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Abstract

The observed forest carbon sink, i.e. positive net ecosystem productivity (NEP), in East Asia reported
by the eddy covariance flux tower network is an integrated result of forests themselves (e.g. age) and
abiotic factors such as climate. However the relative contribution of climate alone to that sink is highly
uncertain and has been in debate. In this study we de-trended a primary effect of forest age on carbon
sinks by a statistical regression model between NEP and forest ages. Then, modeled residual NEP was
regressed against climate factors again so that its relative contribution could be evaluated appropriately
in the region. The analysis for data from the 2000s showed that forest age appeared to be the primary
impact factor on the carbon sink of the region (R* = 0.347), and the mean annual temperature (MAT)
was the second (R* = 0.23), while the mean annual precipitation effect might not be as apparent as
MAT. Particularly for forests in China, climate might contribute to about 31.7% of the total NEP of
0.540 Pg Cyr . Given that forests in China are relatively young under current climate conditions, we

predicted that they would be capable of atmospheric carbon sequestration in the near future.

Introduction

Forest ecosystems have the strongest carbon fixation
capacity (Dixon et al 1994) that makes a crucial
contribution to atmospheric carbon sequestration.
Quantitative research on forest carbon fixation capa-
city is the premise of understanding carbon cycling
mechanisms and constituting reasonable forest man-
agement. The current challenge in quantitative
research on the forest carbon sink is the inconsistency
of estimations on both its magnitude and spatial
distribution. The underlying causes of these incon-
sistencies are the variety of driving factors and the
existence of interaction among factors.

Forest net ecosystem productivity (NEP) is affec-
ted by both intrinsic biotic factors, such as forest type
and age (Binkley et al 2002), and extrinsic environ-
mental driving factors, such as climate factors (Yi

et al 2010) and nitrogen deposition (Magnani
et al 2007). Numerous studies used climate factors
alone to estimate ecosystem productivity at a large
scale (Carvalhais et al 2014). Without considering bio-
tic factors such as forest age, the observed net ecosys-
tem exchange shows strong correlation with the mean
annual temperature (MAT) at mid-to-high latitudes
and appears to have strong dependence on the dryness
at mid-to-low latitudes (Yi et al 2010). For East Asia,
the observed NEP shows similar spatial variation that
related with the spatial patterns of temperature and
precipitation (Yu et al 2013). Based on a statistical
model between NEP and climate factors, Zhu et al
(2014) quantified a map of the largest potential NEP in
China. Without considering biotic factors, this esti-
mated NEP (Zhu et al 2014) was much higher than the
values estimated from the inventory approach and
models (Cao et al 2003, Fang et al 2007, Ji et al 2008, Yu

©2016 IOP Publishing Ltd
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etal 2010, Yuan et al 2010). There is no doubt that cli-
mate factors are important factors causing NEP varia-
tion at short-time scales (Dragoni et al 2011,
Reichstein et al 2007), but if we neglect the long-term
trend controlled mainly by forest age (Chapin
et al 2002, Chen et al 2003) large inconsistencies with
estimated NEPs will be unavoidable.

Another factor that potentially affects forest car-
bon sequestration is nitrogen deposition, though its
role on carbon cycle is still uncertain. Some studies
suggested that the effects of nitrogen deposition on
carbon sequestration are not as strong as we thought
because the deposited nitrogen mainly remains in the
soil carbon pool and promotes soil carbon loss, and
because ecosystem nitrogen saturation causes nitrate
loss in multiple ways (Bragazza et al 2006, Cleveland
and Townsend 2006, De Schrijver et al 2008, Sutton
et al 2008). However, increasing number of studies
consider that nitrogen deposition could result in sti-
mulation of forest growth and carbon sequestration
(Aber et al 1998, Magnani et al 2007). For instance,
Magnani et al (2007) thought that nitrogen deposition
is the most important factor causing interannual var-
iation in NEP after removing the effect of disturbance,
and Piao et al (2015) found that 41% of the trend of
growing-season LAI in China could be explained by
nitrogen deposition. At a regional scale, most of the
results that nitrogen deposition correlates to the
increase in the carbon sink were concluded only
through correlation analysis or simple regressions
between ecosystem productivity and the nitrogen
deposition data. They might fail to reflect the actual
causal relationship because nitrogen deposition also
correlates to the intensity of human activities and cli-
mate factors, particularly precipitation (Sutton
et al 2008), and uneven sampling effect could mislead
conclusions (Du 2015).

