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Abstract
Weproject that within the next two decades, half of theworld’s populationwill regularly (every second
summer on average) experience regional summermean temperatures that exceed those of the
historically hottest summer, even under themoderate RCP4.5 emissions pathway. This frequency
threshold for hot temperatures over land, which have adverse effects on humanhealth, society and
economy,might be broached in littlemore than a decade under the RCP8.5 emissions pathway. These
hot summer frequency projections are based on adjusted RCP4.5 and 8.5 temperature projections,
where the adjustments are performedwith scaling factors determined by regularized optimal
fingerprinting analyzes that compare historicalmodel simulations with observations over the period
1950–2012. A temperature reconstruction technique is then used to simulate amultitude of possible
past and future temperature evolutions, fromwhich the probability of a hot summer is determined for
each region, with a hot summer being defined as the historically warmest summer on record in that
region. Probabilities with andwithout external forcing show that hot summers are now about ten
timesmore likely (fraction of attributable risk 0.9) inmany regions of theworld than theywould have
been in the absence of past greenhouse gas increases. The adjusted future projections suggest that the
Mediterranean, Sahara, large parts of Asia and theWesternUS andCanadawill be among thefirst
regions for which hot summerswill become the norm (i.e. occur on average every other year), and that
this will occurwithin the next 1–2 decades.

1. Introduction

Global mean temperatures have increased since the
late 19th century (Hartmann et al 2013). The warming
has been accompanied by an increase in extremewarm
temperatures (IPCC 2007) and an increase in the
occurrences of hot days (Seneviratne et al 2014).
Recent heat waves such as those in Western Europe
(2003), Russia (2010) and the Southern Great Plains of
the US (2011) have clearly demonstrated their large
negative impacts on human health, ecosystems, agri-
culture and economy (see Coumou and Rahm-
storf 2012, for an overview). For the purpose of
climate change adaptation and disaster management,
it is important to assess whether there have been
changes in the frequencies of such events and how they

might change in the future. It is also important to
understand the causes of the changes.

The increase in the magnitude and likelihood of
extremely hot temperatures has been attributed to the
human influence on the climate system (e.g. Christidis
et al 2011, Zwiers et al 2011, Bindoff et al 2013, Min
et al 2013, Wen et al 2013, Christidis et al 2015b, Kim
et al 2016). Human influence may have resulted in a
four-fold increase in the probability of a year during
2000–2009 being warmer than the hottest year of the
20th century in almost all regions of the globe (Christi-
dis et al 2012). The increase in hot temperatures is pro-
jected to continue in the future (Jones et al 2008,
Morak et al 2013). Jones et al (2008) estimated that in
the northern hemisphere, a hot summer that occurred
once every 10 years in the past will occur in 1 out of 2
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years before 2018. Mora et al (2013) projected that the
annual temperature over half of the global area will
become higher than the highest 1860–2005 tempera-
tures starting between 2047 and 2069.

Projected future changes in the climate are typi-
cally based on climate model simulations (e.g. Mora
et al 2013). However, a climate model that under-
estimates the past temperature increase may also
underestimate the future increase. Conversely, a
model that overestimates the past change could be
expected to overestimate the future change. It is rea-
sonable to assume that the fractional errors in project-
ing future temperature changes are linearly related to
those in simulating past temperature changes, and
therefore to use past observations to constrain future
projections. Under a linear regression framework, the
scaling factor that best matches historical observations
with model simulations has been used to scale future
projections (Allen et al 2000, Stott and Ket-
tleborough 2002, Lee et al 2006, Stott and Forest 2007).

Limiting the average global surface temperature
increase to 2 K over the pre-industrial average has
been used as a mitigation target in international cli-
mate policy discussions ‘to avoid dangerous anthro-
pogenic interference in the climate’ (Randalls 2010).
However, such a target for a global mean temperature
increase can be rather abstract for policy makers for
two reasons: first, it is difficult to link a global warming
target to local and regional impacts that many policy
makers are more concerned about. Second, the Earth
is expected to warm unevenly, e.g. land areas warm
faster than oceans, and warming rates in different
parts of the land surface differ (IPCC2013).

Hot summers defined as summers with higher
mean temperatures than during the historically hot-
test summer over a region can be an attractive refer-
ence for future climate change projection because
their negative effects have been experienced. Changing
probabilities of temperatures at historically high levels
have been studied in earlier work; Christidis et al
(2015b), for example, estimated the change in the like-
lihood of very warm years and seasons as simulated by
climate models and constrained by global space–time
patterns of observed temperature anomalies. Sun et al
(2014) estimated that anthropogenic influence has
caused temperatures as observed in the summer of
2013 in Eastern China to be 60 times more likely at
present than under pre-industrial conditions. They
projected that the region will experience similarly hot
summers even more frequently in the future, with
50% of summers being hotter than the 2013 summer
within two decades.

Here we provide projections of the likelihood of
hot summers for different parts of the world. These
projections are constrained by observations, using a
method similar to Sun et al (2014) and based on reg-
ularized optimal fingerprinting (ROF, Ribes
et al 2013). We further project the fraction of the
world’s population that would be exposed to these hot

summer temperatures—a measure relevant for adap-
tation purposes.

