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Abstract
The interactions between a range of large-scale climate oscillations and their quantitative linkswith
precipitation are basic prerequisites tounderstand thehydrologic cycle. Restricted by the current limited
knowledge onunderlyingmechanisms, statisticalmethods (e.g. correlationmethods) are oftenused
rather than a physical-basedmodel.However, available correlationmethods generally fail to explain the
interactions among awide range of climate oscillations and associated effects on thewater cycle. This
studypresents a newprobabilistic analysis approachbymeansof a state-of-the-artCopula-based joint
probability distribution to characterize the aggregated behaviors for large-scale climate patterns and
their connections to precipitation.Weapplied thismethod to identify the complex connections between
climate patterns (westerly circulation (WEC), ElNiño-SouthernOscillation (ENSO) andPacificDecadal
Oscillation (PDO)) and seasonal precipitationover a typical endorheic region, theTarimRiverBasin in
central Asia. Results show that the interactions amongmultiple climate oscillations are non-uniform in
most seasons andphases.Certain joint extremephases can significantly trigger extremes (flood and
drought) owing to the amplification effect among climate oscillations.We furtherfind that the
connection ismainly due to the complex effects of climatic and topographical factors.

1. Introduction

The large-scale atmospheric oscillations are of para-
mount importance for global or regional water cycle and
energy balance (Philips et al 2012, Trenberth et al 2014)
and vegetation (Zhang et al 2007), thus have profound
impacts on water resources development and hazard
prevention and mitigation (Yang et al 2014). For
example, the record-breaking high global temperature
and devastating floods worldwide in 1998 can be partly
attributed to El Niño (Lean and Rind 2008, Foster and
Rahmstorf 2011), and the 2010Pakistanfloodwas linked
to a strongLaNiña (CoumouandRahmstorf 2012).

A number of efforts have been implemented to
address the impacts from large-scale climate oscillations
on the water cycle by using a collection of techniques.

Philips et al (2012) analyzed the influence of the ENSO
on terrestrial water storage using monthly estimates of
continental water storage from theGravity Recovery and
Climate Experiment (GRACE). Xu et al (2007) identified
the relationship between precipitation and ENSO in
China by using the non-parametric Kendall’s t. Kim
et al (2008) developed an influence index tomeasure the
effect of climate variationonprecipitation.

Many studies have investigated the atmospheric cir-
culation patterns (e.g. ENSO, PDO) and the associated
effects on precipitation, and these studies have detected
generally consistent and systematic relationships (Huand
Feng 2001, Van Oldenborgh and Burgers 2005, Timm
et al 2005, Goodrich 2007, Stevens and Ruscher 2014).
However, those atmospheric oscillations are non-inde-
pendent and collectively affecting over some areas. There
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actually exists intricate interplay among the multiple and
large-scale climate oscillations (Steinman et al 2014),
which constitutes a complex climate–land coupled sys-
tem, especially in semiarid central Asia. Multiple atmo-
spheric oscillations collectively impose a more complex
influence on local precipitation. Restricted by the current
limited knowledge on underlying mechanisms, physical-
basedmethodologies generally fail to explain the complex
interactions. Thus, statistical methods (e.g. correlation
methods) are often used to discover and delineate these
complex relationships. However, available statistical
methodologies are generally unable to explain the inter-
actions among a wide range of climate oscillations and
associated effects onwater cycle in some areas around the
world (Xu et al 2004). To date, identification of dimen-
sional interactions among multiple large-scale circula-
tions and associated hazardous impacts (flood and
drought) is still a weak point in global change studies
(Boers et al 2014). Recently, copulas has been extensively
used in high-dimensional probabilistic statistical analysis
(Zhang et al 2012), providing us a beneficial means to
analyze the underlying processes that could not be mod-
eled by current physical based models and described by
correlationmethods. Copulas are able to characterize the
dependence structure independently of themarginal dis-
tributions (Genest et al 1995, Favre et al 2004). It is there-
fore beneficial to be used in identification for the
interactions among non-independent atmospheric oscil-
lations and associated hazardous impacts by means of
copula algorithm.