From the perspective of plant physiology, age is the
most important endogenous determinant of carbon
sequestration rate and storage (Yu efal 2011, Du2015)
as they affect the maximum light-use efficiency (Li and
Zhou 2015), biomass accumulation rate (Chen and
Luo 2015) and relative partitioning (Peichl and
Arain 2007) at both tree and stand scales (Genet
et al 2010). The allometry throughout different age
stages of the forest is an intrinsic determinant affecting
the direction and intensity of carbon fluxes (Peichl and
Arain 2007, Hui et al 2012). Forest ecosystem pro-
ductivity is related to biomass, while biomass could by
estimated by allometric biomass equations, which
reflect the tree growth process with age (Ter-Mikae-
lian 1997, Hui et al 2012). Forest ecosystem productiv-
ity generally decreases with age, a similar pattern can
be found in various of studies (Binkley et al 2002, Ryan
et al 2004, Magnani et al 2007, Piao et al 2009, Wang
et al 2011, Coursolle et al 2012, Hui et al 2012, Ter-
Mikaelian et al 2014, Tang et al 2014). The effect of for-
est age on NEP variability over the succession course is
stronger than climate and long-term environmental
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changes (Pregitzer and Euskirchen 2004). For
instance, Yu et al (2014) found that 48.7% of the NEP
could be explained by the forest age in the Asian region
and indicated that the ignorance of forest age can
result in an inaccurate estimation. The age-dependent
relationship between NEP and forest age at long-term
scale was also revealed by the data assimilation that
synthesized abundant site-based biometric observa-
tion, process-based model, and spatially explicit
remote sensing and GIS data sets (Zhou et al 2015).

Activities of human management and utilization
of forests are becoming more frequent and extensive,
disturbance to forest structure (both spatial structure
and temporal structure) and extrinsic factors are often
coupled together affecting the carbon sink, which
makes estimations of forest NEP more uncertain. In
some research, forests were grouped by age and then
explored the response of carbon fluxes to extrinsic fac-
tors of each age group (Coursolle ef al 2012), but there
was little research on separating effects of extrinsic fac-
tors from biotic factors. Actually, the tactic exploring
the effect of extrinsic factors on forest growth on the
basis of age effect existed in other disciplines. In den-
droclimatology, for instance, growth trend needs to be
removed before exploring environmental effects on
tree-ring width of individual tree or forest stand
(Fritts 1976). In this study, we used a similar tactic and
aimed to (1) de-trend the primary effect of forest age at
long-term scale first from the observed carbon sink
and then to estimate the relative contribution of cli-
mate and (2) reveal the spatial difference of climate-
determined NEP with and without consideration of
age effect in the East Asian region.

Data and methods

Carbon flux observations

The research region in this study is located from
latitude 18° N to 54° N and from longitude 70° E to
150° E (figure S1, available at stacks.iop.org/ERL/00/
000000), which includes major countries in the East
Asian region (we refer to this area as the East Asian
region below). We chose this region because we could
extract the Chinese region to compare results. The
data from the flux sites used in this study included
carbon flux data (NEP), which were measured using
the eddy covariance technique, forest age, meteorolo-
gical data (MAT and MAP), and wet nitrogen deposi-
tion in the East Asian region. These observation data
were extracted from a published literature dataset
compiled by Yu et al (2014). These data from flux sites
were used to generate statistical models between forest
NEP and potential driving factors.

Meteorological data

The monthly temperature (MAT) and precipitation
(MAP) used to generate the spatial pattern of forest
NEP in this study was obtained from the Climate
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Table 1. Correlation matrix among potential predictor variables and NEP.