2.Methods and data

2.1.Methods
We use detection and attribution analysis (e.g. Allen
and Stott 2003, Ribes et al 2013) to assess whether
climate model simulations of summer temperatures
are consistent with observations. We first average
land-surface temperatures over three summermonths
and over the regions outlined in figure 1(A). We then
estimate the factors by which the model simulated
response to anthropogenic and natural forcing (ALL)
should be scaled to best match the observations. These
scaling factors are obtained by regressing observations
onto the expected climate responses to external
forcings, i.e. the signals represented by the multi-
model ensemble mean of climate simulations under
the respective forcings. We use the standard total least
square based optimal detection method (Allen and
Stott 2003) for the detection and attribution analysis.
This method takes noise in the model-simulated
climate response that arises from internal climate
variability into account. This requires estimates of the
climates internal variability, which we obtain follow-
ing the Ribes et al (2013) approach that uses a
regularized estimates of the covariance matrix estima-
tor in place of standard sample covariance matrices as
regularization improves the covariance matrix esti-
mates (see discussion in Ribes et al 2013) and obviates
the need for adhoc regularization, such as through the
EOF truncation approach that has often been used in
the past.

The goodness of fit of the regression models is tes-
ted using a residual consistency check (Allen and
Tett 1999, Ribes et al 2013). Figure 1(B) illustrates the
best-estimate and the 5th and 95th percentile of the
resulting ALL scaling factors for three selected regions.
The signal is detected in the observations if the 90%
confidence interval lies above zero. If the confidence
intervals for the scaling factors include unity, themag-
nitudes of model-simulated and observed changes are
comparable. If the scaling factors are larger than unity,
the model simulated response is underestimated, and
if they are smaller than unity, overestimated. We also
perform a detection analysis using the climate
response to natural (NAT) forcing alone, as well as to
anthropogenic (ANT, obtained from ALL-NAT) and
NAT forcing simultaneously (see figure D1 for all
regions).

The best estimate of climate response to external
(ALL) forcing in the observations is obtained bymulti-
plying the model simulated response by the scaling
factors. This is removed from the observations, and
the residual is taken to represent natural variation of
the climate without the influence of external forcings
(see figure 1(C)).
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We also use the ALL scaling factors to adjust the sig-
nals from historical ALL and future representative con-
centration pathway (RCP) simulations (figure 1(D)).
The 380 samples of noise from pre-industrial simula-
tions are added to these observational-constrained sig-
nals to produce multiple realizations of reconstructed
and projected future temperature changes. Christidis
et al (2012, 2015b) used a similar method, but with a

single scaling factor obtained from a global space–time
temperature pattern that was regionally resolved. By
using scaling factors obtained for individual regions, we
constrain signals onlywith information from the respec-
tive regions, which allows closer adjustment to regional
differences between observed changes and signals, but
also means that the uncertainty in the scaling factors is
larger due to the averaging over smaller regions.

Figure 1.Method explained on the example of the AmazonBasin, theMediterranean and SouthernAustralia.

3

Environ. Res. Lett. 11 (2016) 044011



The proportion of reconstructed time series with
temperature anomalies greater than the observed hot-
test temperature anomaly is referred to as the prob-
ability of exceedance (P1, see figure 1(D)), or as the
probability of a hot summer. A similar probability (P0)
is computed for the 380 pieces of control simulations.
The fraction of attributable risk

=
- ( )P P

P
FAR 11 0

1

is then computed for each region. The FAR lies
between−Inf and 1. A negative value indicates that an
event becomes rarer due to anthropogenic forcing,
while a positive value indicates that the event becomes
more frequent.

Lastly, we define the year after which the prob-
abilities of a hot summer P1 are continuously larger
than 50% and 90%. Each year, the population of the
region for which this is the case is summed up to
obtain time series of population exposure to hot
summers.

2.2. Temperature data frommodels and
observations
The observational data are the University of East
Anglia Climatic Research Unit gridded global land-
surface temperature anomalies (CRU version 3.21,
Mitchell and Jones 2005). Climate model simulations
were obtained from the Coupled Model Intercompar-
ison Project phase 5 (CMIP5) multi model ensemble
(Taylor et al 2012) and are listed in tables A.1 and A.2.
We consider historic simulations under ALL and NAT
forcings. For future projections, we include simula-
tions from two emission scenarios—RCP4.5 and
RCP8.5. The RCP8.5 assumes radiative forcing to be
8.5Wm−2 by 2100 (Riahi et al 2011, van Vuuren
et al 2011). The reduction in emissions necessary to
limit the forcing to this level is supposed to be reached
with air quality legislation but without a strict climate
policy. The RCP4.5 has a target radiative forcing of
4.5Wm−2 and requires, for example, a decline in
overall energy and fossil fuel use and a substantial
increase in renewable energy forms (Thomson
et al 2011). The increase in the global mean temper-
ature is estimated to be 4.9 and 2.4 K above pre-
industrial levels by 2100 under the RCP8.5 and
RCP4.5 scenarios, respectively (Rogelj et al 2012).

Our ensemble consists of 54 ALL simulations, 45
NAT simulations, and 15 RCP4.5 and RCP8.5 simula-
tions. When constructing time series over the past and
future, we selected only model members from ALL
simulations that also produced RCP runs (indicated
with ALLrec in table A.1). We conduct the detection
and attribution analyzes based on the period
1950–2012 (63 years) and provide future projections
for the period 2013–2069 (57 years). Fifty-one multi-
year control simulations from various models are also
used for the estimation of internal variability. Overall,
these control simulations provide 380 chunks of data

which are of the same length as the historical data (63
years).

