.
Through September 2015, totals of 987, 682, and 1768
images for the respective countries and province were
processed in a pseudo-operational mode (lacking only
posting for public access).

Validation—Peru example

In order to evaluate our method, a test alert product
was run for humid tropical Peru using 2014 Landsat 8

Figure 3. For confirmed alerts,mean forest cover loss likelihood of subsequent observations by days after initial alert.
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imagery. By running a historical year, we could readily
exploit the full year of Landsat imagery and available
high-spatial resolution data on GoogleEarth to per-
form a validation exercise. We could also avail the
validation exercise by incorporating an existing annual
loss product in constructing a probability-based
stratified random sample. Specifically, we combined
the alert product (both unconfirmed and confirmed
alerts) and Peru data from the 2014 global tree cover
loss map update to build a sampling stratification. We
created 5 strata: ‘no-global loss/yes-alert loss’ (100
samples), ‘yes-global loss/no-alert loss’ (200 samples),
‘yes-global loss/yes-alert loss’ (200 samples), ‘prob-
able loss’: pixels within a 10-pixel buffer around
merged global loss and alert loss (400 samples), and
‘no-global loss/no-alert loss’: no loss pixels outside of

the 10-pixel probable loss buffer (400 samples). The
purpose of this stratification was to target likely areas
of omission error in the alert product by creating
‘yes- global loss/no-alert loss’ and ‘probable loss’
strata. The sampling unit was our standard
0.000 25×0.000 25 degree pixel in a Geographic
Coordinate System on a WGS-84 ellipsoid having an
average area of 773 m2 within Peru. Reference 2014
tree cover loss values (loss/no loss)were recorded for
each sample pixel by visually interpreting a time-
series of individual Landsat images for 2013 and 2014
and available high resolution imagery from Google-
Earth (figure 4). Sample pixels, located on the bound-
aries of tree cover loss patches, were specifically marked
as ‘boundary pixels’ in the process of validation in order
to help understand the possible sources of differences

Figure 4.Validation sample pixel shown in red outline. Top panels—Landsat time series (2013 Julian day 31–2014 day 322), showing
that sampled pixel experienced complete tree cover loss between days 194 and 210. Bottompanel—pre-disturbance high resolution
image fromGoogle Earth (04.06.2012).
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between the sample-based validation and the map. Of
the total 1300 interpreted samples, six did not have
cloud-free reference data; thus, the final accuracy
estimateswere basedon1294 samples.

We used a primary forest mask as a post-stratifier,
to estimate alert accuracy separatelywithin primary and
secondary forests. A primary forest mask from Peru’s
Ministry of Environment (MINAM2012)was used as a
baseline, and all historic forest loss from 1990 to 2000
(Conservation International 2008) and 2000–2013
(Hansen et al 2013) change detection products were
excluded from this primary forest mask. We estimated
the alert product’s user’s and producer’s accuracies
from the error matrix of estimated area proportions
using equations (6)–(8) fromOlofsson et al (2013).

Results and discussion

Annual 2014 alert totals in pixels equaled 1.85 M,
0.17 M and 7.15 M for Peru, Republic of Congo
and Kalimantan, Indonesia, respectively. Through
September of 2015 the respective alert totals were
1.13 M, 0.13 M and 3.56 M. Observational richness
and alert counts largely followed local dry season
conditions (figure 5(a)). The alert totals compared to
the standard annual forest loss map estimates of
Global Forest Watch illustrate that the confirmed

alerts were comparatively and appropriately conserva-
tive (figure 5(b)), capturing the majority of the area
identified by GFW as having experienced forest loss.
Alerts totaled 74% of the annual mapped Peru forest
disturbance and 80% of Kalimantan’s. The exception
was the Republic of Congo where small-scale distur-
bance predominates; here, the alert system depicted
only 21% of the annual mapped loss in the GFW
product. The 2015 results illustrated the application of
forest disturbance tracking for decision support
between annual GFW forest loss layer updates. Total
2015 alerts through September were down by 25% and
33% for Peru andKalimantan, Indonesia, respectively.
Congo’s 2015 alerts were 95% of the 2014 total over
the same period.

Figure 6 illustrates the overall scheme for deliver-
ing alert data. The background consists of a Landsat 7
and 8-derived image composite consisting of the most
recent cloud-free observation. On top of the compo-
site are the alerts, color coded by confidence where red
is confirmed and blue is possible. The composite
image and alerts will have respective date layers. The
alert date layer will relate the date of initial detection.
All data will be updated weekly and be available for
viewing and download at http://glad.geog.umd.edu/
forest-alerts andwww.globalforestwatch.org.

