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Abstract
Among all natural disasters, floods have historically been the primary cause of human and economic
losses around theworld. Improving flood riskmanagement requires amulti-scale characterization of
the hazard and associated losses—theflood loss footprint. But this is typically not available in a precise
and timelymanner, yet. To overcome this challenge, we propose a novel andmultidisciplinary
approachwhich relies on a computationally efficient hydrologicalmodel that simulates streamflow for
scales ranging from small creeks to large rivers.We adopt a normalized index, the flood peak ratio
(FPR), to characterize floodmagnitude acrossmultiple spatial scales. The simulated FPR is then shown
to be a key statistical driver for associated economic flood losses represented by the number of
insurance claims. Importantly, because it is based on a simulation procedure that utilizes generally
readily available physically-based data, ourflood simulation approach has the potential to be broadly
utilized, even for ungauged and poorly gauged basins, thus providing the necessary information for
public and private sector actors to effectively reduce flood losses and save lives.

1. Introduction

Of all natural disasters, floods are the most costly [1]
and have affected the most people [2]. Losses from
worldwide flood events nearly doubled in the 10 years
from 2000 to 2009 compared with the prior decade.
[52] This trend shows no sign of abating and most
countries are exposed to flood hazard, making flood
mitigation a universal challenge. Recent large-scale
riverine flood events, on which this article focuses, in
countries as diverse as Australia (in 2010), China (in
2010 and 2013), Germany (in 2013), Morocco (in
2010), Thailand (in 2011), the UK (in 2012 and 2014)
and the US (2011, 2012) demonstrate the urgency to
improve preparedness of exposed areas. Effectiveflood
risk management activities—risk reduction, emer-
gency response, recovery—require an accurate and
timely characterization of the hazard and its possible
consequence (losses) at a given location and for the
entire affected region [3]; that is, the flood loss footprint.
Current significant annual economic damage and
human losses caused by riverine floods, combined

with projected increases in flood intensity and fre-
quency due to climate change and land cover change
[4, 5, 46], highlights the need for such information.
However, methods that are able to accurately simulate
or observe flood magnitudes over large areas, across
multiple spatial scales, and in a timely manner are
typically unavailable. Timely here refers to a near real
time evaluation of the event (during, and after) with
sufficient lead-time for response. Lead-time can be
improved by including weather observations and
forecasts, and by adopting computationally efficient
models that provide results in thematter of seconds.

Ideally, floods would be characterized by detailed
maps of inundated areas, depths and duration. Even
though detailed hydraulic models have improved in
recent years, they still have significant limitations for
operational use over large areas with spatial resolution
similar to the one applied in this work (unit catchment
area on the order of 1 km2). Limitations include high
implementation cost, excessive computational time,
and large data requirements [6–9,47–49]. The most
efficient hydraulic models can be applied globally if
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relatively coarse calculation units are defined (unit
catchment area on the order of 500 km2) [8]. The
direct use of only rainfall data to predict flood loss is
often not satisfactory because this method neglects the
critical land surface processes and built environment
that control floods. Dense stream-gauging networks
are useful to characterize floods, however there are few
settings from a global perspective with adequate gau-
ging density forflood hazard assessment [10–13].

2.Novelty and value of the proposed
approach

To overcome these issues, we propose a novel and
interdisciplinary methodology that links flood hazard
(here represented by the normalized spatial character-
ization of flood intensity via hydrologic simulation) to
flood impacts (here represented by the number of
insured flood claims incurred), and allows us to better
understand relationships between them.We introduce
a computationally efficient multi-scale hydrological
model, and a normalized flood index—the flood peak
ratio (FPR)—to spatially characterize flood intensity
(see Small et al [23] for model performance). The FPR
relates the intensity of the flood event with the
intensity of events that have happened in the past, and
more importantly provides a suitable metric for a
multi-scale approach to evaluate flood hazard. With a
spatially explicit characterization of flood intensity via
hydrologic simulation, we are able to investigate the
relationship between the simulated flood hazard and
the actual insured flood claims, again as proxy for
flood impact. As a similarly constructed FPR based on
data-driven streamflow has been successfully applied
to characterize flood event [35, 36] and flood claim
losses [11] over large regions, we utilize this method
for validation purposes of our simulated FPR
approach. Ultimately, both FPR methods present
advantages and limitations and we expect both to be
identified as key drivers of incurred flood losses (and
as we do find) in our geographical area of study given
its dense stream gauging network. But unfortunately,
many flood-prone geographical areas in the U.S. and
around the world do not have such a dense stream
gauge network in place. Thus, the significant contrib-
ution of our proposed hydrologic simulation-based
methodology is that it has the potential to be applied to
many regions given its reliable and computationally
efficient way to spatially characterize the flood hazard
and the corresponding relationship to flood claim
losses as we demonstrate here.