We interpolate all data onto a 5×5°grid and
mask the historical and control simulations to mimic
availability of the CRU data. We then compute the
summer mean temperatures by averaging monthly
values of the three summer months (June–August for
the northern hemisphere and December–February for
the southern hemisphere). For the observations and
ALL and NAT simulations, anomalies are calculated
relative to the individual simulations’ average over
1950–1984; anomalies are similarly calculated relative
to the year 0–34 average in the case of the control
simulations. The anomalies for each RCP simulation
are calculated relative to the respective historical ALL
simulation (1950–1984). Finally, we average the
anomalies over large regions (see figure 1(A)) with the
same region boundaries as used in the Special Report
on Extremes (IPCC SREX report, Seneviratne
et al 2012). The detection and attribution analysis is
performed on 3 yearmean series.

2.3. Population
Projections of gridded population data for the years
2000–2100 are obtained from the GGI Scenario
Database developed at the International Institute for
Applied System Analysis (IIASA, Riahi and Nakiceno-
vic 2007, scenario A2, available at http://iiasa.ac.at/
Research/GGI/DB/). The original data is available at
a time-step of 10 years. We obtain annual values by
linearly interpolating the decadal values.

3. Results and comparison to other studies

3.1. Contribution of external forcing to past
temperaturemaxima
For time series of global-averaged summer tempera-
tures, the responses to ALL and NAT forcing are
detected in the observations. In all 26 regions except
for North Australia, the responses to ALL forcing are
detected, while the response to natural forcing alone is
only detected in 11 out of 26 regions (figureD1).

Not detecting the responses to ALL forcing in
observed changes—as is the case in North Australia—
indicates that the ensemble mean of the simulations
under ALL forcing does not match observations well.
In North Australia, observed summer temperatures
show only a very small increasing trend (figure D2).
For the sub-period of 1979–2010, Li et al (2013) even
report a cooling trend over the region and suggest that
the cooling is due to the increase in North Australian
summer rainfall and surface evaporation. The reason
for the positive trend in precipitation is still unclear,
although Li et al (2013) suggest that it is linked to an
anomalous Gill-type cyclone response to increasing
sea surface temperatures in the tropical Western Paci-
fic. While such variability is present in observations
and thus mask the response to ALL forcing, ensemble
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averaging would have largely removed the influence of
internal variability in the ensemblemean of ALL simu-
lations, leaving essentially only the forced response.
Thus a discrepancy between observations and the ALL
signal in a region strongly affected by low frequency
variability is not implausible despite strong evidence of
the ALL influence at the global scale and in most other
regions.

The confidence intervals for the ALL scaling fac-
tors include unity in most cases, indicating a good
match between models and observations in general.
The residual consistency checks indicate no evidence
of too littlemodel variability. In 21 regions, themodel-
simulated variability is consistent with the regression
residuals. In the remaining 5 regions, the simulated
variability is too large. Larger variability in model
simulations increases the width of the confidence
interval for the scaling factor, making the detection
results more conservative. We therefore include all
regions in the subsequent analyzes.

Column 2 in table B.1 lists the historically hottest
summers for each region. By multiplying these years’
model simulated response under ALL forcing with the
ALL scaling factor (see figure 1(C)) for each region, we
obtain the temperature anomaly attributable to exter-
nal forcing (figure 2). The attributable temperature
anomalies have a mean of 0.59 K with an interquartile
range of 0.33–0.73 K across the regions. The highest
attributable temperature anomalies of 1.59, 1.29 and
1.43 K appear in the Mediterranean, North Africa and
the Middle East, respectively (regions 13, 14, 19,
figure 2 and table B.1). Their temperature anomalies

relative to the 1950–1984 mean in the absence of
external influences are estimated to be 0.47, 0.34 and
0.47 K, respectively. These three regions are also
among the regions with the largest observed summer
temperature increases over the past few decades
(figureD2).

In all regions except North Australia, the influence
of external forcing on summer temperatures has
become obvious over the last 30 years (figure D2). This
has resulted in an increase in the occurrence prob-
ability of hot summers (supplementary figure S1), pre-
sented as the FAR in table B.1 and figure 2. Table B.1
also presents estimates of the uncertainty in the FAR
(for explanations, see appendix B). The FAR for the
historically hottest summer is over 0.9 in many
regions, i.e. the occurrence frequency for a hot sum-
mer has increased by a factor of 10 due to the anthro-
pogenic influence on the climate (figure 2). The FAR is
lower in South America, Indonesia, North Australia
and western North America. Christidis et al (2015b)
showed that in 83% of global land regions, anthro-
pogenic influence has at least doubled the odds of hot
temperature events during June–August. This is con-
sistent with generally large FAR values that we find
here. Our results are also comparable to Jones et al
(2008)who estimated that a past 1 in 10 year hot sum-
mer in the Northern Hemisphere has already become
a 4 in 10 year event, equivalent to a FAR of 0.75. Zwiers
et al (2011), investigating the return period of extreme
annual maximum daily maximum temperature,
found a FAR of roughly 0.25 for several Northern
Hemispheric regions. Although we only present

Figure 2. Summer temperature attributable to external forcing (top) and fraction of attributable risk (FAR, bottom) for summer
temperature in the year withmaximumhistoric summer temperature anomaly (see table B.1). The FAR is calculated fromFAR= 1 –
P0/P1 withP0 the probability of hot summers without any external forcing, and P1 the respective probability in simulationswith
external forcing.
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results for the FAR for the temperature anomaly dur-
ing the historically hottest summer, it can be estimated
for any temperature anomaly by the reader using our
data (appendix C).

