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Abstract
Although tropical dry forests (TDFs) cover roughly 42%of all tropical ecosystems, extensive
deforestation and habitat fragmentation pose important limitations for their conservation and
restorationworldwide. In order to develop conservation policies for this endangered ecosystem, it is
necessary to quantify their provision of ecosystems services such as carbon sequestration and primary
production. In this paper we explore the potential of theCarnegie–Ames–Stanford approach (CASA)
for estimating aboveground net primary productivity (ANPP) in a secondary TDF located at the Santa
RosaNational Park (SRNP), Costa Rica.We calculated ANPPusing theCASAmodel (ANPPCASA) in
three successional stages (early, intermediate, and late). Each stage has a stand age of 21 years, 32 years,
and 50+ years, respectively, estimated as the age since land abandonment. Our results showed that the
ANPPCASA for early, intermediate, and late successional stages were 3.22Mg C ha−1 yr−1,
8.90Mg C ha−1 yr−1, and 7.59Mg C ha−1 yr−1, respectively, which are comparable with rates of
carbon uptake in other TDFs.Our results indicate that key variables that influence ANPP in our dry
forest site were stand age and precipitation seasonality. Incident photosynthetically active radiation
and temperature were not dominant in the ANPPCASA. The results of this study highlight the potential
of the use of remote sensing techniques and the importance of incorporating successional stage in
accurate regional TDFANPP estimation.

1. Introduction

Tropical dry forests (TDFs) are ecosystems dominated
by drought deciduous trees; with total precipitation
700–2000 mm yr−1, with a mean annual temperature
of 25 °C, 80% to 100% deciduous species and with
three or more consecutive months of no rain (San-
chez-Azofeifa et al 2005). TDFs are one of most
threatened tropical ecosystems; and are preferred for
settlement due to fertile soils and favorable climate
(Gillespie et al 2000, Calvo-Alvarado et al 2009, War-
ing et al 2015). Approximately 48.5%of TDFs at global
level and 65% of Americas’ TDFs have been converted
to other landuses; with less than 10%under protection
(Hoekstra et al 2005, Portillo-Quintero and Sanchez-
Azofeifa 2010). Current extent of TDFs is composed of
different stages of secondary regeneration (Quesada

et al 2009). Despite their importance for global climate
change monitoring efforts, our understanding of
secondary succession in TDFs has lagged behind our
knowledge of forest regeneration in humid forests
(Quesada et al 2009). Thus, it remains unclear how
secondary patches of TDFs contribute to carbon
capture and uptake to reduce and offset carbon
emissions from land transformations.

A conventional method to estimate forest carbon
uptake is through estimations of aboveground net pri-
mary productivity (ANPP): the sum of aboveground
biomass increment and litterfall production (Pot-
ter 1993, Clark et al 2001). Studies in old-growth TDFs
have found that precipitation is one of the main dri-
vers of ANPP (Whigham et al 1990, Jaramillo
et al 2011). ANPP can also be influenced by: stand age,
disturbance history, land use intensity, and species
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composition (Brown and Lugo 1982, Baker et al 2003,
Campo andVázquez-Yanes 2004).

Assessments of ANPP in regrowth vegetation in
TDFs are scarce. Biomass increment patterns in TDFs
are complex at regional scales, since the variables rela-
ted to carbon stocks estimates (species composition,
forest structure, stand age) are site specific (Guariguata
and Ostertag 2001). Studies in TDFs have found that
stand age may be more influential than rainfall for
ANPP (Read and Lawrence 2003), with differences on
ANPP across stands of different ages explained by the
changes in species composition during secondary suc-
cession changes (Aryal et al 2014).

Annual litterfall is an important component of
ANPP in tropical forests (Malhi et al 2011), and it has
been used for predicting ANPP in TDFs (Jaramillo
et al 2011). Existing litterfall studies in TDFs focused
on seasonal patterns of litter production, indicating
that the majority of litterfall is produced early in the
dry season (Martinez-Yrizar and Sarukhan 1990,
Sanches et al 2008). Other studies have shown that
topography also altered litter production. For exam-
ple, Martinez-Yrizar and Sarukhan (1990) found that
sites with different slopes (slope <5° versus slope
20°–40°) had different mean annual litterfall in
a Mexican TDF. Topography affected soil water
availability, influencing litterfall (Martinez-
Yrizar et al 1996). Similar to studies in biomass incre-
ment, successional stages also influenced litterfall
production.