Of course, as in any model application, the accur-
acy of the results depends on the accuracy and resolu-
tion of the key input data or suitable proxies. Note that
the necessary physical and hydro-meteorological data
is usually available worldwide [14–16], even though
the quality of such datasets and their applicability on
this methodology are yet to be tested and will be the

subject of future work. For example, radar rainfall
datasets are not available in many countries. In this
case, precipitation datasets provided by rain gauge or
remote sensing, which present larger errors, and
coarse spatial and temporal resolution, would have to
be used. Similarly, insured flood claim data can be dif-
ficult to obtain in parts of the world [51], but the statis-
tical relationships developed here between simulated
flood hazard and insured flood claims could be used to
generate a proxy of direct economic damage and hence
begin to outline the economic flood loss footprint.
Nevertheless, the methodology presented in this study
is especially valuable for the regions for which almost
no flood hazard data is available and flood hazard and
loss is rarely quantified. If in-place prior to the occur-
rence of the flood, achieving an accurate and timely
characterization of the economic flood loss footprint
should be possible. This new capacity can be of high
value to a number of public and private sector stake-
holders dealing with flood disaster preparedness and
loss indemnification (e.g., emergency services, relief
agencies, insurers) in low- and high-income countries
alike because it is easily and quickly computed.

3.Methods for the local characterization of
flooding

As a proof of concept, we apply our methodology to
the Delaware River Basin (DRB), on the east coast in
the United States, which has a drainage area of
17 560 km2 at Trenton, New Jersey (NJ) and an
exceptionally dense stream gauging network of 72
sites. This allows us to validate the proposed simulated
FPR methodology at a fairly granular level using a
data-driven FPR for comparative purposes.Moreover,
the DRB experiences frequent and intense riverine
flooding [17]. Figure 1 shows the location of the DRB
in relation to the states of New York (NY), Pennsylva-
nia (PA), andNJ.

While the main channel of the Delaware River is
un-dammed, 38 major dams (15 m tall and with sto-
rage capacity of at least 6200 000 m3 or of any height
with a storage capacity of 31 000 000 m3) control the
flow of the Delaware River tributaries [18]. A highly
controlled environment imposes difficulties for flood
simulation, inasmuch as an accurate simulation of the
impact of dams on floods requires precise information
about the dams’ location, surface areas, volumes,
operating purposes and rules, information which is
usually not readily available. Moreover, dam opera-
tions during extreme floods are usually defined in real
time bymultiple stakeholders, and do not follow static
operation rules. We address this issue by applying a
simplemodel to simulate the hydraulic effects of reser-
voirs. In our model, as in reality, reservoirs act by
delaying the flow. The delay rate is defined by two fac-
tors: type of reservoir (controlled or not controlled)
and the purpose of the reservoir (e.g., water supply,
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flood control). For example, flood control reservoirs
have a larger delay rate than water supply, or recrea-
tional reservoirs. Even though the model does not
exactly replicate reservoirs’ outflow hydrographs, it

replicates the reservoir effect of delaying and attenuat-
ing streamflow.

We characterize the DRB flood hazard through
observed and simulated streamflow data. Each

Figure 1.Map of theDRB showing theUSGShydrological units (HUC08) boundaries, the river network, and the location of theUSGS
streamflow gauges and reservoirs. The reservoirs’ purposes are defined as: C: flood control and stormwatermanagement, S: water
supply, H: hydroelectric, R: recreation, F:fish andwildlife pond, andO: other.WWet refers to reservoirs identified in thewater bodies
andwetlands database.
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method presents advantages and limitations (see M1
for further discussion). Observed streamflow is typi-
cally measured at specific discrete points in the river
network by stream gauges. To obtain a spatially con-
tinuous representation of observed FPR, we first nor-
malize the peak flow of each gauge using its individual
10 year flood peak from the historical record. We then
estimate FPR for each link in the river network by
interpolating the 72 observed values using the inverse
distance weighted approach. This method has been
applied by Villarini and Smith [19] to estimate peak
flow over the eastern US for major floods [53]. Flood
hazard quantification using stream gauging data is
sensitive to the density of the network, the spatial
variability of the flood event, the interpolationmethod
used, and the number of flow control structures in the
basin that introduce unnaturalflow alteration.