3.2. Timing of frequent hot summers
The year beyond which a region is projected to
regularly experience hot summers is shown in figure 3.
The timing represents the year after which the prob-
ability of a hot summer is higher than 50% (top) and
90% (bottom), respectively, in every subsequent year
(for probability time series, see figure S1). This is
synonymous with an occurrence frequency of 1 in 2
and 9 in 10 years, respectively, which we will also refer
to as ‘the norm’ and ‘most years’, respectively (see
table 1). As our analyzes extend only to the year 2069,
‘every subsequent year’ strictly means up to the end of
our data record. The possibility that the probability for
a hot summer after 2069 is below the thresholds
cannot be ruled out completely, but is highly unlikely
under the RCP4.5 and RCP8.5 pathways given that the
projectedwarming is essentially irreversible on human
time scales (Solomon et al 2009) . Note that we show
results for both RCP4.5 and RCP8.5, but only discuss
those for RCP4.5 in detail .

Many northern hemispheric regions are projected
to experience hot summers in 1 out of 2 years within a
decade, and 9 out of 10 summers by 2040 (figure 3).
Climate change has already impacted these regions in
the past (Jones et al 2008, Christidis et al 2015b). Our
analysis suggests that the Sahara region is the first to
experience higher than historic summer temperature
maxima—in 9 out of 10 summers within 15 years. The
region exhibits a very strong warming trend and rela-
tively small natural variability (figure D2). In Eastern
Asia (region 22), we find that 1 out of 2 summers is
projected to be hot by around 2020, comparable to the
results from Sun et al (2014) for Eastern China (2025).
Other areas for which hot summers are projected to
soon become the norm are the Mediterranean region
(around 2025), large parts of Asia (before 2025) and
the Western US/Canada (2030, figure 3). These early
dates are consistent with the strong summer temper-
ature responses to climate change in these regions as
documented in the IPCC 4th assessment report (AR4).

Figure 3.Year beyondwhich the probability of hot summers is larger than 50% (top) and 90% (bottom) estimated from
observationally constrained reconstructions based onRCP4.5 (left) andRCP8.5 (right) simulations. Note that the years are
determined from the reconstructions combining past and future simulations (seefigure S1), and if a date before 2013 is shown, it has
been determined fromhistorical simulations.

Table 1.Terms used for likelihood and recurrence rates.

Occurrence probability Yearswith Alternative

per year occurrence terminology

>90% > 9 out of 10 Most summers

>50% > 1 out of 2 Being the norm
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The report shows that the median temperature
response in the Sahara and the ‘Southern Europe and
Mediterranean’ region are among the largest for the
summermonths (IPCC 2007 and table D.1). Jones et al
(2008) also find a large increase in the occurrence
probabilities in the Sahara and the Mediterranean
regions in response to anthropogenic forcing, with a 1
in 10 year-event to become a 6 in 10 year and 7 in 10
year- event (or a FAR value of 0.83 and 0.86),
respectively.

Our temperature threshold for hot summers in the
Mediterranean is higher than the June–August average
of the heat-wave summer of 2003. Such temperature
extremes are projected to become the norm by 2025,
and very few summers will be colder than that after
2035. The likelihood of hot summers in Europe has
been studied extensively. Schar et al (2004) for example
analyzed the temperature at the end of the twenty-first
century simulated by a regional climate model and
found that 1 in 2 summerswould be aswarmorwarmer
than the 2003 summer. Stott et al (2004) report a hun-
dredfold increase in the expected frequency of 2003-
type summers by the mid-twenty-first century, and
Christidis et al (2015a) suggest that the human influence
on this frequency has beenunderestimated.

3.3. Population exposure to hot future summers
The percentage of regions and population living in
regions where summers are projected to be hot in 1
out of 2 (full lines) and 9 out of 10 years (dashed lines)
are illustrated in figure 4. The timeseries are based on
probabilities calculated from the observationally con-
strained projections. We ask the question: When are
hot summers projected to be sowidespread that half of
the population regularly experiences summers (i.e. 1
in 2) that are hotter than any summer of the past?
Under the moderate emission scenario RCP4.5, more
than half of the world’s population is projected to
experience a hot summer in 1 out of 2 years within 20
years. If greenhouse gas emissions continue to rise
throughout the 21st century (RCP8.5), this is projected
to occur in just over a decade. The time at which half
the world’s regions are projected to be affected occurs
only slightly later, which indicates that regions affected
first have a somewhat smaller proportion of the global
population. Just after 2050, nearly the entire popula-
tion and over 70% of all regions are projected to be
exposed to hot summers in 1 out of 2 years under
RCP4.5.