The work strives to: (1) characterize the interplay
among multiple large-scale climate oscillations based
on joint probability density generated by Copulas; (2)
construct a series of climate phases and a quantitative
connection based on the phases; (3) address the poten-
tial impacts ofmultiple extreme phases on precipitation
and analyze the underlying mechanisms. The Tarim
River Basin (34°N–43°N, 73° E–93° E), a typical arid
and endorheic region in Central Asia, is selected as

study domain to demonstrate the approach. The cli-
mate of this region is dominated by thewesterly circula-
tion (WEC) and influenced by ENSO and PDO and
some other factors (e.g. the Moonsoon and topo-
graphical factors) (Chen et al 2009, Wu et al 2012).
WEC represents regional climate pattern, while ENSO
and PDO are phenomena of global and hemispheric
circulation patterns, respectively. Thus, the three cli-
mate patterns and their indices are chosen to represent
multiple large-scale climate oscillations that play as
major influence onclimate in the study region.

2.Methodology

2.1.Data
The observed monthly precipitation data from 23
stations across the basin (figure 1) during 1960–2014 are
used in this study and compiled from the China
Meteorological Data Sharing Service System (http://
cdc.nmic.cn/home.do). Three climate indices, ZI (zonal
index), SOI (Southern Oscillation Index) and PDO, are
utilized to represent the westerly circulation, ENSO and
PDO, respectively. Themonthly time series of ZI for the
period of 1979–2014 are calculated according to

- H H ,40 N 65 N where H is the monthly mean geopo-
tential height in 500 hPa from 73 E to 93 E.
The geopotential data is obtained from ERA-Interim
Reanalysis data  ´ 1 1( ) (www.ecmwf.int/en/
research/climate-reanalysis/era-interim), which is the
latest global atmospheric reanalysis produced by the
EuropeanCentre forMedium-RangeWeather Forecasts
(ECMWF). Themonthly time series of SOI andPDO for
the period of 1951–2014 are from the Earth System
Research Laboratory, NOAA (www.esrl.noaa.gov/psd/
data/climateindices/list/).

2.2.Methodology
We proposed a consolidated framework (figure 2) for
new probabilistic analysis approach by means of a

Figure 1.Map of the TarimRiver Basin andmajor precipitation stations.
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state-of-the-art Copula-based joint probability distribu-
tion to characterize the aggregated behaviors for large-
scale climate patterns and their connections to precipita-
tion. It includes three steps: (1) construct a multivariate
joint probability distribution based on three marginal
distributions of large-scale climate indices to characterize
interplay; (2) build a series of conceptual influence
indices according to the Copula-based joint probabilistic
phases and standardized precipitation index (SPI); and
(3) conduct a composite mechanism analysis for further

verifying the connection. The joint distribution is
expressed as follows:

⎧⎨⎩
⎫⎬⎭=

1

P

F X

F U V Z

marginal distribution

, , three dimensional joint distribution

( )

( )
( ) ‐

where P represents the probability distributions, U V,
and Z represent climatic indices (i.e. ZI, SOI and PDO),
and X can be each of them. According to the fitted

Figure 2.The approach of quantitative connection between large-scale climatic patterns and precipitation.
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marginal probability distributions (figure 3) and dual
joint probability densities (figures 4 (c)–(h)), we define
that the seasonal climate indices larger than 75 percentile
is high phase and smaller than 25 percentile is low phase.
Then these single phases are aggregated together to
generate a series of dual and triple joint phases (table 1).
The corresponding occurrence probabilities of these
phases (e.g. =pHZLSHP >p ZI 75 percentile( Ç <SOI
25 percentile Ç >PDO 75 percentile) are obtained
(table1) through integration for the joint probability
density function. In order to investigate the quantitative
links between these phases and precipitation, an influ-
ence intensity index InfInt( ) was used to quantify the
strengthof teleconnections (Kim et al2006):

å=
=N

SPI iInfInt
1

2
i

N

c 1
c

c

( ) ( )

where Nc is the number of years of a climate phase,
and SPI ic ( ) is the seasonal SPI corresponding to year i.
The SPI quantifies observed precipitation as a stan-
dardized departure from a selected probability dis-
tribution function that models the raw precipitation
data (McKee et al 1993). It has zero mean and unit
standard deviation and provides a measure of the
precipitation frequency distribution. In addition, the

SPI has an advantage to capture multi-temporal
nature of rainfall deficiency and is usually computed
for a certain time interval (monthly or seasonally).
InfInt can be interpreted by themoisture classification
shown in table 2 (Mckee et al 1993, Kim et al 2006,
National Climate Center, China).

3. Results

Two seasons are included in this study: summer (June,
July and August) and winter (December, January and
February). The two seasons (summer and winter) are
chosen due to that these two seasons are two extremes
(maximum and minimum) in terms of the amount of
precipitation. There are less precipitation extremes in
spring and autumn over the region. The probability
distributions (density) (figure 4) are constructed to
characterize the geostatistical interactions among
multiple climate oscillations.