Research on the potential drivers of ANPP in TDFs
has provided a foundation to estimate ANPP at larger
scales by using satellite-based tools, such as produc-
tion efficiency models (PEMs) (Goetz et al 1999).
PEMs are formulated using the theory of light use effi-
ciency (LUE), where the ratio between photosynthetic
carbon uptake and photosynthetically active radiation
(PAR) absorbed by green vegetation (APAR) is con-
stant (Monteith 1972, McCallum et al 2009). Despite
that PEMs have been recognized as a powerful tool to
model ANPP in forest ecosystems, their application in
TDFs has been limited (Barbosa et al 2014). For exam-
ple, Kale and Roy (2012) studied the ANPP variability
resulting from species-wise LUEs using a ground-
based PEM model in a TDF in India focused on lin-
kages between tree diversity and ANPP. Nevertheless,
it still remains unclear how other factors such as rain-
fall and successional stage influence the utility of PEMs
to predict ANPP in TDFs, and whether these models
can be used to scale up to broader spatial and temporal
domains.

Secondary forests currently occupymore area than
old-growth worldwide (Laurance 2010), and con-
stitute a major terrestrial carbon sink (Poorter
et al 2016). Thus, it is essential to identify tools for
monitoring changes in carbon capture and uptake.
These secondary forests play an important role on
the provision of ecosystem services such as carbon
sequestration, water production, and biodiversity

conservation. Despite this importance, a large amount
of the literature focus on tropical rainforests with little
emphasis on TDFs (Sanchez-Azofeifa et al 2005).
In this context, this paper has two goals: first to
evaluate the effectiveness of the Carnegie–Ames–
Stanford Approach (CASA)model (Potter 1993, Field
et al 1995) to estimate regional ANPP (2002–2013)
using: remote sensing information from the MODer-
ate resolution Imaging Spectroradiometer (MODIS),
micro-meteorological data, and ground measured
data; and second to explore how the different variables
used in the CASA model influence the estimation of
regional ANPP. Assessing how remote sensing tools
can help to monitor ANPP will enhance our under-
standing about how TDFs help mitigate climate
change as well as contribute to the reduction of atmo-
spheric greenhouse gases.

2.Methods

2.1. Study area
The study was conducted at Santa Rosa National Park
(SRNP; 10°50′N, 85°37′W), Costa Rica (figure 1). The
SRNP receives 1391 mm of annual rainfall and has a
mean annual temperature of 25 °C (Kalacska
et al 2004). The vegetation is drought deciduous, with
amixture of pastures and secondary patches in various
stages of regeneration (Kalacska et al 2004). The
canopy includes young forests with 80%–100% of
woody plants being deciduous during the 6month dry
season (rainfall <100 mm: December–May), to semi-
evergreen forests with a 30%–50% deciduous vegeta-
tion in older stages of succession (Arroyo-Mora
et al 2005). Field data collected from previous studies
in SRNP were used (Calvo-Alvarado et al 2012, Hilje
et al 2015). Nine plots of 0.1 ha were sampled during
2007–2010 following a standard methodology
(Kalacska et al 2004). These plots were established in
early, intermediate, and late successional stages of 21,
32, and 50+ years of age respectively, with three plots
in each category. The early stage of regeneration is
composed of shrubs and small trees, with open areas
and a single stratum of tree crowns. The intermediate
stage is composed of deciduous trees and lianas, and it
has two vertical strata. The late successional stage has
two strata, and is formed by a dominant canopy layer
and regeneration of shade tolerant species with
reduced light penetration (Kalacska et al 2004, Arroyo-
Mora et al 2005).