The timing of half of the regions being affected
(2035 under RCP4.5 and 2030 under RCP8.5) is earlier
than the timing reported in Mora et al (2013) for half
of the grid cells being outside the historical range
(around 2069 under RCP4.5 and 2047 under RCP8.5).
The dates should, however, not be compared, as the
definition of the timing in the two studies differ given
the two entirely different approaches. Results in Mora
et al (2013) are based on model simulations only. The

timing is the median of the years at which each of the
37 models considered simulate temperatures higher
than the maximum of the respective simulation’s past
temperature. Our probabilistic approach combines
information from observation and model output and
accounts for uncertainties from internal climate varia-
bility. The timing represents the year after which 50%
of the set of 380 observationally constrained recon-
structions of temperature timeseries are above the
observed historical maximum. Nevertheless, it is
worth mentioning that earlier timing in our study
could also be explained by differences in the foci: while
the quoted years of 2069 and 2047 from Mora et al
(2013) are results for annual values, we analyze sum-
mer temperatures. Summer temperatures are less vari-
able than annualmean values, which can lead to earlier
occurrence dates. Furthermore, while Mora et al
(2013) consider the grid cell scale (roughly 100 km),
we average over large regions, which further reduces
variability. Our analyzes are also restricted to land
areas—the area most relevant for human exposure to
heat—whereas Mora et al (2013) analyze values over
ocean and land.

Due to the adjustment of simulatedRCP time-series
with the scaling factors obtained by comparing model
simulations with observations, we should improve our
estimates of probabilities of hot future summers as
compared to using the raw time series. In our analysis,
21 out of the 26 regions show a best estimate of the scal-
ing factor below unity, i.e. model simulations over-
estimate the historic temperature increase. By adjusting
raw model output with these scaling factors, we reduce
temperature change relative to that in the raw model
output, which leads to more gradual increase in the
population affected by hot summers and a later timing
of exceeding historicallymaxima temperatures.

4. Conclusion

Hot temperature extremes have large impacts on
society, economies, ecosystems and health. In order to
adapt to climate change, it is important to know when
and where temperatures will regularly exceed thresh-
olds that are regarded as being historically hot—that
is, temperatures to which regionsmight be expected to
have adapted. Here, we use results from a detection
and attribution analysis to observationally constrain
future temperature projections and estimate the future
probabilities of hot summers, i.e. summers warmer
than the historically warmest summer. Our analyses
are performed on large regions covering the global
land area. We detect changes in summer temperature
in 25 out of 26 regions and can attribute a large part of
the observed temperature changes to anthropogenic
forcing. The regions with the largest attributable
temperature changes are the Mediterranean and the
Sahara region. In many regions, the fraction of
attributable risk for hot summers is over 0.9, i.e. it is
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estimated that hot summers are now ten times more
likely to occur than would have been the case if
greenhouse gas and aerosol concentrations had stayed
at preindustrial levels.

Several northern hemispheric regions are pro-
jected to experience hot summers in 1 out of 2 years
within the next decade under the RCP4.5. More than
half of the world’s population is projected to experi-
ence hot summers in 1 out of 2 years within two dec-
ades and 9 out of 10 years after 2050. Hot summer
temperatures are projected to be even more wide-
spread under the high emission scenario RCP8.5.

Extreme heat can affect people directly (heat related
death) and reduce economic productivity of the work-
force (Zander et al 2015). Some impacts might be miti-
gated as long as only a small portion of the global
population is affected. As an example, the negative
impacts on agricultural productivity can bemitigated by
balancing deficits in some regions with higher produc-
tion in other regions under the assumption of agri-
cultural exchange between regions and countries.
However, theremight already be strongnegative impacts
whenhalf of theworld experiences 1 out of 2 summers as
very hot. The impacts are likely to become even stronger
after 2040–2060, when hot summers are projected to
become thenorm for 80%of theworld’s regions.

A limitation of our study is that the direct impact
of heat on people cannot be estimated as we do not

have data on the ambient air temperature directly
experienced by individuals, nor on where exactly they
are located. The number of people affected does not
represent the number of people suffering directly from
heat stress, but rather the number of people living in
the regions that experience a hot summer. Further-
more, hot regionalmean temperatures do not necessa-
rily translate into a hot summer for every place in the
region. An additional limitation is that our results are
dependent upon the ability of the climate models we
use to correctly simulate the natural unforced varia-
bility of regional summer mean temperatures. Con-
tinental and global scale analyses of annual mean
temperature variability (e.g. Hegerl et al 2007, Jones
et al 2013) suggest that models simulate the observed
distribution of variability quite well at those larger
scales. Consideration of residual consistency test
results from our regional detection and attribution
analyzes based on the ALL forcing signal (figure D1 )
leads to a similar conclusion that there is generally
broad consistency between observed and simulated
decadal scale summer temperature variability across
regions, although it should be noted that there is a
modest tendency for the test to indicate that models
under-simulate internal variability more frequently
than would be expected by random chance (5 of 26
regions) .

Figure 4.Percentage of world regions (left) and population (right) that experience hot summers with a probability of over 50% (full
lines) and 90% (dashed lines) in all subsequent years. Results are shown for reconstructions of historical ALL simulations before 2012
andRCP4.5 (blue) and 8.5 (red) simulations after 2012.
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Appendix

AppendixA. List of CMIP5 simulations

TableA.1. List ofmodel simulations used for ALL, ALL for reconstruction-based probabilities, NAT andRCPs experiments.