3.1. The interplay ofmulti-source large-scale
climatic patterns
For characterizing the multivariate non-independent
climatic variables, we used statistical technique rather

Figure 3.Marginal probability distributions for ZI, SOI and PDO.
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than the physical based methods. Firstly, we use a
kernel density function to estimate the marginal
distribution of seasonal ZI, SOI and PDO (figure 3).
Then, a series of commonly used copula functions
(Gaussian, Clayton, Frank and Gumbel Copula) are
used to construct joint probability distribution for the
three indices. Akaike’s information criterion (AIC)
and Euclidean distance are employed to identify the
appropriate function (table 3). Small values of the two
measures suggest good fit (Akaike 1974). The fitted
three-dimensional joint probability distribution is
shown in figures 4(a)–(b). According to the fitted joint
probability distribution, we extract the two-dimen-
sional probability density (figures 4(c)–(h)) to analyze
the combining characteristic so as to reveal the

interplay among them. The joint probability densities
for climatic indices show different characteristics. In
winter, the joint probability density of ZI and SOI
shows that the two climate patterns tend to appear in
opposite phases (figure 4(c)). In other words, the
probability density is high when one of the two climate
patterns has a low phase and the other has a high
phase, and is low when both climate patterns have the
same phases. Similar characteristics exist in the prob-
ability density for SOI and PDO (figure 4(g)). On the
contrary, ZI andPDOappear to have consistent phases
(figure 4(e)). Generally, the multiple large-scale cli-
matic patterns are correlated with each other to some
degree in winter, especially during the extreme phases
(figures 4(c), (e), (g)). In summer, correlations are not

Figure 4.Three-dimensional joint probability distribution for ZI, SOI and PDO (a)–(b). Two-dimensional joint probability density
(c)–(h). Note: themarginal probability density is normalized to uniformbyCopula; the joint probability (density) are denoted by
color; t denotes the rank correlation coefficient; these numbers in red denote the climate phases listed in table 1.
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as obvious as that in winter. Only ZI and SOI show
notable correlation in the down tail (figure 4(d)).
There are almost no correlation between ZI and PDO
(figure 4(f)) and between SOI and PDO (figure 4(h)).
Till far, the complex interplay of the climate oscilla-
tions is identified based on the probabilistic approach.

3.2. Climate phases-based analysis of influence
intensity
InfInt for 23 stations are aggregated as box plots
(figures 5(a), (c)) to reveal the effects of different
climate phases. The box-plots presented in figure 5(a)
show the influence intensity for 20 climate phases in
summer. The median values in the separate climate

phases (No. 1–6, table 1) are both between 0.5 and
−0.5, indicating the phase of any of the three climate
oscillations does not strongly associate with drought
and wetness in these regions. InfInt during joint
climate phases seem to be more dynamic and greater
than that during the separate ones. To interpret InfInt
during joint phases, we compare the values during
joint phases that include the same term. Through
comparisons, we find that ENSO has obvious wet
effect during the high phase of PDO (i.e. LSHP) and
the effect almost disappears during the low phase of
PDO (i.e. HSLP). It implies that PDO has regulation
roles in ENSO. The westerly wind brings disturbances
to the region. However, the role of westerly wind is not
consistent. High phase of westerly wind sometimes
enhances the wetness (i.e. HZLS) and sometimes
counteracts wetness (or makes dry effect) (i.e.
HZLSHP, HZHSLP), and low phase makes wet effect
(i.e. LZHS, LZHP). Generally, it can be concluded that
the phases LS and LZ seem to make wet effects and
these influences only take effect during the joint
climate phases. An amplification effect by high phase
of other climate indices is found. That is to say, single
climate phases with wet effect often seem to be
dormant when not accompanied by the high phases of
the other climate oscillations, but come alive when
coincide with high phases of other climate patterns.
The joint effects of two low phases are almost useless
and two high phases together often trigger drought. In
winter, the picture (figure 5(c)) is different comparing
with that for summer. The joint effect of ENSO and
PDO is not obvious. The single phase LS makes the

Table 1.A series of large-scale climate phases.