2.2. ANPP groundmeasurements
Ground measured ANPP (ANPPmea) between 2007
and 2010 was derived from litterfall production
(Calvo-Alvarado et al 2012) and tree biomass incre-
ments (Hilje et al 2015). Biomass for each tree was
calculated using a pan-tropical allometric equation
that is a function of diameter at breast height,
species-specific wood density, and an environmental
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variable denoting the dependence of bioclimatic
changes (e.g., rainfall and temperature) on tree
biomass (Chave et al 2014). Biomass increment from
tree growth and litterfall production are reported
in units of carbon by using a factor of 50%
(Hughes et al 1999). Details about how ANPPmea was
estimated can be found in supplementary informa-
tion (section 1.1).

2.3. ANPP estimation using theCASAmodel
2.3.1. CASA overview
The CASA model assumes that net primary produc-
tion is proportional toAPAR (Bloom et al 1985), which
enables the calculation of ANPP at large scale using

LUE. Based onMonteith (1972), the CASAmodel uses
LUE (ε) as proxy, treating ANPPCASA as function of
APAR:

e= ⋅ANPP APAR, 1( )

where APAR is calculated by incident photo-
synthetically active radiation (iPAR) at canopy level
and fraction of photosynthetically active radiation
(FPAR) absorbed by vegetation canopy:

= ⋅APAR iPAR FPAR 2( )

and ε is calculated by maximum LUE (εmax_npp, or
maximum conversion efficiency) limited by two
scalars denoting effects from water and temperature

Figure 1. Location of Santa RosaNational Park (SRNP) and groundmeasurements plots in this study. The SRNP is home to the largest
environmentalmonitoring super site for tropical dry forests in Latin America. Green circles represent thewireless sensor network of
19 nodes. The red starmarks themeteorological station.Nine yellow triangles (three for each successional stage)mark the permanent
plots of tree diameter (Hilje et al 2015) and litterfall (Calvo-Alvarado et al 2012)measurements.
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stress:

e e= ⋅ ⋅W T_ 3max npp scalar scalar ( )

εmax_npp is usually a biome-specified variable, repre-
senting the maximum ability of a particular biome to
convert absorbed radiation into dry matter. Although,
some PEMs calculate ANPP by subtracting auto-
trophic respiration (Ra) from GPP, the CASA model
estimates ANPP directly, and incorporates photo-
synthesis part used for autotrophic respiration in the
εmax_npp term (Reich et al 2006).

2.3.2. Estimating CASA parameters
The CASA parameters to be estimated in this
study include iPAR, FPAR, temperature and water
scalars, and εmax_npp (figure 2). In order to
derive ANPPCASA in each successional stage, we
generated a forest succession map for the study area
(figure 2) (table 1). Time series data including MODIS
products (MOD04/MYD04, MOD06/MYD06, and
MOD13Q1) (table 1) and meteorological data were

processed according to 16 d composite to calculate
16 d total ANPPCASA for 2002–2013.

We took advantage of a wireless sensor network
(WSN) at the SRNP to continuously measure trans-
mitted and absorbed PAR and meteorological vari-
ables. A WSN is a collection of independent nodes,
each one measuring micro-meteorological variables
that transmits such information via wireless to a data
aggregator that in turn sends the data via cellular or
satellite link to a cyberinfrastructure remote site where
it is processed using analytical techniques (Pastorello
et al 2011). WSN data (PAR) was collected in SRNP
(mainly intermediate successional stage) from 06
March 2013 through 01 February 2015 (see supple-
mentary section 1.2 for details) and were used to test
the reliability ofMODIS data in SRNP.

Specifically the main information used in this
study was: instantaneous above canopy iPAR, PAR
reflected by canopy, and PAR transmitted through
canopy.

Figure 2. Framework for the estimation of Carnegie–Ames–Stanford approach (CASA) aboveground net primary productivity
(ANPP) in this study. TheCASAparameters included iPARest, estimated incident photosynthetically active radiation (PAR); FPARest,
Fraction of absorbed PAR; temperature andwater scalar,maximum light use efficiency (LUE), and groundANPP as the sumof
biomass increment and litterfall production. Details about theMODIS products are given in table 1. Data fromwireless sensor
network (WSN)were used to test the reliability ofMODIS products. The successionmapwas derived to estimate ANPPCASA for each
stage in thewhole study area using aHyperspectralMAPper technique (HyMAP).

Table 1.Remote sensing datasets used in the current study.