Model Run ALL

ALL

(rec) NAT RCPs Model Run ALL

ALL

(rec) NAT RCPs

CanESM2 r1i1p1 x x x x GISS-E2-H r3i1p1 x x

CanESM2 r2i1p1 x x x x GISS-E2-H r4i1p1 x x

CanESM2 r3i1p1 x x x x GISS-E2-H r5i1p1 x x

CanESM2 r4i1p1 x x x x GISS-E2-H r6i1p1 x

CanESM2 r5i1p1 x x x x GISS-E2-H r6i1p3 x

CNRM-CM5 r10i1p1 x GISS-E2-H r2i1p3 x

CNRM-CM5 r1i1p1 x x x x GISS-E2-H r3i1p3 x

CNRM-CM5 r2i1p1 x x GISS-E2-H r4i1p3 x

CNRM-CM5 r3i1p1 x x GISS-E2-H r5i1p3 x

CNRM-CM5 r4i1p1 x x GISS-E2-R r1i1p1 x x x x

CNRM-CM5 r5i1p1 x x GISS-E2-R r1i1p3 x x x x

CNRM-CM5 r6i1p1 x GISS-E2-R r2i1p1 x x

CNRM-CM5 r7i1p1 x GISS-E2-R r2i1p3 x x

CNRM-CM5 r8i1p1 x x GISS-E2-R r3i1p1 x x

CNRM-CM5 r9i1p1 x GISS-E2-R r3i1p3 x x

CSIRO-Mk3-

6-0

r1i1p1 x GISS-E2-R r4i1p1 x x

CSIRO-Mk3-

6-0

r2i1p1 x GISS-E2-R r4i1p3 x x

CSIRO-Mk3-

6-0

r3i1p1 x GISS-E2-R r5i1p1 x x

CSIRO-Mk3-

6-0

r4i1p1 x GISS-E2-R r5i1p3 x x

CSIRO-Mk3-

6-0

r5i1p1 x GISS-E2-R r6i1p3 x

EC-EARTH r12i1p1 x x x HadGEM2-ES r1i1p1 x

EC-EARTH r2i1p1 x x x HadGEM2-ES r2i1p1 x

EC-EARTH r7i1p1 x HadGEM2-ES r3i1p1 x

EC-EARTH r8i1p1 x x x HadGEM2-ES r4i1p1 x

EC-EARTH r9i1p1 x x x IPSL-CM5A-LR r1i1p1 x

GFDL-CM2p1 r10i1p1 x IPSL-CM5A-LR r2i1p1 x

GFDL-CM2p1 r1i1p1 x IPSL-CM5A-LR r3i1p1 x

GFDL-CM2p1 r2i1p1 x IPSL-

CM5A-MR

r1i1p1 x

GFDL-CM2p1 r3i1p1 x IPSL-

CM5A-MR

r2i1p1 x

GFDL-CM2p1 r4i1p1 x IPSL-

CM5A-MR

r3i1p1 x

GFDL-CM2p1 r5i1p1 x MRI-CGCM3 r1i1p1 x x x

GFDL-CM2p1 r6i1p1 x MRI-CGCM3 r2i1p1 x

GFDL-CM2p1 r7i1p1 x MRI-CGCM3 r3i1p1 x

GFDL-CM2p1 r8i1p1 x NorESM1-M r1i1p1 x x x

GFDL-CM2p1 r9i1p1 x NorESM1-M r2i1p1 x

GISS-E2-H r1i1p1 x x x x NorESM1-M r3i1p1 x

GISS-E2-H r2i1p1 x x Total 54 15 45 15
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Appendix B. Estimation of FARuncertainty

To estimate the uncertainty in the FAR (see table B.1 ,
last two columns), we repeatedly re-sample the 380
chunks of control simulations. The second last column
takes into account sampling uncertainty. In the last
column, the same procedure is used, but in addition, a
sample of scaling factors is drawn for the calculation of
the FAR to account for scaling uncertainty . The two
different uncertainty estimates were obtained as
follows:

B.1. Sampling uncertainty, second last columnof
table B.1
We re-sample the 380 chunks of the control simula-
tions 1000 times with replace to obtain 1000 times 380
bootstrap samples . We use each bootstrap sample of
control chunks to estimate P0 directly from the re-
sampled control chunks and P1 from reconstructions
produced with the sample of control chunks. We thus
calculate

= - ( )P

P
FAR 1 20

1

1000 times. We then calculate the interquartile range
(25th and 75th percentiles) and the median of these

1000 realizations of the FAR to estimate it is uncer-
tainty. Note that the medians (table B.1) are very close
to the single FAR estimate using the original set of
control simulations (column ‘FAR’).

B.2. Sampling and scaling uncertainty, last column
of table B.1
We additionally include the uncertainty of the scaling
factor by re-sampling the scaling factor 1000 times.
We do not know the distribution of the scaling factor
obtained from the total least square method (see Ribes
et al 2013). However, to roughly approximate the
shape of the distribution, we assume a shifted log-
normal distribution. The scaling factor (x50) and its
5th (x05) and 95th-percentiles (x95) are obtained from
the ROF. If x05 is below zero, we do not calculate
the FAR (region 25). If the 5th and 95th-percentile
values indicate a right shifted distribution, i.e.

- < -∣ ∣ ∣ ∣x x x x95 50 50 05 , we first mirror x05 and x95

to obtain a left shifted distribution, using the
formula ¢ = - -( )x x x x95 50 95 50 and ¢ =x05

+ -( )x x x50 50 05 . We then calculate the parameters σ
(scale parameter) and γ (shift parameter) to minimize
the function

TableA.2.Names of control runs used for internal variability estimates and temperature reconstructions.