MAT MAP Age Nitrogen deposition NEP
MAT 1 0511 —0.293 0.722" 0.616"
MAP 1 0.105 0.803" 0.156
Age 1 —0.408 —0.563°
Nitrogen deposition 1 0.609*
NEP 1

* Correlation is significant at the 0.05 level.
b Correlation is significant at the 0.01 level.

Research Unit (CRU), version TS3.21 (Harris
et al 2014). The spatial resolution of TS3.21 was 0.5°,
and we resampled them to 0.05° to match the spatial
distribution of the forests. Given that the carbon flux
data measured by the eddy covariance technique was
obtained during the 2000s, we used the CRU data from
2001 to 2010. With these meteorological data, we
generated the map of NEP attributed by climate
factors. The comparisons of CRU data with flux sites
meteorological measurements were shown in
figure S2.

Forest distribution data

The forest distribution data were generated from
MODIS land cover type data (Wu et al 2015) (https://
lpdaac.usgs.gov/products/modis_overview/
modis_products_table/mcd12cl). We extracted the
forest area of evergreen needleleaf forests, evergreen
broadleaf forests, deciduous needleleaf forests, decid-
uous broadleaf forests and mixed forests of the region,
from latitude 18° N to 54° N and longitude 70° E to
150° E, and set it as the forest distribution map.

Methods

In this study, we aimed to de-trend the effect of forest
age from observed NEPs and then to estimate the
additional contribution of climate factors on NEP.
Because the observed NEP reported by eddy covar-
iance flux tower network is integrated results of forest
itself (e.g. age) and abiotic factors such as climate, so
the residual analysis method was used in this study to
partition the relative contribution caused by different
factors. Specifically, we first estimated the contrib-
ution of forest age at long-term scale through a
statistical model between the observed NEP and forest
age and, thereafter, retrieved the residuals of NEP that
could not be interpreted by forest age. Second, we
evaluated the relative contribution of climate based on
the statistical model between the NEP residuals and
climate factors.

To better compare the results, we also used an
assessment scheme generated by Zhu et al (2014).
Without considering biotic factors, Zhu et al estimated
the potential carbon fluxes in China with climate fac-
tors (MAT, MAP and interaction between MAT and
MAP) based on sites experiencing little disturbance

and mainly dependent on climate. The assessment
scheme was:

GEP =107.02 x MAT + 2.18 x MAP — 0.10
x MAT x MAP — 544.35
ER = 0.68 x GEP + 81.90
NEP = GEP — ER = 34.25 x MAT + 0.7
X MAP — 0.03 x MAT x MAP — 544.35

where GEP is gross ecosystem production and ER is
ecosystem respiration. With Zhu’s assessment scheme
and our Meteorological data and forest distribution
data, the potential of forest carbon fluxes contributed
only by climate could be estimated. Therefore, spatial
discrepancy between the NEP estimated only by
climate and NEP estimated by climate after de-
trending forest age could be revealed.

SPSS 20.0 statistical software was used to conduct
correlation analysis, path analysis, to test the sig-
nificance of regression equations, and a paired sample
T test (p < 0.05) was used to test the difference
between the observed flux site NEP and sum of age and
climate contributed NEP. All of the statistical figures
were drawn using origin 8.5 software. The spatial dis-
tribution figures for the sites and forest NEP were gen-
erated using ArcGIS 10.2 software. The mean forest
NEP and average annual NEP was calculated using
spatial analyst tools under ArcGIS environment.

Results

Correlation among potential predictor variables
and NEP

In the East Asiaregion, MAT and age were significantly
correlated with forest NEP at the 0.01 level, and
nitrogen deposition was significantly correlated with
forest NEP at the 0.05 level, while MAP did not show
apparent correlation with NEP (table 1). Only MAT
and forest age were in the stepwise regression equation
when we conducted path analysis. Both MAT and age
could indirectly affect forest NEP through the other
variable (table 2).