Role in this paper Parameter Dataset Spatial resolution (m)

Successionmapping — HyMap 15

iPAR estimation Instantaneous solar zenith MOD04/MYD04 10 000

Ångström exponent MOD04/MYD04 10 000

Cloud top pressure MOD06/MYD06 5000

Cloud optical thickness MOD06/MYD06 10 000

FPAR estimation NDVI MOD13Q1 250

EVI MOD13Q1 250
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(a) iPAR: is the amount of solar radiation in visible
wavelength (0.4–0.7 μm) that can be absorbed by
green canopy through photosynthesis processes
(supplementary section 1.3). This study esti-
mated regional 16 d integrated iPAR (iPARest) in
SRNP using MODIS products based on the
PARcalc method proposed by Van Laake and
Sanchez-Azofeifa (2004, 2005)with some simpli-
fications. One of the most important simplifica-
tions of the method is to ignore the presence of
clouds during the dry season. The iPARest was
evaluated by WSN measured iPAR (iPARmea) at
the time span of 6March 2013–1 February 2015.

(b) FPAR: is the fraction of PAR absorbed by green
vegetation. Long time series of FPAR (FPARest)
were estimated from vegetation indices such as
the normalized difference vegetation index
(NDVI) and the enhanced vegetation index (EVI)
(Prince and Goward 1995, Running et al 2000,
Xiao et al 2004, Li et al 2007). We also examined
relationships between measured FPAR
(FPARmea) by WSNs, MODIS NDVI, and
MODIS EVI using linear and logarithmic models
from 6 March 2013 to 16 November 2014. The
best fitting model was selected to produce long
time series of FPARest (see supplementary
section 1.4).

(c) Maximum LUE (εmax_npp). The biome specific
εmax_npp in the literature is derived byminimizing
difference between ANPPCASA and ANPPmea

(Field et al 1995, Ruimy et al 1999). Nevertheless,
since TDFs in different successional stages pre-
sent distinct species compositions (Kalacska
et al 2004), we assigned a specific εmax_npp for
early, intermediate, and late successional stages,
by calculating the ratio of ANPPmea and esti-
mated APAR ´iPAR FPARest est( ) using envir-
onmental scalars in the permanent plots based on
equations (1)–(3), as follows:

e =
⋅ ⋅ ⋅W T

_
ANPP

iPAR FPAR
. 4max npp

mea

est est scalar scalar

( )

(d) Temperature and water scalars (supplementary
section 1.5). Temperature and water scalars limit
conversion of solar radiation to ANPP in green
vegetation. Temperature scalar, Tscalar(x, t),
explains two patterns of plant acclimation to
temperature: under extreme temperature and
seasonal temperature swing. Water scalar,
Wscalar(x, t), is a function of estimated and
potential evapotranspiration, expressing water
deficit from0.0 to 1.0, where 1 iswater saturation.
Meteorological data (temperature and precipita-
tion) was obtained from the meteorological
station at SRNP.

(e) Successional map. We produced a map of the
successional stages in order to estimate
ANPPCASA for early, intermediate, late succes-
sional stages in the whole SRNP area. Identifica-
tion of successional stages employed a
hyperspectral sub-pixel mapping technique
called multiple criteria spectral mixture analysis
(MCSMA) (Cao et al 2015). This technique was
applied to a Hyperspectral MAPper (HyMap)
image (Cocks et al 1998) acquired on March
2005. MCSMA was first applied by Cao et al
(2015) to map secondary TDF succession at
SRNP, and it proved to be very efficient in dealing
with spectral variability in TDFs (supplementary
section 1.6).

3. Results

3.1. GroundmeasuredANPP
Across successional stages, the intermediate stand had
the greatest ANPPmea with an average biomass incre-
ment of 6.4 ± 2.5 Mg C ha−1 yr−1, and mean litterfall
of 3.1± 1.0 Mg C ha−1 yr−1. Biomass increments and
litterfall in late succession averaged 10.5 ±
1.2 Mg C ha−1 yr−1 and 5.9 ± 1.2 Mg C ha−1 yr−1,
respectively. The early stage had amuch lower biomass
increment (5.2 ± 4.2 Mg C ha−1 yr−1) and litterfall
(1.9 ± 1.5 Mg C ha−1 yr−1) (table 2). On average
ANPPmea at SRNP was 7.1 Mg C ha−1 yr−1, with rates
of carbon uptake of 3.6 Mg C ha−1 yr−1 in early stages,
9.5 Mg C ha−1 yr−1 in intermediate, and 8.2 Mg
C ha−1 yr−1 in late succession.