Most alerts occur within zones of active land use
change near existing settlements and transportation
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Figure 5. For Peru, Republic of Congo andKalimantan, Indonesia, (a) temporal variation in Landsat forest disturbance alerts for the
2014 test period, (b) comparison of total pixel counts forGlobal ForestWatch (GFW) annual forest lossmade on a calendar year basis
versus alert pixel counts for 2014, and (c) alert totals through September 2015.
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networks. However, the value of alerts will be in iden-
tifying new change dynamics and placing such alerts in
the context of land use allocations. Figure 7 illustrates
a first significant clearing within the Isconahua uncon-
tacted indigenous reserve in east-central Peru. This
reserve is east of Pucallpa and the Ucayali River. The
detected alerts in figure 7(b) are mainly on the eastern
periphery of Pucallpa (left edge of subset), with a sec-
ond zone of forest clearing approaching and crossing
into the reserve from the south along a tributary of the
Ucayali River. The dramatic clearing shown in
figure 7(c) within the reserve is not clearly connected
to either of these landscapes and surpasses in extent
any disturbances in the area offigure 7(b).

Availability of observations—example
of Peru

Observation availability is a limiting factor for Land-
sat-based alerts. Landsat 7 and 8 have a combined
nominal 8 day revisit period. In practice, observation
availability is limited by the respective Landsat
acquisition strategies and cloud cover (figure 8). In
2014, an average of 1.54 images were available per

path/pow (0.85 Landsat 7 and 0.70 Landsat 8) per
16 day interval. Cloud cover was a greater limiting
factor than image acquisition strategy and corre-
sponds to local dry and rainy seasons. Despite the
fact that from January to May 2014 99% of path/
rows had at least one image per 16 day period, cloud
free observations from January to May covered less
than 20% of humid tropical Peru per 16 day period
(figure 9). From June to October, the local dry
season, more cloud free data were available. For the
16 day period at the start of September, 67.5% of
humid tropical Peru had at least one cloud free
observation. From November to December as the
rainy season returns, observation availability was
again heavily affected by cloud cover. The forest
cover loss detection dynamic corresponded to varia-
tions in cloud free observation and illustrates the
higher frequency of cloud-free data within lowland
humid tropical forests compared to the higher
elevation Amazon-Andes transition zone, particu-
larly in the northwest. The majority of forest loss
alerts were detected from August to September, a
period concurrent with the local dry season and a
corresponding cloud-free observation window.

Figure 6. Spatial distribution of 2015 forest disturbance alerts for (a)Peru, (b)Republic of Congo and (c)Kalimantan, Indonesia. Red
is confirmed alerts, blue possible alerts, both displayed on a latest good observation composite through 21 September 2015.

Figure 7.Peru forest disturbance alerts inside the primary forests of the Isconahua uncontacted indigenous reserve, a portion ofwhich
is shown as black outline of (b). The identified clearingwithin the reserve is from15 June 2015 and coversmore than 400 ha.Note
clearings along river course south of the reserve. (a) is Peru overview, (b) a 70 kmby 40 km subset centered at 8d 4.75″S, 74 1.75″W,
and (c) a 2 kmby 2 km subset centered at 8d 1.13″S, 73d 56.13″W.
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Validation results—example of Peru

When comparing validation sample reference and
alert values, 91 samples were identified as having
omission error, and 76 commission error from the
total of 1294 samples. However, only 53 samples with
omission error and 10 samples with commission error
were identified as non-boundary. This means that the
majority of commission in the alert product occurred
on the boundaries of correctly mapped tree cover loss
patches. Taking into consideration the ambiguity in

the interpretation of boundary pixels, we have esti-
mated user’s and producer’s accuracies separately for
all samples (including boundary pixels) and for non-
boundary samples only (table 1). Furthermore, we
have reported accuracy metrics for the ‘confirmed’
alerts alone, for all pixels and less boundary pixels
(table 1).

User’s accuracies, representing commission errors
(false alerts), ranged from 95.5% to 97.2% in primary
and secondary forests, respectively, when discounting
boundary alerts (‘without boundary pixels’, table 1).

Figure 8.Potential versus cloud-free observations for Peru from combined Landsat 7 and 8 overpasses.

Figure 9.Cloud free observations and forest loss detection by 16 day period for Peru in 2014.
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Closer examination of the 10 non-boundary samples
with commission errors allowed us to identify the pri-
mary sources of commission error: late 2013 tree cover
loss detected in 2014 (2 samples), non-forest dynamics
(e.g. river valley inundation or cropland dynamics)
identified as tree cover loss (3 samples), and samples
with no readily visible tree cover loss dynamics in the
Landsat time-series, possibly due to errors in the

cloud-screening model (5 samples). Considering only
confirmed alerts (table 1), user’s accuracy increased to
~99% in all forest types.

Producer’s accuracies, representing omission
errors (missed alerts) were significantly higher in pri-
mary forests compared to secondary forests (table 1).
Out of 53 non-boundary samples with omission error,
12 were omitted in primary forests, and 41 in second-
ary. This is not surprising as the algorithm has been
tuned for older mature forest stands and young
regrowth clearings are likely not well represented in
the training data. A total of 39 out of 53 omitted sam-
ples were from tree cover loss patches<10 ha, indicat-
ing that the majority of tree cover loss omitted in the
alert map was small-scale (less than 100 Landsat
pixels).