Variation of NEP explained by forest age

In the East Asian region, a significant correlation
existed between the observed NEP and forest age, with
34.7% variation of the NEP accounted for by the forest
age (figure 1(a)). The regression equation generated
was:
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Table 2. Direct and indirect effect of predictor variables on forest NEP.
Coefficient of
indirect path
Predictor variable Correlation coefficient rygp.; Correlation coefficient ryat-age Coefficient of direct path MAT Age
MAT 0.627 —0.293 0.505 / 0.122
Age —0.563 —0.293 —0.415 —0.148 /

The entry of variables was set using probability of Fat 0.1 level.

rnEp-; Was the correlation coefficient between NEP and predictor variables;

'MAT-age Was the correlation coefficient between MAT and age.
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Figure 1. Relationship between the forest NEP and forest age and its residuals plot in the East Asian region. (a) Regression between
NEP and forest age (n = 26, R* = 0.347, p = 0.007). (b) Residuals of the NEP (observed minus modelled NEP) and forest age. The
colour of the points is site MAT. MAT is the abbreviation of mean annual temperature.

NEP = 0.0048 x age? — 2.477 X age
+ 452.982 (R* = 0.347, p = 0.007) (1)

Comparison of variation of NEP explained by
climate with and without age

A statistical regression model was generated between
MAT alone and observed NEP (equation (2)), which
37.9% variation of the NEP could be explained by
MAT.

NEP = 13.918 x MAT + 141.916

(R? =0.379, p < 0.001) @

When we explored the relative contribution of cli-
mate on forest NEP on the basis of the tendency of for-
est carbon sink with age change, the primary effect of
age on NEP was de-trended first. Given that forest
NEP was determined multifactorially, in addition to
age, the effects of other factors were also included in
the NEP observations of each flux site, and we calcu-
lated the residuals between the observed and modelled
NEP by equation (1), which reflect the component of
the NEP that could not be explained by age. The NEP
residuals no longer correlated with forest age
(figure 1(b)). The plot of the NEP residual (figure 1(b))
indicated higher residuals with increasing temper-
ature, i.e., observation sites with higher temperature

tend to have higher residuals than those with lower
temperature. That is, temperature had an additional
contribution to NEP after de-trending the effect of
age. To further highlight the pattern, we divided the
flux sites into six age groups (0-50, 50-100, 100-150,
150-200, 200-250, 250—300 years) and calculated the
average NEP and average MAT for the flux sites above
and below the fitting curve separately (figure 2(a)),
which showed that the MAT was an apparent determi-
nant of NEP when the forest age was similar. After de-
trending the effects of the forest age to NEP, we per-
formed regression analysis between NEP residuals and
MAT and found that the NEP residuals were positively
correlated with MAT (figure 2(b)). The regression
equation is shown in equation (3) and the model
revealed that 23.0% variation of the NEP residuals
could be explained by MAT.

NEP residuals = 9.43 x MAT — 82.95
X (R2 =0.23, p =0.013) (3)

We also generated the statistical model between
the NEP residuals and MAP (figure 2(c)), but the
results indicated that MAP had no apparent relation-
ship with the NEP residuals at 0.05 significance level
(R* = 0.028,p = 0.413).
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20

700 . . : .
(1) ——y=15.065x-77.246
600 R2=0.444 p=0.003 J
~ 5004 4
|
-
S 400 - g
=]
.
= 300 ]
a,
Z 200k i
100 | J
[
°
() 1 1 1 1 1
0 5 10 15 20 25

Wet Nitrogen Deposition (Kg N ha-1 yr1)

NEP residuals (g C m-2 yr-1)

300

lg)

100

-

S

[ (b)—— y=7.264x-80.985 -
R2=0.133 p=0.164

L . 5 -
®

L @ [ ] -

- . -

- Y B -1

®
°
1 1 1 1 1
0 5 10 15 20 25

Wet Nitrogen Deposition (Kg N ha-1 yr-1)

Figure 3. The relationship between the forest NEP and wet nitrogen deposition. (a) Correlation between NEP and wet nitrogen
deposition (R* = 0.444, p = 0.003). (b) Correlation between the NEP residuals and wet nitrogen deposition (R* = 0.133,

p = 0.164). N is different because the absence of the wet nitrogen deposition data and forest age data, which was involved in the
calculation of NEP residuals in some flux sites. NEP is the abbreviation for net ecosystem productivity.