3.2. CASAANPP
3.2.1. Estimated CASAparameters
3.2.1.1. Temporal dynamics and evaluation of
estimated iPAR
The iPARest agreed robustly with iPARmea both in dry
and wet seasons over the time series period (6 March
2013–1 February 2015) (figure 3(a)). The linear regres-
sion model also shows a strong relationship between
iPARest and iPARmea (R2 = 0.83, y = 0.997x)
(figure 3(b)). For each iPARest, absolute errors ranged
0.6% to 14.8% with average of 5.0%. The maximum
individual error of 14.8% arises at the transition time
from wet season to dry season at 19 December 2013,
with a significant presence of brown downed leaves.
Because of the constant presence of clouds, both 16 d
total iPARest and 16 d total iPARmea in wet seasonwere
lower than in dry season (115× 103 versus
159× 103 KJ m−2).

3.2.1.2. Relationship between MODIS vegetation indices
and groundmeasured FPAR
Figure 4 shows the NDVI-FPARmea and EVI-FPARmea

relationship using both a linear and a logarithmic
regression model. The FPARmea increased from 0.5 in
the middle of the dry season to 0.95 in wet season
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(figure 4(a)). Although the correlation between EVI
and FPARmea could be considered high with a
R2 = 0.83 (logarithmic model), versus R2 = 0.76
(linear model) (figure 4(c)); the NDVI-FPARmea

relationship appears similar for bothmodels (logarith-
mic model, R2 = 0.91; linear model, R2 = 0.90,
figure 4(b)). Thus, posterior estimations of the FPARest

for the modeling of ANPPCASA were based on the
NDVI-FPARmea relationship instead of the EVI-
FPARmeamodel.

3.2.1.3.MaximumLUE in different successional stages
Table 2 presents ANPPmea and estimated APAR ·
W_scalar·T_scalar for the 2007–2010 period, and the

Table 2.Mean values of biomass increment and litterfall production in 2007–2010 used to estimate of AnnualNet Primary Productivity
(ANPP) and derive εmax_npp in each successional stage at Santa RosaNational Park, Costa Rica.

Stage Plot

Biomass

increment

(MgC ha−1)

Litterfall

production

(MgC ha−1)

Measured

ANPP

(MgC ha−1)

Estimated

APAR·W_scalar·T_scalar
(106 KJ ha−1)

Estimated

εmax_npp

(gC KJ−1)

Early E1 4.56 1.53 6.09 32.87 0.19

E2 3.82 1.43 5.25 32.81 0.16

E3 15.16 5.46 20.63 35.13 0.59

Average 7.84 2.80 10.66 33.60 0.31

Intermediate I1 14.78 11.40 26.18 34.64 0.76

I2 26.67 10.41 37.08 36.53 1.02

I3 15.97 6.12 22.09 33.91 0.65

Average 19.14 9.31 28.45 35.03 0.81

Late L1 17.71 10.80 28.51 37.27 0.77

L2 14.44 7.84 22.27 37.02 0.60

L3 14.88 7.71 22.59 36.44 0.62

Average 15.67 8.87 24.46 36.91 0.66

Figure 3.Comparison between 16 d estimated total iPAR (iPARest) and ground observedwireless sensor network derived iPAR
(iPARmea) (from6March 2013 to 1 February 2015). Figure (a) demonstrates iPARest and iPARmea in a time series. Figure (b)fits a
linearmodel between iPARest and iPARmea.
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εmax_npp for each successional stage. Estimated
εmax_npp showed similar pattern with ANPPmea. The
highest εmax_npp was presented in intermediate stages
(0.81 g C KJ−1), followed by late (0.66 g C KJ−1) and
early (0.31 g C KJ−1) successions.