The sparse nature of stream gauging networks in
many settings, however, limits the utility of data-
driven approaches to characterize the spatial extent of
flooding. The main advantage of a hydrologic simula-
tion approach is that it can be applied in sparse stream-
gauge settings. Furthermore, it takes into considera-
tion the river network structure’s role in shaping the
spatial pattern of flooding. While many distributed
hydrological models represent a region by dividing it
into a number of regular spatial elements (see Kampf
and Burges [20] for a list of models), a watershed is
made up of hillslopes, where rainfall runoff transfor-
mation occurs, and the river network, that transports
the runoff through the drainage basin. Our simulated
streamflow methodology discretizes the landscape
into these natural elements (hillslopes and river net-
work links) and solves the mass conservation
equations for each [21]. With this natural discretiza-
tion of the terrain, we obtain a more accurate repre-
sentation of the river network, which is an essential
component of a flood simulation model [22]. This
model conceptualization allows us to obtain a spatially
explicit characterization of floods; hydrographs and
peak flow are simulated across multiple scales for each
link of the river network in a computationally efficient
way [23].

We simulate streamflow using CUENCAS, a spa-
tially explicit physically based hydrological model.
Prior flood research using CUENCAS has been pre-
sented by Mantilla and Gupta [24], Mandapaka et al
[25]; Cunha et al [5]; Cunha et al [26], Seo et al [27],
Ayalew et al [28], Ayalew et al [29]. Even though other
hydrological models that simulate floods are available,
we chose CUENCAS due to its computational effi-
ciency, valid and detailed representation of the river
network, simplified parameters estimation based on
measurable physical properties, and its ability to simu-
late floods across a large range of scales (from hillslope
to large watersheds). These aspects will be further dis-
cussed throughout this paper.

In CUENCAS, the terrain is discretized into hill-
slope and link that allows the simulation of flood

processes close to the scale they occur naturally. Hill-
slopes provide a more natural terrain discretization
than the ad-hoc square grid, triangular, or variable
area sub-watershed discretization usually applied in
hydrological modeling. This valid representation of
the terrain increases our ability to select parameters
based on measurable physical properties of the water-
shed that correctly represent the patterns of runoff
generation of each hillslope (see Cunha [33] for details
on how parameters can be estimated). The datasets
required to implement the model include: (1) digital
elevation model for the river network extraction and
for the estimation of hydraulic geometry parameters;
(2) rainfall as hydrometeorological forcing, (3) land
cover, and soil datasets for landscape characterization;
and (4) initial soil moisture conditions. These datasets
are available through remote sensing or have the
potential to be in a near future. These datasets are also
available through hydrological reanalyzes [54, 55].

For the DRB model implementation we used
4 km×4 km, hourly Stage IV rainfall maps [30],
climatological potential evapotranspiration values
provided by the MOD16 product [31], topographic
characterization provided by the 30 m×30 m
National Elevation Dataset, soil parameters provided
by the 10 m×10 m Gridded Soil Survey Geographic
(gSSURGO) [32], and hydraulic geometry parameters
estimated based on USGS hydraulic measurements (as
described byCunha [33]).

To normalize streamflow with respect to basin
scale, and to allow the spatial visualization of flood
intensity, we utilize the normalized FPR approach
[19]. For each gauge, the FPR is the event flood peak
divided by the 10 year flood peak flow value from the
historical record. We use the 10 year flood peak since
we believe this value can be accurately estimated using
relatively short time series (20–30 years).When histor-
ical data is not available, this value can be estimated
using regionalization [22, 34]. FPRs larger than 1 indi-
cate a flood event with return period larger than 10
years. The FPR based on observed streamflowhas been
successfully applied to characterize flood event data
[35, 36] and flood losses [11] over large regions. A
required step to apply this methodology is to estimate
regional values for the 10 year peak flow (see M2 for
details). To provide a direct link between FPR and
flood severity, we followed the methodology
employed by Villarini et al [37] and estimate the FPRs
that correspond to each of the US National Weather
Service (NWS) flood categories—action, minor, mod-
erate, andmajor flooding4. In supplementary material
figure 1 we present box plots with FPR values for each
NWS flood category for sites in the DRB. FPRs lower
than 0.51 correspond to ‘action’; FPRs greater than
0.51 and less than or equal to 0.78 correspond to
‘minor flood’; FPRs greater than 0.78 and less than or

4
For further description of these categories see http://crh.noaa.

gov/arx/?n=flooddefinitions.