10P Publishing

Environ. Res. Lett. 11 (2016) 034021

P Letters

70°00"E IS0°00"E 70°00"E 150°00"E
2 z
Legend Legend
NEP (g C m-2 yr-1) NEP (g C m-2 yr-1)
& Z
=3 e
<N <
3o %
=2 e Z
z 2
=] z
¥ Kilometers wn & f Kilomeéters .
= 2,500 3750 5.000 £ = 0 2500 3750 5,000 =
70°00"E & 70°0'0"E %
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distributions of the NEP attributed to climate factor (MAT) after eliminating the effect of forest age in the East Asian region (unit: g C
m™?yr '), where NEP and MAT are the abbreviation of net ecosystem productivity and mean annual temperature, respectively.

Effect of nitrogen deposition on NEP

Another factor that might have affected the forest NEP
is nitrogen deposition. If the age effect was neglected,
the observed NEP seems significantly related with the
wet nitrogen (R = 0.444, p = 0.003) (figure 3(a)),
which is similar to the relationship observed by Yu et al
(2014). When the effect of the forest age on NEP was
de-trended, the residual of NEP did not significantly
correlate with wet nitrogen deposition anymore
(R* = 0.133, p = 0.164) (figure 3(b)). However, we
would like to emphasise that it could not prove that
nitrogen deposition had no significant effect on forest
NEP when age was considered; it only showed that
nitrogen deposition might not be a suitable predictor
for regional scale NEP.

Spatial patterns of climate-related NEP

With the CRU meteorology data from 2001 to 2010,
MODIS land cover map and the statistical relationship
between NEP and MAT, the spatial distribution of
forest NEP could be estimated for the East Asian
region (figure 4). The spatial distribution of NEP
estimated by climate factors alone (equation (2)) was
exhibited in figure 4(a), the mean forest NEP was
281.428 g Cm > yr ' and the total annual NEP was
1.123 Pg C yr''. While when the primary effect of
forest age was de-trended and the regression equation
between the NEP residuals and MAT (equation (3))
was employed, the estimated value of mean NEP
residuals was 11.575gCm™>yr_ ' and the total annual
NEP residuals was 0.046 Pg C yr ' (figure 4(b)). The
NEP residuals which indicated forest NEP contributed
by climate on the basis of the tendency of forest carbon
sink with age change of this region exhibited a
decreasing gradient from south to north. Positive NEP
was mainly located in the south and southeast, while
negative NEP was located in the north and northeast.

To further explore and better compare the results,
we extracted the region of China (figures 5(a), (b)).
The mean NEP of China estimated by equation (2) was
312.63 g Cm *yr ', and the total annual NEP was
0.540 Pg C yr ' (figure 5(a)). While the mean NEP
residuals estimated by equation (3) was 32.79 gCm >
yr ', and the total annual NEP residuals was 0.057 Pg
C yr ! (figure 5(b)). It indicated that when the age
effect was ignored and only climate factors were con-
sidered, the carbon sink contributed by climate factors
would be significantly overestimated. To strengthen
the evidence, we also employed an assessment scheme
generated by Zhu et al (2014), where forest age was not
considered as well, to estimate largest potential of NEP
(equation (4)):

NEP = 34.25 x MAT + 0.7 x MAP — 0.03
x MAT x MAP — 256.09 4)

On the basis of this assessment scheme, we calcu-
lated the model NEP of forests and its spatial distribu-
tion in China (figure 5(c)). Although it also exhibited a
decreasing gradient from the southeast to northwest,
similar to figure 5(b), the magnitude of the forest aver-
aged NEP in China was 406.94 ¢ C m™ > yr ' and the
total annual NEP was 0.704 Pg C yr~', which was of
the similar magnitude as our estimation by
equation (2) (312.63 ¢ C m~* yr ' and 0.540 Pg C
yr~ ') where forest age was not considered either, but
much higher than our estimation by equation (3)
(32.79gCm *yr "and 0.057 PgCyr~ ') where forest
age was de-trended first.