3.2.1.4. Seasonal dynamics of temperature and water
scalars
Figure 5 presents boxplot of seasonal dynamics for the
16 d meteorological data and corresponding CASA

scalar time series for complete year at SRNP. Each box
was generated by summarizing corresponding
meteorological data (12 July 2002 through 11 July
2014). Temperatures were stable across year at near
the optimum value of 26.6 °C, with no significant
differences between wet season and dry season
(figure 5(b)). The temperature scalar also maintained
high values greater than 0.9 (figure 5(d)). Precipita-
tion, however, showed the two seasons characteristic
in TDFs (figure 5(a)). The 16 d total precipitation was

Figure 4.Relationships betweenMODIS 16 dmaximumvegetation indices and groundmeasured 16 dmaximumFPAR (FPARmea)
between 6March 2013 and 16November 2014. Figure (a) demonstratesMODISNDVI,MODIS EVI, and FPARmea in a time series.
Figure (b) is NDVI-FPARmea relationship. Figure (c) is EVI-FPARmea relationship.
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Figure 6.CASAANPP (ANPPCASA) in 2002–2013 at SRNP. Figure (a) presents area percentage (derived based onHyMap image
acquired onMarch 2005 at SRNP) andANPPCASA percentage (averaged across 2002–2013) of early, intermediate, and late successional
stages. Figure (b) presents the annual ANPPCASA in dry andwet seasons of early, intermediate, and late successional stages in
2002–2013.
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maximized inwet season, with almost no precipitation
recorded in dry season. Precipitation presented its
greatest inter-annual variation during the wet season,
with a maximum standard deviation of 22.3 cm in late
September (from 273th to 289th day of the year; not
shown in figures). The water scalar had a similar
pattern with precipitation. The land surface at SRNP
became gradually water stressed as the dry season
proceeded, despite that being relieved by occasional
precipitation for instance on 03 April 2009 (6.7 cm)
(figure 5(c)).

3.2.2. Total and seasonal ANPPCASA in different
successional stages
We produced successional maps of early, intermedi-
ate, and late successional forests at SRNP by using the
MCSMA to derive ANPPCASA for each stage.
Figure 6(a) compares area of TDFs in each succes-
sional stage at SRNP against their average ANPPCASA
(2002–2013). At SRNP, early successional stages
comprised 56% of the total area, followed by inter-
mediate successional stages with 37%. In contrast,
early and intermediate successional stages comprised
32% and 59% of the total ANPPCASA respectively.
Both fractions of area and ANPPCASA in late succes-
sional stages were small. Figure 6(b) illustrates
the variation of the ANPPCASA in the dry and wet
seasons (December–April; May–November). Each
box (e.g., ANPPCASA of early successional stages
dry season) was generated using data from 2002 to
2013. For all successional stages, ANPPCASA in the dry
season (early: 1.06 Mg C ha−1 yr−1; intermediate:
3.04 Mg C ha−1 yr−1; late: 2.67Mg C ha−1 yr−1) was
half of ANPPCASA in the wet season (early:
2.17MgC ha−1 yr−1; intermediate: 5.86MgC ha−1 yr−1;
late: 4.91MgC ha−1 yr−1). For each year, the ANPPCASA
of intermediate stages (8.90 Mg C ha−1 yr−1) was
higher than ANPPCASA of late successional
stages (7.59 Mg C ha−1 yr−1), and 2.8 times higher
than ANPPCASA of early successional stages
(3.22 Mg C ha−1 yr−1) (figure 6).

4.Discussion

4.1. Comparisonwith other ANPP studies in TDFs
Our estimates of ANPPmea from ground data are
similar to another study conducted in Costa Rica’
TDFs. Waring et al (2015) reported rates of carbon
gain from biomass increments and litterfall produc-
tion 4.04 Mg C ha−1 yr−1 to 5.73Mg C ha−1 yr−1 on
stands of 15–65 years of age since land abandonment.
For TDFs in other regions, Lugo and Murphy (1986)
estimated ANPPmea in Puerto Rico’s Guanica forest as
3.45 Mg C ha−1 yr−1 by summing forest biomass
increments and litterfall production. Martinez-Yrizar
et al (1996) reported ANPPmea of 3.06, 3.14, and
4.04 Mg C ha−1 yr−1 at three plots with decreasing
elevations within a watershed at Chamela Biological

Station, Mexico. Their measurements, however,
included other two ANPP components leaf herbivory
and understory production. When only biomass
increments and litterfall production were considered,
ANPPmea for the three plots at Chamela Biological
Station were 2.65, 2.74, and 3.56 Mg C ha−1 yr−1,
respectively, which are comparable to our measure-
ments. The variation on the upper limits of ANPP
among existing studies and with our results could
be explained by higher water availability at SRNP
(mean annual precipitation; Guanica: 860 mm yr−1;
Chamela: 707 mm yr−1; SRNP: 1390.8 mm yr−1).