4

Environ. Res. Lett. 11 (2016) 084006

http://crh.noaa.gov/arx/?n=flooddefinitions
http://crh.noaa.gov/arx/?n=flooddefinitions


equal to 1.08 correspond to ‘moderate flood’; and
FPRs greater than 1.08 correspond to ‘majorflood’.

4. Flood hazard simulation and validation
from fourmajor events

The dense stream-gauge network of the DRB allows us
to assess our simulated peak flow methodology by
comparing data-driven and simulated hydrographs, as
well as peakflows for the locations forwhich streamflow
data are available. To validate our approach we
investigate four different recent (2004, 2005, 2006 and
2011) extreme flood events in the DRB. Smith et al [38]
presented a detailed description of the Delaware River
flood hydrology and hydrometeorology and showed
that floods in the Delaware River are produced by a
diverse collection offlood-generatingmechanisms. The
2004 and 2011 events were caused by extreme rainfall
from hurricanes Ivan and Irene, respectively. The 2005
event was caused by a winter–spring extratropical
system that combined snowmelt, saturated soils, and
heavy rainfall over a period of approximately twenty-
four hours. The 2006floodwas theproduct of a series of
mesoscale convective systems that were associated with
a trough-ridge systemover the easternUS.

Even in a complex drainage basin, with pro-
nounced heterogeneities in rainfall due to orographic
precipitation mechanisms, the comparison of simu-
lated and data-driven discharge resulted in high corre-
lation coefficients for almost all gauges (see
supplementary material figure 2); the model provides
better streamflow estimates than the event average
(Nash–Sutcliffe coefficient of efficiency larger than 0)
for 72%, 75%, 90%, and 81% of the active gauges for
the 2004, 2005, 2006, and 2011 events.

We also present a comparison between simulated
and data-driven peak flow scaling (supplementary
material figure 3). For all the events, we observe large
peak flow variability at small to medium scales (up to
approximately 1000 km2). This variability arises from
spatially and temporally variable rainfall, initial soil
conditions, runoff generation processes, and travel
time dynamics in the channel links. The small-scale
variability of peak flow gives raises to spatial scaling
(power law) as drainage area increases. It is interesting
to note that even in the presence of multiple man-
made structures that modify the natural flow, peak
flow scaling still holds. The model successfully simu-
lates peak flow scaling patterns. The model under-
performed for sites located immediately downstream
from reservoirs since we adopted a simplifiedmodel to
estimate reservoir outflow. However, the effect of the
reservoirs decreases as basin scale increases and the
model accurately simulates flow across multiple scales
(see supplementarymaterial figure 4).

In figure 2 we present maps of data-driven and
simulated FPR for the 2004 event overlaid by census
tracts that presented at least one flood claim for this

flood event (to be detailed in section 5). Maps for the
remaining events (2005, 2006, and 2011) are shown in
supplementarymaterial figures 5–7. Bothmethods pre-
sent advantages and disadvantages. The weaknesses of
the data-driven approach is the high sensitivity to gauge
density and inability to account for river network flood-
ing. This flaw is visible in the map where areas of influ-
ence around the stream gauging station can be
identified even with the dense stream gauging network
of the Delaware River. The FPR approach is sensitive to
data andmodel uncertainties. Themaps in figure 2 pre-
sent significant differences between data-driven and
simulated FPR. Due to limitations in both methods, no
method is necessarily better than the other. In areas
with high gauge density we expect the data-driven
method to be better, while the simulated FPRmethod is
expected to bebetter in areaswith poor gauge density.