A significant high spatial discrepancy (figure 5(d)
(figure 5(c) minus figure 5(b))) exists between the lar-
gest potential NEP estimated by Zhu’s assessment
scheme (figure 5(c)) and our results (figure 5(b)), in
which the age effect was de-trended first. The largest
difference of forest NEP occurred in southeast China
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where forest NEP contributed by climate factors had
been the most overestimated. Given that southeast
China has a relative young forest age (Dai et al 2011,
Zhang et al 2014), it could be deduced that the main
reason for this higher NEP in southeastern China as
attributed to forest age (equation (1)), but not attrib-
uted to climate factors. That is, in actual NEP estima-
tions, if we ignore the effect of forest age and directly
build the statistical model between NEP and climate,
we would significantly overestimate the effect of cli-
mate factors on NEP.

Discussion

Impact factors in NEP estimation

In this study, we compared the results of forest NEP
estimated by climate factor MAT with and without age
as a restriction factor. Climate factors may better fit
alone with NEP, but their effects were on the basis of
age-related trend of forest productivity. After de-
trending the effect of age, variance of NEP explained
by climate factors was reduced from 0.379 to 0.23, and

age turned to be the primary factor affecting NEP
(R* = 0.347), which consistent with many other
studies (Pregitzer and Euskirchen 2004, Fang
et al 2014, Du 2015). The similarity between the
relationship pattern of NEP and forest age in the East
Asian region in this study and in Yu et al’s study (2014)
of the entire Asian region indicated the stability of the
relationship of NEP and age. In further estimation, if
forest age is de-trended, climate contribution to forest
productivities among regions will be comparable and
it could be advantageous for scientists to predict the
effects of climate change on forest ecosystems and
their regional disparities.

MAT and MAP reflected the average heat and water
condition on the regional and inter-annual scale. In
most studies, this relationship was found between MAT
and forest NEP (Magnani et al 2007, Piao et al 2009,
Loudermilk et al 2013), while relatively less studies used
MAP in the NEP statistical models. In this study, after
de-trending the effect of forest age, climate factor MAT
was the only factor significantly correlated with NEP.
The reason that MAP did not fit well with forest NEP in
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the East Asian region might due to the fact that pre-
cipitation was not a major limitation of ecosystem pro-
ductivity in this region, particularly in areas where forest
stands were developed. Another reason may be that only
part of the precipitation was related to the ecosystem
carbon gain due to water-use efficiency and that the eco-
system water-use efficiency differs strongly depending
on factors such as vegetation types, meteorological con-
ditions and disturbances.

The significant correlation between NEP and wet
nitrogen deposition weakened after de-trending the
effect of forest age on NEP in the East Asian region. It
may indicated that the effect of wet nitrogen deposi-
tion on NEP could be largely explained by forest age
on a scale like that of the East Asian region. The poten-
tial reason was most likely related to human activities
because regions where frequent afforestation activities
occur were often consistent with regions where
intense human industrial activities occur. Thus, the
regions where forest age was relatively lower might
also have relatively higher wet nitrogen deposition.
However, nitrogen deposition data is relatively less
and its effect on carbon sink is complex and uncertain
(Fleischer et al 2015). Therefore, control experiments
performed on smaller scales would be more helpful to
understand the mechanism underlying these issues.

Accuracy evaluation of the NEP contributed by
climate factors

To test the accuracy of estimating NEP by forest age
and climate factors separately, we used our decoupling
method and forest flux sites data of the East Asian
region (from latitude 18° N to 54° N) and the complete
dataset of the Asian region (from latitude 2°N to
65° N) collected from Yu et al (2014), to estimate the
NEP contributed by forest age and climate factors

separately. We then compared the sum of the age and
climate contributed NEP with the flux site observed
NEP. Equations (1) and (3) were used to estimate the
forest age contributed NEP and climate contributed
NEP after de-trending the effect of age in the East
Asian region. Equations S1 and S2 were used to
estimate the forest age contributed NEP and climate
contributed NEP after de-trending the effect of forest
age in the whole Asian region (figure S4, table S2).
Furthermore, NEP estimations were presented in 10°
latitude bins (figure 6). No significant difference
existed between the flux site NEP and the sum of the
age and climate contributed NEP in either region scale,
which indicated that our method of estimating NEP
was reliable.