Small forest loss patches dominated in the
detected loss. Loss consisting of a single Landsat
pixel totaled 4% of total detected loss (approxi-
mately 0.1 ha), 33% of detected loss patches were
less than one hectare, and 85% less than 10 hectare.
There is a clear advantage of 30 m Landsat-based
alerts compared to alert systems that employ 250 m
MODIS (Anderson et al 2005, Hammer et al 2014)
or 375 m VIIRS daily coarse resolution data, and
even more recent 56 m AWIFS (Diniz et al 2015)
imagery.

Conclusion

An approach for mapping humid tropical forest
disturbance alerts using Landsat data was presented
for Peru, Republic of Congo and Kalimantan, Indone-
sia. Results indicate a robustmethod for conservatively
identifying forest loss within humid tropical rain-
forests. Such a system can highlight the forest land-
scapes under immediate threat of conversion and
provide a quantitative measure of the degree of such
threats. While remote sensing is a de facto historical
record, low latency data provide information in a
timeframe suitable for interventions, if needed, as with
the DETER system of Brazil. Producing medium
spatial resolution alerts pan-tropically may enable
other tropical forest countries to develop similar
integrated policy, management and enforcement

Table 1.Estimated user’s and producer’s accuracy in percent for all forests, and separately for primary and secondary forests with uncer-
tainty expressed as standard error.

All forests Primary Secondary

User’s accuracy

All samples (including boundary pixels) 86.5±2.0 86.1±2.6 87.0±3.0
Without boundary pixels 96.2±1.3 95.5±1.8 97.2±1.7
Without boundary pixels and unconfirmed alerts 99.0±0.7 99.1±0.9 98.9±1.2
Producer’s accuracy

All samples (including boundary pixels) 67.0±7.4 77.6±16.2 56.4±7.0
Without boundary pixels 69.8±9.0 82.6±21.5 57.5±8.3
Without boundary pixels and unconfirmed alerts 69.7±9.0 84.9±22.0 54.5±7.9

Figure 10.Ucayali, Peru, northwest of Pucallpa: (a) Skybox
SkySat-2 true color image from3April 2015, (b) Skybox
Skysat-1 true color image from10 September 2015, (c) 2015
Landsat alerts with red=‘confirmed’ and blue=‘possible’
on latest observation composite image. Scene subset of
2.4 kmby .7 km and centered at 75d 5.5″Wand 8d 12.9″S.
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frameworks without first having to develop an end to
end remote sensing processing and characterization
system.

The method will eventually be applied across the
humid tropics as part of the Global Forest Watch
initiative with subscription services made available to
forest land managers and other interested parties.
Remote sensing’s greatest asset is to provide data for
areas where no ground observations exist. Clearing
within protected areas is an obvious and useful appli-
cation for such an alert system. However, the majority
of remaining old growth rainforest does not have pro-
tected area status. The continued conversion of high
conservation value forests lacking protected status will
similarly be documented using the alert system. Exist-
ing high carbon stock, high biodiversity forests are key
to multi-benefit policy initiatives such as REDD+.
Jantz and Goetz et al (2014) illustrated the importance
of such forests in establishing corridors which max-
imize combined carbon sequestration and biodiversity
maintenance. Robust land use planning of tropical
forest landscapes will require timely and accurate for-
est disturbance data. Figure 7 illustrates this point. The
alert’s value is not as an area estimation of the change,
but as an indicator of forest exploitation within old
growth forests of a recently established indigenous
reserve. As such, it illustrates possible threats to a
newly developed land use plan. We expect such infor-
mation to lead to greater transparency of tropical for-
est management and improve information inputs to
all stakeholders, including government, civil society
and private industry.

The primary limitation of the method is cloud
cover and a dearth of good quality land surface obser-
vations during local rainy seasons. Incorporating Sen-
tinel-2 data (Drusch et al 2012) as well as improving
the Landsat georectification algorithm for partly-
cloudy Landsat scenes will increase data richness and
improve detection of change within local rainy sea-
sons. With two Landsats and eventually two Sentinel
2 s, image cadence would be on the order of 3–5 days.
Radar is another option, but its operational applica-
tion for forest monitoring has not yet been realized.
An alert system operating at the scale presented here
depends on systematic global acquisitions, robust pre-
processing, and free and accessible data. Only Landsat
has these criteria at medium spatial resolutions, with
Sentinel aspiring to emulate Landsat.

Finally, synergistic use of the alarm with new very
high spatial resolution imaging capabilities should be
pursued. Figure 10 illustrates 1 m Skybox data before
and after Landsat alert detections. Allocation of very
high spatial resolution image tasking could be facili-
tated through coordination with medium spatial reso-
lution alerts from Landsat, enabling improved
quantification of tropical forest change dynamics and
associated drivers.
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