5. Summary offlood losses from the four
major events

The associated loss data are the actual insurance claims
incurred for the 2004, 2005, 2006, and 2011 events by
the US National Flood Insurance Program (NFIP). In
the United States, coverage for flood damage resulting
from rising water is explicitly excluded in home-
owners’ insurance policies, but such coverage has been
available since 1968 through the federally managed
NFIP. Thus, the NFIP is the primary source of
residential flood insurance [39, 40]. We have access to
its entire portfolio from 2000 to 2012 as well as
individual policy claim data. This allows us to work
with a clean dataset on specific economic losses (here
direct residential loss) that is verifiable. A claim paid is
officially registered by the federal government so we
know for sure a loss has occurred.Other economic loss
estimates are not necessarily as clean. For example,
state level loss estimates may vary widely between
states given inclusion or non-inclusion of uninsured
losses, losses to public infrastructure, disaster aid
expenditures, etc. The fact that insurance is mostly
nonexistent inmany countries around the world is not
important here since the proposed simulation should
provide a good proxy, locally, of flood loss (given local
characteristics of the house that will have to be taken
into account of course).

For each of these four events and resulting flood-
ing, we determine the total number of residential flood
claims incurred and the number of NFIP policies-in-
force in the DRB at the census tract level (summary of
claims and policies by event in supplementarymaterial
table 1; and see M3 for further discussion on how
claims and policies determined).

On average across all four events, 30% of our DRB
census tracts incurred at least one residential flood
claim, with 4919 total claims incurred in the DRB
across all four events. The total damage (building and
contents) for those events was approximately $181
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million (2011 dollars), with a storm-weighted average
damage per claim of approximately $36800, which
matches well to the mean amount from all NFIP
claims across the United States during the period of
1980–2012 of $34500 [50]. These claims were gener-
ated from the 5241 NFIP policies-in-force (for the
2004 event) to 9729 NFIP policies-in-force (for 2005,
2006 and 2011 events) in the basin. Given the relatively
low flood insurance penetration in the basin (see M3
and supplementarymaterial figure 8 for amap ofNFIP
policies by census tract), the number of claims and
associated losses can be considered a lower-bound
estimate of the actual (insured and uninsured) DRB
flood losses incurred for these events. But since the
vast majority of flood insurance in the US is obtained
through the NFIP, our data is a good representation of
the number of residential flood insurance claims.

Figure 3 illustrates the straightforward raw data
relationship between simulated and observed FPRs
(grouped by their associated NWS category) and the

number of flood claims. Clearly, FPRs classified as a
major flood (>1.08) are associated with the vast
majority of the flood claims in the DRB for these stu-
died events. But claims were also incurred for action,
minor, and moderate FPRs, and this simple bivariate
view of the raw data does not account for any other
hazard or exposure characteristics potentially leading
to a flood claim. These other potentially relevant
aspects will be formally controlled for in the regression
analysis below. Importantly, by introducing these con-
trols we will be able to quantify the impact of higher
FPR levels on the number of claims incurred, some-
thing not able to be determined from figure 3 but
important for an accurate and timely characterization
of the economicflood loss footprint.

6. Linking localflood hazard toflood loss

In order to determine whether the constructed DRB
localized flood hazard (FPR) is in fact a key driver of

Figure 2. Simulated (a) and data-driven (b)flood peak ratio for the 2004 event.We highlight in black the census tracks that present
claims for the event. See supplementarymaterialfigures 5–7 for 2005, 2006, and 2011 events.
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residential DRB flood losses (number of residential
flood claims) as is expected, and if so, to explicitly
quantify by how much residential flood losses change
as the flood hazard (FPR) changes, we conduct a
multivariate regression analysis on the data from the
2004, 2005, 2006, and 2011 events. The primary
purpose of the regression analysis is to statistically
identify the causal effect of the flood hazard—
simulated and data-driven FPRs—on the number of
flood claims incurred in each DRB census tract from
each of the four events while also simultaneously
controlling for a number of other relevant flood
hazard and exposure variables that could causally
effect the number of claims incurred as well. We
incorporate the FPRs in two distinct ways: first, as the
maximum FPR value achieved in each census tract per
each event; and second, in order to provide further
relative context to these otherwise continuous FPR
values, we discretize the maximum FPR into the
‘action’, ‘minor flood’, ‘moderate flood’, and ‘major
flood’—high water level terminology categories used
by the NWS. Although the simulated data-driven
approaches are fundamentally different, on average
both methods adequately characterize the flood
hazard in the DRB as we have shown, thus we expect
both FPRs to be key drivers offlood claims.

In addition to the data-driven and simulated FPRs,
we added into the regression model controls for other
flood hazard characteristics expected to drive the
number of flood claims incurred including the size of
the census tract (‘number pixels’ where each pixel is
90×90 meters), the density of the river network in
the census tract (‘percentage river’), and dummy vari-
ables along a scale from one to seven that indicate the
size of the river. To characterize the size of the river in
each tract we use the Horton system of river ordering.
We attribute to each tract the largest Horton order.
Horton four, the median river size on the seven point
scale is the omitted category. The size of the river indi-
cates the type of flood the area is more susceptible to.