Uncertainties

The carbon flux data and forest age data strongly relied
on flux sites; the accuracy of NEP estimation was
highly influenced by the number and spatial distribu-
tion of the sites. Most of the old forests were in cold
regions and most young forests were in warm regions
(figure 1(a)). To balance these defect, cold region with
young forests and warm region with old forests should
be given more consideration when selecting the
location of flux tower sites.

Another uncertainty was caused by plant func-
tional types (PFTs) aggregation because aggregate
data could hide or misrepresent the relationship of
NEP with age and climate of each PFTs. To address
this issue, each PFTs data should be analysed before
data aggregation (Clark et al 2011). In this study, we
divided the forest ecosystem into PFTs employing
two different ways to test the stability of the relation-
ship of NEP with age and climate (figure 7), so it
could make up for the limited number of flux sites to
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some extent. The decline trends of NEP with age
were similar among different PFTs, the slopes of
models (NEP with age) were almost the same
(figures 7(a), (c)). Although the mean NEP of needle-
leaf forest was greater than broadleaf forest
(figure 7(a)), and the mean NEP of evergreen forest
was greater than deciduous forest (figure 7(c)), the
differences were not necessarily resulted from PFT's
but because of the relative higher temperature range
(figures 7(b), (d)). No obvious trend of NEP residuals
with MAT showed in evergreen forests (figure 7(d)),
it might because evergreen forests distributed in a
relatively narrow temperature range. Therefore, data
aggregation could cause estimation error, but with
more forest sites and larger age and temperature
range, the general characteristic of NEP with age and
MAT could be represented better at forest ecosystem
level.

The contribution of climate on forest NEP in China

Approximately 23% of the NEP residuals could be
explained by MAT after de-trending the effect of forest
age. The scatter plot indicated that the variation of the
NEP residuals in the younger forest age stage was
higher (figure 1(b)), which could suggest that temper-
ature changes may had stronger effects on young
forests. In China, frequent and intense afforestation
activities in recent decades have reduced the average
forest age (Dai et al 2011), and combined with the
monsoon climate, temperature changes will have a
stronger effect in the China region. The coefficient of
independent variable MAT in equation (2) is larger
than in equation S2 (table S2), indicating that temper-
ature changes have a stronger effect in the East Asian
region where China is located compared to the whole
Asian region. Thus, facing the global warming situa-
tion, the forest of the latitude band where China is
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located has a carbon
sequestration.

If forest age was not taken into consideration when
estimating the forest NEP, then the effects of climate
might be magnified. The forest NEPs estimated mainly
from climate factors were about 10 to 12 times higher
(depended on estimated methods) than the NEP con-
tributed by climate factors (MAT) after de-trending
the effect of the forest age (table S3) in China, and they
were dramatically higher than the value presented by
Pan et al (2011), which was estimated using inventory
data and long-term field observations coupled to sta-
tistical or process models.

On the basis of forest inventory data, Pan et al
(2011) revealed that the annual total carbon sink,
which is contributed by all natural and human factors,
in China’s forests was 0.18 Pg C yr ' from 2000 to
2007. When this magnitude was used as a reference
value, we found that climate contribution on NEP on
the basis of the tendency of forest carbon sink with age
change accounted for 31.7% of the total NEP in our
study.

greater potential for

Conclusion

In East Asia, forest age appeared to be an important
factor on forest NEP (R* = 0.347). When age was
fixed, climate factors turned into determinant of NEP.
After de-trending the long-term effect of age, MAT
explained 23% of NEP variance. The effect of wet
nitrogen deposition on NEP weakened after de-
trending the effect of forest age in the East Asian
region. In China, climate contributed NEP took 31.7%
of total NEP of 0.540 Pg C yr™ ', while if age effect was
not de-trended, discrepancy between the potential
NEP estimated only by climate and NEP estimated by
climate after de-trending forest age could be over 12
times.
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