Number Number Number Number

Model Run of years of chunks Model Run of years of chunks

ACCESS1-0 r1i1p1 500 7 GISS-E2-H r1i1p3 530 8

ACCESS1-3 r1i1p1 500 7 GISS-E2-H r1i1p1 1770 12

bcc-csm1-1 r1i1p1 500 7 GISS-E2-H-CC r1i1p1 250 3

bcc-csm1-1-m r1i1p1 400 6 GISS-E2-R r1i1p141 1162 18

BNU-ESM r1i1p1 559 8 GISS-E2-R r1i1p142 100 1

CanESM2 r1i1p1 995 15 GISS-E2-R r1i1p1 1200 13

CCSM4 r1i1p1 500 7 GISS-E2-R r1i1p2 530 8

CCSM4 r2i1p1 155 2 GISS-E2-R r1i1p3 530 8

CCSM4 r3i1p1 120 1 GISS-E2-R-CC r1i1p1 250 3

CESM1-BGC r1i1p1 500 7 HadGEM2-CC r1i1p1 240 3

CESM1-CAM5 r1i1p1 320 5 HadGEM2-ES r1i1p1 240 9

CESM1-FASTCHEM r1i1p1 222 3 inmcm4 r1i1p1 590 7

CESM1-WACCM r1i1p1 200 3 IPSL-CM5A-LR r1i1p1 920 15

CMCC-CESM r1i1p1 277 4 IPSL-CM5A-MR r1i1p1 300 4

CMCC-CM r1i1p1 330 5 IPSL-CM5B-LR r1i1p1 300 4

CMCC-CMS r1i1p1 500 7 MIROC-ESM r1i1p1 630 10

CNRM-CM5 r1i1p1 850 13 MIROC-ESM-CHEM r1i1p1 255 4

CSIRO-Mk3-6-0 r1i1p1 500 7 MIROC4h r1i1p1 100 1

EC-EARTH r1i1p1 452 7 MIROC5 r1i1p1 670 10

FGOALS-g2 r1i1p1 900 14 MPI-ESM-LR r1i1p1 1000 15

FGOALS-s2 r1i1p1 500 7 MPI-ESM-MR r1i1p1 1000 15

FIO-ESM r1i1p1 800 12 MPI-ESM-P r1i1p1 1155 18

GFDL-CM3 r1i1p1 500 7 MRI-CGCM3 r1i1p1 500 7

GFDL-ESM2G r1i1p1 500 7 NorESM1-M r1i1p1 500 7

GFDL-ESM2M r1i1p1 500 7 NorESM1-ME r1i1p1 252 4

GISS-E2-H r1i1p2 530 8 TOTAL 390

10

Environ. Res. Lett. 11 (2016) 044011



g m
s

= + *
- -( ) ( )y

x
1 2 1 2 erf

ln

2
3

with m = ( )xln 50 and with the arbitrary choices
of initial values s = 0.5 and g =

m -( )x xmin , , 0.00105 95 . With the resulting σ

and γ values, we generate scaling factors β by selecting
values x at random from the uniform distribution

on the interval - +- -⎡⎣ ⎤⎦x x,x x x x
05 10 95 10

95 05 95 05

and then applying the probability integral
transform

b
g s p

g m
s

=
-

*
- --

( )
( ( ) ) ( )

x

x1

2
e

ln

2
4

2

2

in order to sample from the shifted log-normal
distribution. We then re-transform the resulting
values if the original distribution was right shifted.

Lastly, we reconstruct P0 and P1 similar to above, but
with drawing a different scaling factor for each
reconstruction. We calculate 1000 simulations of the
FARwith equation (1) and calculate the 25th, 50th and
75th-percentile of the FAR. Table B.1 shows that the
interquartile range of the FAR is larger when the
uncertainty of the scaling factor is included, as
expected.

AppendixC. FAR for different thresholds

The reader is invited to calculate the fraction of
attributable risk for any temperature anomaly at
https://summertemperature.shinyapps.io/
FAR_App. Note that here, exceedance probabilities
are calculated from the entire time series rather than
reconstructions for the individual hottest year as done
in themain text of the paper.

Table B.1.Year and temperature anomaly of observed historicalmaximum temperature, attributable temperature-anomaly, and excee-
dance probabilities (i.e. probabilities for hot summers) in simulationswith external forcing P1 andwithout forcing (control simulations, P0),
as well as the fraction of attributable risk. See alsofigure 2. The last two columns are different estimates of the uncertainty in FAR: the column
‘sampling’ presents the 25th, 50th and 75th percentiles of the FARobtained by re-sampling the 380 control simulations. The resamplingwas
performed 1000 times. The column ‘sampling and scaling’ includes the uncertainty of the scaling factor.