For example, flash floods are common in small rivers
that present fast response to rainfall. Large rivers are
more susceptible tofloods caused by rainfall eventswith
long duration (see M3). We also control for other rele-
vant exposure factors including the number of housing
units and the number of flood insurance policies-in-
force in each census tract. All else being equal, as these
flood hazard and exposure factors increase, one would
expect a larger count of flood insurance claims. It could
be that unobserved state-level policies related to land-
use, zoning, storm water, etc impact the number of
claims incurred per flood event, therefore we control
for any unobserved heterogeneity between the three
states in the DRB through a fixed effect estimation via
state dummy variables (PA, NY, and NJ), with PA the
omitted category. For statistical power purposes we
pool the data from all four storms; as these are different
types of flooding events we also control for any unob-
served event-specific fixed effects through event
dummyvariables (one for each storm; ‘extrop’, ‘cnvctv’,
‘ivan’, ‘irene’), with Irene being the omitted category.
(See themethods sectionM3 for a description of the sta-
tistical analyses employed. A complete list and descrip-
tion of the variables used in the models is provided in
supplementarymaterial table 2.)

Table 1 presents the negative binomial (NB)
results where we model the count of claims for the
1435 census tracts with at least one NFIP policy-in-
force (full-model results are presented in supplemen-
tary material table 3). As we incorporate the FPRs in
two distinct ways we present four different models:
model 1 utilizes the observed maximum FPR con-
tinuous value; model 2 utilizes the simulated max-
imum FPR continuous value; model 3 utilizes
observed maximum FPR discretized NWS classifica-
tions; and model 4 utilizes the simulated maximum
FPR discretized NWS classifications. All other expla-
natory variables are the same across all four models.
The likelihood ratio chi-squared test for all four mod-
els we run indicates that each of the models is

Figure 3.NWS characterized flood peak ratios (simulated and data-driven) and percent of total claims.
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statistically significant at the 1% level. We also see that
the number of NFIP policies-in-force and the size of
the river (Horton six and seven)—are consistently sta-
tistically significant at the 1% level and positive drivers
of flood claims for an average census tract in the DRB
as expected. Claims increase with the size of the river
since floods in larger rivers tend to affect larger areas
than floods in small creeks. Therefore, areas closer to a
larger river such as the main Delaware stream, are
more susceptible to damaging floods. We can expli-
citly quantify this impact from our estimated Horton
six and seven coefficients, where the expected number
of claims from an event would increase by a factor of
3.3 and 4.6 respectively as compared to a Horton four
river. The major negative driver of flood claims for an
average census tract is when the tract is located in NY
State—the expected number of claims from an event
decreases by 57% in NY State as compared to a census
tract located in PA. This is expected since the DRB in
NY is comprised mainly of forested areas, with very
low population density. From the inflated portion of

the NBmodel (supplementary material table 3)we see
that the larger the percentage of river (drainage den-
sity) in a tract, the less likely it is to observe zero claims,
by 10% for every percentage of river increase. Drai-
nage density is intrinsically linked to the region topo-
graphy. Likewise, themore NFIP policies-in-force, the
less likely it is to observe zero claims.

Models 1 and 3 confirm that the number of claims
increases with observed maximum FPR (statistically
significant at 1% and 5% levels), as expected. Similar
results were found in the relationship between num-
ber of claims and observed FPR for 23 states impacted
by Hurricane Ivan [11]. What we can further do,
though, is quantify this effect. Frommodel 1, if a cen-
sus tract were to increase its observed maximum FPR
by one unit, the expected number of claims from an
event would increase by a factor of 1.81 while holding
all other variables in the model constant. From model
3, census tracts experiencing FPRs classified as action,
minor, or moderate have expected number of claims
that are respectively 72%, 66%and 56%of the number

Table 1.Estimated coefficients from countmodel portion of zero-inflated negative binominalmodel for
1435 census tracts with at least oneNFIP policy-in-force where:model 1 data-drivenmaximumFPR
continuous value;model 2 simulatedmaximumFPR continuous value;model 3 data-drivenmaximum
FPRdiscretizedNWS classification (majorflood is the omitted category); andmodel 4 simulatedmax-
imumFPRdiscretizedNWS classification (majorflood is the omitted category). Standard errors are not
reported. The log-transformed alpha parameter of theNBdistribution captures any overdispersion in the
model.