Probability

No. Climate phases Definition Calculation Summer Winter

1 HZ Years with highZI SCI(ZI)>75 percentile
2 LZ Years with lowZI SCI(ZI)<25 percentile
3 HS Years with high SOI SCI(SOI)>75 percentile
4 LS Years with low SOI SCI(SOI)<25 percentile
5 HP Years with high PDO SCI(PDO)>75 percentile
6 LP Years with lowPDO SCI(PDO)<25 percentile
7 HSLP HS&LP SCI(SOI)>75 percentile & SCI(PDO)<25 percentile 5.06% 8.51%

8 LSHP LS&HP SCI(SOI)<25 percentile & SCI(PDO)>75 percentile 5.06% 8.51%

9 HZHS HZ&HS SCI(ZI)>75 percentile & SCI(SOI)>75 percentile 5.38% 2.97%

10 HZLS HZ&LS SCI(ZI)>75 percentile & SCI(SOI)<25 percentile 4.61% 6.68%

11 HZHP HZ&HP SCI(ZI)>75 percentile & SCI(PDO)>75 percentile 5.06% 6.60%

12 HZLP HZ&LP SCI(ZI)>75 percentile & SCI(PDO)<25 percentile 5.06% 3.04%

13 LZHS LZ&HS SCI(ZI)<25 percentile & SCI(SOI)>75 percentile 4.61% 6.68%

14 LZLS LZ&LS SCI(ZI)<25 percentile & SCI(SOI)<25 percentile 5.72% 2.97%

15 LZHP LZ&HP SCI(ZI)<25 percentile & SCI(PDO)>75 percentile 5.06% 3.04%

16 LZLP LZ&LP SCI(ZI)<25 percentile & SCI(PDO)<25 percentile 5.06% 6.60%

17 HZHSLP HZ&HS&LP SCI(ZI, SOI)>75 percentile & SCI(PDO)<25 percentile 2.23% 0.98%

18 HZLSHP HZ&LS&HP SCI(ZI, PDO)>75 percentile & SCI(SOI)<25 percentile 1.78% 3.26%

19 LZHSLP LZ&HS&LP SCI(ZI, PDO)<25 percentile & SCI(SOI)>75 percentile 1.64% 3.26%

20 LZLSHP LZ&LS&HP SCI(ZI, SOI)<25 percentile & SCI(PDO)>75 percentile 2.34% 0.98%

Note: SCI denotes the seasonal climate indices (i.e. the annual time series of the sum of monthly climate indices during a season). Not all
combined phases are listed here, as some ofwhich do not appear in the observation.

Table 2. SPI, cumulative probability and
their correspondingmoisture classification.

SPI CDF

−3.0 0.001

−2.5 0.006

−2.0 0.023 Extreme dry (ED)
−1.5 0.067 Severe dry (SD)
−1.0 0.159 Moderate dry (MD)
−0.5 0.309 Incipient dry (ID)
0 0.500 Nearly normal (NN)
0.5 0.691 Incipient wet (IW)
1.0 0.841 Moderate wet (MW)
1.5 0.933 Severe wet (SW)
2.0 0.977 Extremewet (EW)
2.5 0.944

3 0.999
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region partly wet. Lower phases of atmospheric
oscillation (LP, LZ and LS) seem to help the formation
of precipitation in region, but it still, or at least partly,
rely on the influences from other climate patterns.
Different to that in summer, there is no consistent,
basin-wide amplification effect by the combinations of
high or low phases of these climate oscillations. What
can be determined is that two high phases together
often trigger drought (e.g. HZHS). It implies that the
strong west wind together with strong atmospheric
oscillation go against the concentration of warmwater
vapor and formation of precipitation inwinter.

We select 8 typical climate phases with con-
spicuous effects to show the spatial distributions of
influence intensity (figures 5(b), (d)). In summer, inci-
pient dry (ID) dominates in the upper basin (western
part, Yarkant River and Hotan River) and lower basin
(eastern and southeast part) during HZHP, and pre-
vails in the upper basin (western part, Yarkant River
and Hotan River) and southern part of the region dur-
ing HZHSLP (figure 5(b)). Incipient dry (ID) condi-
tion appears during the double-combined climate
phases including ‘HZ’, whereas wet conditions (inci-
pient wet, moderate wet) emerge during all climate

phases including ‘LZ’ and ‘LS’. In winter (figure 5(d)),
dry conditions dominate almost over the whole basin
during HZHS, western half and eastern half of which
are controlled by moderate dry (MD) and incipient
dry (ID), respectively. The last 6 phases both make the
basinwetmore or less.