4.2. Key parameters estimation inCASA
The relative lower correlation between EVI and
FPARmea could be partially a result of the high
sensitivity of MODIS EVI to the Sun-sensor geometry
effect and canopy structure (Morton et al 2014). How-
ever, other studies have found better correlations
between MODIS NDVI and LAI than using MODIS
EVI in deciduous forests (Wang et al 2005) and in
TDFs. Silveira et al (2007) for example, found that the
best vegetation index formapping vegetation classes in
deciduous and semi-deciduous forests and Cerrado
(Brazilian savannas) were obtained using the MODIS
NDVI images than using MODIS EVI. This may be
due to the fact that EVI tends to be more sensitive to
NIR reflectance (Huete et al 1997) since it is more
responsive to canopy structural variations, including
LAI, canopy type, and canopy architecture (Huete
et al 2002), whereas the NDVI is more chlorophyll
sensitive (Huete et al 2002). This might be the reason
whyNDVIworks better in dry forests compared towet
forests, since dry forests have a very heterogeneous
forest canopy, with greater canopy openness and lower
LAI even in the wet season (Arroyo-Mora et al 2005,
Kalacska et al 2005b, Castillo-Núñez et al 2011).

4.3.Dominant ANPPdrivers in TDFs
Meteorological conditions dominate seasonal ANPP
patterns at SRNP. Temperatures were stable at near
optimum values across the year, making it an insignif-
icant factor in ANPPCASA estimation. Precipitation
and FPAR exhibited opposite seasonal patterns to
iPAR because of occurrences of rainfall and cloud
cover. Precipitation greatly varied between dry and
wet seasons. It is not surprising that abundant
precipitation in the wet season promotes high
ANPPCASA because water availability is one of the
main controls of leaf production and photosynthesis
in TDFs (Jaramillo et al 2011). Our ANPPCASA
estimations showed TDFs sustaining photosynthesis
even in the driest months at SRNP. This is probably
related with changes in species composition across
successional stages, with more than 80% of plants
losing their leaves in the dry season, while only 30%–

50% deciduous species in older stages of succession
(Kalacska et al 2004, Arroyo-Mora et al 2005). Several
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plant species in TDFs have evolved different adaptive
mechanismswith deep roots ensuringwater supply for
photosynthesis (Nepstad et al 1994). For example,
woody vines, which are specially abundant on inter-
mediate TDFs stages of succession, uptake more water
than trees during water stress periods (Chen et al 2015)
and as such tend to drop their leaves later in the dry
season (Kalacska et al 2005a).

FPAR, which expresses the forest canopy structure
and greenness (Arroyo-Mora et al 2005, Kalacska
et al 2007), had a similar seasonal pattern with the
water scalar in TDFs with high values in wet season
and low values in dry season. This confirms the impor-
tance of rainfall in the leaf phenology of TDFs. The
cyclical regimes of precipitation largely drive leaf
flushing and falling events in secondary TDFs across
different latitudes (Martha et al 2013). In our study,
seasonal variability of ANPPCASA from iPAR was
dominated by FPAR and thewater scalar, and values of
ANPPCASA during wet season were twice asmuch as in
dry season. This differs from other studies in tropical
environments that concluded that iPAR was the most
influential climatic factor for primary productivity
(Imoto et al 2010).