Negative binomialmodels for the count offlood claims

Explanatory variable Model (1) Model (2) Model (3) Model (4)

Extra tropical 2005 −0.78*** −0.02 −0.67*** −0.09

Convective 2006 −0.19 0.18 −0.15 0.11

Ivan 2004 −0.01 −0.13 −0.11 0.02

NJ −0.08 −0.26 −0.34* −0.30*

NY −0.85*** −0.56*** −0.63*** −0.54**

Housing units 0.00 0.00 0.00 −0.00

NFIP policies 0.03*** 0.02*** 0.03*** 0.02***

Number pixels −0.00 0.00 0.00 0.00

Percentage river −0.06*** −0.08*** −0.07*** −0.08***

Horton one −0.88*** −0.52 −0.93*** −0.43

Horton two −0.05 0.29 −0.13 0.36

Horton three 0.00 0.25 0.13 0.23

Horton five −0.30 −0.47** −0.44** −0.51**

Horton six 1.21*** 0.86*** 1.08*** 0.98***

Horton seven 1.53*** 1.27*** 1.42*** 1.25***

Data-drivenmax FPR 0.59***

Simulatedmax FPR 0.56***

Data driven FPR_action −0.33

Data driven FPR_minor −0.42**

Data driven FPR_moderate −0.58***

SimMaxFPR_action −0.91***

SimMaxFPR_minor −0.33

SimMaxFPR_moderate −0.67***

constant −0.85*** −0.89** 0.09 0.09

Ln alpha 0.77*** 0.75*** 0.83*** 0.76***

N 1435 1435 1435 1435

Log likelihood −1841.3 −1847.5 −1854.9 −1847.8

LR chi2 541.4 493.0 514.3 492.2

Prob>chi2 0.00 0.00 0.00 0.00

Note. * p<0.1; ** p<0.05; *** p<0.01.
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of claims expected for tracts experiencing major FPR
while holding all other variables in the model con-
stant5. As expected, from the inflated portion of the
model (supplementary material table 3), a higher
observed FPR value is not a statistically significant dri-
ver of a less likely zero-flood claim occurrence.

Most notably, though, from the table 1 results is
that simulated FPR coefficient values in models 2 and
4 demonstrate a statistically significant causal effect on
the number of flood claims experienced from the four
events as expected and as did the data-driven FPR. For
both simulated and data-driven flood peak values we
see statistical significance at the 1% level for con-
tinuous, and categorized FPR (based on NWS flood
categories). In an extreme scenario, where no or few
streamflow observations are available, the simulated
FPR is the only possible applicablemethod. This result
demonstrates the validity of the simulated FPR
obtained based on a parsimonious multi-scale hydro-
logical model. The novelty of this work is again in the
explicit quantification of these relationships using a
method that does not solely rely in observed data.
From model 2, if a census tract were to increase its
observed maximum FPR by one unit, the expected
number of claims from an event would increase by a
factor of 1.77 while holding all other variables in the
model constant. From model 4, census tracts experi-
encing FPRs classified as action, minor, or moderate
have expected number of claims that are respectively
40%, 71% and 51% of the number of claims expected
for tracts experiencing major FPR while holding all
other variables in the model constant. Lastly, we see
from the inflate portion of models 2 and 4 (supple-
mentary material table 3) that larger simulated FPR
values are statistically significant drivers of a lower
likelihood of observing a zero-flood claim for an aver-
age census tract.

We validate our regression results in two main
ways: (1) we apply a k-fold cross validation on models
(1)–(4) in order to evaluate their ability to fit out-of-
sample data (see themethods sectionM4 for a descrip-
tion of the cross-validation statistical analyses
employed); and (2) in supplementary material figure 9
we generate a map of the number of predicted versus
actualflood claims using the results frommodels (1)—
observed maximum FPR—and (2)—simulated max-
imum FPR. The pseudo-R-squared statistics gener-
ated from k-fold cross validation (supplementary
material table 4) indicate that zero-inflated negative
binomial (ZINB) models (1)–(4) consistently capture
about 30% of the variation in out-of-sample test data.
The cross-validation goodness-of-fit results are in-line
with the full model results, providing further evidence
of their validity. Furthermore, in all k-fold estimation,

the key FPR variables of interest perform as they did in
models (1)–(4) in terms of magnitude, sign, and statis-
tical significance.