In general, certain phases have been proved to be
highly related to hydrologic extremes (flood and
drought). Meanwhile, the occurrence probabilities of
these joint extreme phases (table 1) are not low. There-
fore, these joint extreme phases are worthy of more
attention in water resources and agriculture manage-
ment in this arid region.

4.Discussions

Wu et al (2012) simulated the annual average water
vapor transport and identified the transportation
routes over the Tarim River Basin. Based on the
simulation results, we drew a conceptual, theoretical
schematic graph (figure 6) to compendiously show the
water vapor transportation and correspondingly to
explain the linkages between different climate

Table 3.AIC and Euclidean distance for different copula functions.

Euclidean distance AIC value

Normal Copula ClaytonCopula FrankCopula Gumbel Copula

Summer 0.0470 0.0321 0.0357 0.0336

−442.4797 −465.9933 −459.4976 −463.1640

Winter 0.0303 0.0688 0.0406 0.0688

-469.6832 −418.8027 −451.4714 −418.8023

Note: Values in bold and italics means the best, thereby the corresponding function is selected to

fit the joint probability distribution.

Figure 5. Influence intensity for summer (a), (b) andwinter (c), (d) precipitation. Note: The box plots show theminimum (lower cap),
maximum (upper cap), median (line in the box), lower (bottomof the box) and upper (top of the box) quartiles of data.
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oscillations and precipitation pattern. The basin is
located at the peculiar location with complicated
climatic and topographic conditions, it is likely that
this water vapor exchange depends on the joint effect
of large scale climate patterns (i.e. westerly circulation,
ENSO, PDO and so on) and the specific ‘⊂’ shaped
terrain back to west wind. In details, the westerly
circulation prevails at the upper layer (500hP to
300hP) of troposphere and brings water vapor into the
basin (path 1, marked as① in figure 6), and weakens at
the middle layer (path 2, marked as ②) due to the
influence from altitude of Qinghai-Tibet Plateau and
monsoon. At the lower layer, the specific ‘⊂’ shaped
terrain significantly influences the water vapor trans-
port. Water vapor could not been transported to the
basin from the west boundary and south boundary at
the lower layer of troposphere owing to the hindrance
of Pamir (average elevation: 4000–7700 m) and Kun-
lun mountain (average elevation: 5500–6000 m).
Some airflow swerves northward and flows to the
basin from the northern (Tienshan, average elevation:
about 3000 m) via path 3 (marked as ③). Additionally,
a low-pressure center (shown as LPC) at the middle
and lower layer of troposphere exists over basin
because of that the strong westerly circulation at the
upper layer acts as ‘pumping’ over the ‘Ì’ shaped
terrain. Thereby, a large amount of airflow swerves
and flows to the basin from the east boundary (average
elevation: about 1000 m) via path 4 (marked as ④).
Airflow flows out of the basin from the northern
boundary at upper layer (marked as ⑤), and from the
southern boundary at upper (marked as⑥) andmiddle
layer (marked as⑦).

According to the water vapor transport over the
basin, we further interpret the linkage between differ-
ent climate oscillations and precipitation pattern. In
summer, most water vapor input comes from the east,

west and north boundaries, especially the east owing to
the existence of LPC. It is likely owing to that the west
wind is weaker in summer thus the height of LPC is
low, thereby indraft appears from the east. The large
water vapor from east at lower position helps the for-
mation of precipitation. This partly explains why wet
conditions emerge during all climate phases including
the ‘LZ’ phases (LZHP, LZHSLP, LZLSHP and LZHS)
in summer (figure 5(b)). On the contrary, strong west
wind brings water vapor from high layer, which pre-
vents the formation of precipitation. This probably
explains why the ‘HZ’ phases (HZHP, HZHSLP) lead
to dry effect (figure 5(b)). The west wind in winter is
strong and at higher layer, which count against the
accumulation of water vapor. The strong west wind
together with strong atmospheric oscillation (i.e.
HZHS) causes the region dry in winter (figure 5(d)).
Though the respective exact contribution of westerlies
and terrain to the precipitation regime remain elusive,
what’s undoubtedly is that there exists specific multi-
path water vapor channels and the westerly wind
affects the precipitation regime in the basin.