Maximum

temperature in

Attributable

temperature
Exceedance

Fraction of attributable risk (−)

SREX- Year with observations anomaly
probabilities (%)

25, 50, 75 p 25, 50, 75 p

Region max. T T (K) T (K) P1 P0 FAR sampling sampl. and scaling

1 1998 1.22 0.41 6.67 1.25 0.81 [0.78, 0.81, 0.83] [0.45, 0.62, 0.70]
2 1998 0.85 0.30 2.56 0.30 0.88 [0.84, 0.88, 0.91] [0.00, 0.87, 0.91]
3 1962 1.19 0.00 0.77 0.30 0.61 [0.35, 0.59, 0.72] [0.36, 0.60, 0.72]
4 2012 1.62 0.67 5.90 0.71 0.88 [0.87, 0.89, 0.90] [0.86, 0.93, 0.95]
5 2010 1.40 0.67 5.38 0.24 0.96 [0.95, 0.96, 0.97] [0.84, 0.99, 0.99]
6 2010 0.96 0.50 6.67 0.24 0.96 [0.96, 0.96, 0.97] [−Inf,−0.05, 0.30]
7 1998 1.03 0.25 4.87 1.86 0.62 [0.56, 0.62, 0.67] [0.40, 0.92, 0.97]
8 1998 1.20 0.40 5.90 0.83 0.86 [0.84, 0.86, 0.88] [0.30, 0.81, 0.91]
9 1984 0.97 0.01 0.26 0.42 −0.62 [−Inf,−0.71, 0.01] [−Inf,−0.84,−0.39]
10 1990 0.86 0.22 5.13 1.19 0.77 [0.73, 0.77, 0.80] [0.62, 0.74, 0.78]
11 2006 1.22 0.64 5.64 0.81 0.86 [0.83, 0.85, 0.87] [0.53, 0.77, 0.83]
12 2010 2.03 0.94 2.82 0.22 0.92 [0.91, 0.93, 0.94] [0.11, 0.61, 0.83]
13 2012 2.06 1.59 17.44 0.03 1.00 [1.00, 1.00, 1.00] [−Inf,0.87, 0.89]
14 2010 1.63 1.29 17.18 0.00 1.00 [1.00, 1.00, 1.00] [−Inf,−Inf,−Inf]
15 2002 1.01 0.44 4.62 0.19 0.96 [0.95, 0.96, 0.96] [0.33, 0.79, 0.98]
16 2002 1.38 0.73 3.85 0.05 0.99 [0.98, 0.99, 0.99] [−Inf,−Inf,−Inf]
17 2006 1.15 0.52 7.69 0.71 0.91 [0.89, 0.91, 0.92] [0.63, 0.92, 0.95]
18 2012 1.12 0.78 15.64 0.12 0.99 [0.99, 0.99, 0.99] [0.66, 0.92, 0.97]
19 2010 1.90 1.43 8.97 0.00 1.00 [1.00, 1.00, 1.00] [−Inf,−Inf,−Inf]
20 2008 1.51 0.81 8.21 0.28 0.97 [0.96, 0.97, 0.97] [0.60, 0.89, 0.93]
21 2008 0.90 0.73 27.95 0.63 0.98 [0.97, 0.98, 0.98] [0.65, 0.95, 0.98]
22 2010 0.94 0.69 21.54 0.21 0.99 [0.99, 0.99, 0.99] [0.53, 0.95, 0.98]
23 2010 0.97 0.58 17.69 2.31 0.87 [0.86, 0.87, 0.88] [0.78, 0.91, 0.93]
24 1998 0.83 0.29 0.51 0.13 0.75 [0.51, 0.75, 0.84] [−Inf,−Inf,0.82]
25 1984 1.10 0.00 4.62 4.84 −0.05 [−0.24,−0.04, 0.08] [−Inf,−Inf,0.82]
26 2000 1.03 0.40 4.62 0.61 0.87 [0.84, 0.87, 0.89] [0.48, 0.76, 0.84]
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AppendixD. Results for individual regions

FigureD1. Scaling factors 1- and 2-signal analysis for the 26 regions and for summer temperature. The expected response to the
respective forcing (ALL,NAT, ANT) is detected if the best estimate of a scaling factor (dot) and its 5-95%confidence interval
(whiskers) are larger than zero. A—symbol underneath a bar indicates that themodel internal variability is too large whichmakes
detection resultsmore conservative. A+ symbol indicates that themodel internal variability is too small.
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FigureD2.Observations (black) and reconstructed temperatures (red) in summer. The reconstructed temperature is the temperature
without the signal from external forcing, and the difference between the red and black line the temperature attributable to external
forcing. Grey lines indicate regions where the scaling factor is not distinguishable from zero (see figureD1). Yellow box color denotes
regions where themodel internal variability is too large.
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Region Abbrev Annual Summer

Sahara SAH 3.6 4.1

Southern Europe and

Mediterranean

SEM 3.5 4.1

Central Asia CAS 3.7 4.1

CentralNorth America CNA 3.5 4.1

Tibetan Plateau TIB 3.8 4

WesternNorthAmerica WNA 3.4 3.8

East Africa EAF 3.2 3.4

Central America CAM 3.2 3.4

EasternNorth America ENA 3.6 3.3

West Africa WAF 3.3 3.2

SouthAfrica SAF 3.4 3.1

NorthAustralia NAU 3 3.1

Mediterranean Basin MED 2.7 3.1

NorthernAsia NAS 4.3 3

East Asia EAS 3.3 3

Amazonia AMZ 3.3 3

East Canada, Greenland, Iceland CGI 4.3 2.8

Northern Europe NEU 3.2 2.7

SouthAsia SAS 3.3 2.7

Sothern SouthAmerica SSA 2.5 2.7

SouthAustralia SAU 2.6 2.7

Southeast Asia SEA 2.5 2.4

Alaska ALA 4.5 2.4

Arctic ARCb 4.9 2.1
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