Assuming that SRNP experienced homogeneous
meteorological conditions (iPARest, temperature, pre-
cipitation) across study plots, variations in ANPPCASA
originated from differences in FPARest and εmax_npp

across successional stages (see equations (1)–(3)),
likely explained by differences in species composition
and stem density. At tree level, εmax_npp is a function of
tree physiological processes and allometry, and in
turn, a function of tree species. TDFs in late
successional stages are dominated by shade-tolerant
species with lower growth rates, while TDFs in early
and intermediate stages have greater abundance
of pioneer species that prefer full sunlight
conditions with faster growth rates (Carvajal-Vanegas
and Calvo-Alvarado 2013). As a result, early and inter-
mediate stages present higher tree diameter incre-
ments (early: 1.6 mm tree−1 yr−1 versus intermediate:
2.2 mm tree−1 yr−1) than in late successional stages
(1.2 mm tree−1 yr−1) (Carvajal-Vanegas and Calvo-
Alvarado 2013). At regional level, εmax_npp is further a
function of stem density (Kalacska et al 2005b), pro-
moting TDFs to reach their highest ANPP (mainly by
litterfall production) in intermediate and late stages
(table 2). This highlights the important role of inter-
mediate and late successional stages in carbon seques-
tration, since these two successional stages have a
greater ability to convert absorbed solar radiation
into plant primary productivity (intermediate:
0.81 g C KJ−1 versus late: 0.66 g C KJ−1) than early
successional stage (0.31 g C KJ−1).

Furthermore, FPAR reflects canopy differences
between different successional stages. Older succes-
sional stages with lower canopy openness and decid-
uousness have higher FPAR than younger successional
stages (Arroyo-Mora et al 2005). For instance, TDFs in

early successionwere dominated by short trees, shrubs
and grasses, which translated into higher canopy
openness and lower greenness (Sanchez-Azofeifa
et al 2009), and thus had lower FPARest compared to
intermediate and late successional stages. It has also
been reported that open canopies in TDFs are more
vulnerable to wind and storm effects, losing their
leaves faster and sooner in dry season than closer
canopies (Jaramillo et al 2011, Calvo-Alvarado
et al 2012). The successional effects from εmax_npp and
FPARest together explained that, early successional
stages that currently represented more than half of the
total area of SRNP accounted for only one third of the
total ANPPCASA, indicating that TDFs ANPP are more
influenced by forest succession and species composi-
tion rather than forest area and forest extent.

The dominating role of precipitation in seasonal
ANPP variation of TDFs highlights the need to collect
more accurate and spatially explicit precipitation or
soil moisture data in PEMs, despite that only one
meteorological station was available at SRNP for our
study. It is also important to consider the influence of
structure and species composition of forest stands on
ANPP in TDFs. Ourmodel indicates that species com-
position explained the variation of ANPP. Other stu-
dies in TDFs in Costa Rica have found that these
changes in species composition across successional
stages may be explained not only by previous land use
(e.g., stand age), but also by soil properties, including
soil moisture (Becknell and Powers 2014). The water
availability in our model relies mostly on rainfall, and
we still lack a thorough understanding about the role
of soil properties on ANPP. Future studies should
explore the direct and indirect effects of soil on ANPP,
via changes in species composition or by assessing the
seasonal variation in soil moisture and its potential
impact on rates of ANPP.

5. Conclusion

We explored the potential of the CASA model for
estimating ANPP in TDFs. We found two dominant
drivers for ANPP in TDFs, precipitation and succes-
sional stage (forest age). Specifically, the FPAR and
water scalar term in CASA are indicators of precipita-
tion controls in phenology process and photosynthesis
process, respectively. The maximum LUE (εmax_npp)
reflects the differences of species composition (tree
species) and forest structure (tree diameter, diameter
increments, and tree density) in different successional
stages. FPAR as a proxy of canopy openness and
greenness is also a function of successional stage.
Furthermore, despite that the iPAR appears to be the
main driver for the ANPP in many tropical ecosys-
tems, its impacts on ANPP is surpassed by precipita-
tion at our TDF study site. Future work should focus
on applying PEMs in other TDFs sites to consolidate
findings from this paper.
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Our study assesses a remote sensing methodology
to estimate ANPP in TDFs as a tool to monitor chan-
ges in carbon capture and uptake at regional scales.
Our results may facilitate the development of manage-
ment policies of regenerating pastures, since they
identify the main ANPP drivers in TDFs and their
impacts from climate and previous land transforma-
tion at local and regional scales.
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