ENSO and PDO represent the anomalies of sea
level pressure and sea surface temperature, respec-
tively (Ropelewski and Halpert 1986, Hare and Man-
tua 2001). Thus, it is undoubtedly that ENSO together
with PDO can affect the prevailing intrinsic climate
(dominated mostly by westerlies and terrain) and
thereupon influence the water vapor transportation
more or less. This influence is probably just a modula-
tion or a disturbance, but it indeed has important
impacts on precipitation. Additionally, the El Niño
events (low phase of SOI) brings warm and wet air
therefore influence the precipitation in the basin. This
can partly explain why wet conditions emerge during
the climate phases including ‘LS’. Furthermore, PDO
has obvious regulation roles on some other climate

Figure 6.The interplay of large-scale climate patterns and the schematic diagramofwater vapor transport in TarimRiver Basin.
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oscillations (Hu and Feng 2001). In winter, low phase
of PDO probably helps make the region wet. In other
words, most of the climate phases including ‘LP’make
the region wet (figure 5(d)). However, this regulation
role is not consistent in summer. Extremes emerge
both under the climate phases including ‘HP’ and ‘LP’.
It is probably because that PDO has no correlation
with ZI and SOI in summer (figures 4(f), (h)). The
underlying mechanisms need to be further investi-
gated in the future.

The above deductive qualitative linkages between
Westerlies & ENSO & PDO and precipitation are just
quantitatively identified in this article by a probabil-
istic phases- based comprehensive analysis. The infer-
red qualitative linkage and the quantitative linkage
were auxiliary to each other. We further test the
method by using combined phases that are neither
high nor low. The InfInt during these combined pha-
ses indicate nearly normal (NN) both in winter and in
summer (figure S1). We can further conclude that
extremes (flood and dry condition) are mostly trig-
gered by the combined extreme climate phases, rather
than normal phases. It is worth pointing out that the
InfInt represents average influence intensity from a
certain climate phase. Dry and wet spells still emerge
in these normal combined phases, but the average dry-
wet condition in the period is normal. In other words,
transient wet or dry conditions may appear in certain
periods of a climate phase, but the climate phase
makes the region nearly normal as awhole.

A physical model (e.g. a global circulation model
or regional circulation model) usually generates pre-
cipitation by considering some regional and global cli-
mate oscillations and some other large-scale climate
factors. It is not the best and direct way to detect tele-
connections between climate oscillations and pre-
cipitation. To the best of our knowledge, there is
almost no a physical model that is able to capture all
complicated teleconnections, thus statistical techni-
ques (e.g. correlation methods) are usually used
instead to detect the complex, multiple linkages or
relationships between climate oscillations and pre-
cipitation (Cayan et al 1999, Lyon and Barnston 2005).
However, the traditional correlations methods are not
sophisticated enough to investigate the interplay of
multiple climate oscillations, which restrict the dis-
covery and quantification of the potential impacts of
multiple extreme phases on precipitation (Piechota
and Dracup 1996, Xu et al 2004). The Copula-based
joint probability distribution constructed in this arti-
cle has disclosed the intricate interplay among the
multiple and large-scale climate oscillations, which is
not revealed by previous study (Kim et al 2006). In
addition, the complex effect of multiple climate oscil-
lations on precipitation is successfully delineated by
using the new probabilistic analysis approach, which is
also not revealed by previous study investigating the
same area (Chen et al 2009). They are of importance
for understanding the intricate behaviors of large-

scale climatic patterns on local precipitation, thus have
profound impacts on water resources development
and hazard prevention and mitigation over the arid
and inland zone.

5. Conclusions

In this work, a new probabilistic analysis approach by
means of a state-of-the-art Copula-based joint prob-
ability distribution is constructed to characterize the
aggregated behaviors for large-scale climate patterns
and their connection to precipitation. The intricate
interplay among the multiple and large-scale climate
oscillations and their connection with precipitation
has been successfully detected and identified through
the new probabilistic analysis approach. The mech-
anism analysis of the complex effect derived from
climatic and topographical factors explained the con-
nection to a certain degree. These collectively consti-
tute the distinctive deliverables to provide beneficial
insights in understanding the intricate behaviors of
large-scale climatic patterns on local precipitation over
the arid and inland zone.

Results reveal that the response of precipitation to
westerly circulation, ENSO and PDO is connected to
different seasons and phases. The drought andwetness
significantly correlate to the assembled climate phases
based on a multivariate Copula analysis. It is the joint
extreme phases instead of a single separate phase or
joint normal phases trigger different drought and wet-
ness. This depends on the enhancement from other
climate phase, and this amplification effect is distinct
in summer and winter. The effect has not been
revealed in previous studies, but effectively discovered
in this study by means of a consolidated probabilistic
analysis. The technique can be widely applied to
address teleconnections of multivariate large scale cli-
mate patterns with droughts and floods in other
regionsworldwide.
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