From supplementary material table 1, the 380
DRB 2010 census tracts utilized for this study incurred
a total of 4283 residential flood claims from the 2005,
2006, and 2011 events. Supplementary material figure
9 (left panel) highlights the 61 DRB census tracts (16%
of total 380 tracts) that individually incurred at least 10
total claims across these three events (maximum of
336 claims) and together represent 3801 of the total
4283 residential flood claims (89% of total claims).
These 61 census tracts are denoted ‘DRB high claim
tracts’. From the model (1) results utilizing the data-
driven maximum FPR in each tract, 56 census tracts
are predicted to have 10 or more total claims (middle
panel of supplementary material figure 9) across these
three events and are denoted ‘DRB high claim tracts
observed max’. 46 of these model (1) predicted high
claim tracts are a match to one of the 61 high claim
tracts from the actual NFIP claim data, with census
tract matches occurring in all three states of NJ, NY,
and PA. Similarly, from the model (2) results utilizing
the simulated maximum FPR in each tract, 58 census
tracts are predicted to have 10 or more total claims
(right panel of supplementary material figure 9) across
these three events and are denoted ‘DRB high claim
tracts simulated max’. 49 of these model (2) predicted
high claim tracts are a match to one of the 61 high
claim tracts from the actual NFIP claim data, with cen-
sus tract matches again occurring in all three states of
NJ, NY, and PA. Thus, from supplementary material
figure 9 middle and right panels we see that the pre-
dicted count of claims utilizing the estimated coeffi-
cients from table 1 models (1) and (2) respectively,
accurately represent these high flood claim census
tract areas of the DRB realized from these three events,
providing further validity to our estimatedmodels uti-
lizing both data-driven and simulated FPRdata.

7. Conclusions and future research

Previous research has shown that observed FPRs can
be used to spatially characterize flood events [19, 35,
36] and are key statistical drivers of the number of
flood claims incurred for riverine flooding from
tropical cyclones (TC) in the eastern US [11]. In this
study we again confirm these findings, and more
importantly, we propose a methodology that does not
solely rely on observed streamflow data. Observed
streamflow data are not readily available in satisfactory
density for flood hazard characterization inmost areas
of the world, especially in some of the regions with the
highest vulnerability to floods [12, 13]. To demon-
strate the sensitivity of estimated flood intensity on
gauge density, we present in supplementary material
figure 10 observed FPR values for the 2006 flood event
based on different number of gauges.

5
Additionally, a separate estimation not shown using dummy

variable for simulatedmax_major=1, 0 otherwise indicate census
tract experiencing a simulated FPR classified as major have exp
(.596 3917)=1.81 times the expected number of claims for tract
with value that is less thanNWSmajorflood.
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Results presented in this study show that simu-
lated FPR estimated from a physically based hydro-
logical model identifies a causal effect on the number
of flood claims in the Delaware River Basin for major
flood events, similar to the data-driven FPR obtained
from a dense stream-gauging network, which provides
a proof of concept across four different storms. We
further validate this estimated effect utilizing our
model results to predict out-of-sample and observed
claims. We believe the proposed simulated FPR
method for flood hazard characterization can poten-
tially be applied to many other regions of the world
using routinely available remote sensing data sets for
digital elevation models [15], rainfall [14], land cover
[16], and soil properties [41–43]. Regional flood fre-
quency estimates can be obtained based on empirical
and modeling approaches (e.g., Viglione et al [44],
Guo et al [34]). The simulated FPR depends on the
accuracy of the input and forcing data. For example,
where radar rainfall datasets are not available, pre-
cipitation datasets provided by rain gauge or remote
sensing would have to be used. Or the statistical rela-
tionships developed here between simulated flood
hazard and insured flood claims could be used to gen-
erate a proxy of the economic flood loss footprint
where flood claim data can be difficult to obtain, or
where there is no insurance data [51] (local parameters
such as construction type and housing cost would have
to be considered as well). However, our approach pro-
vides a unique, reliable and computationally efficient
way to spatially characterize floods in ungauged and/
or poorly gauged regions.

Our findings highlight the technological cap-
abilities that can lead to a better integrated risk
assessment of extreme riverine floods in a more
precise and timely manner. This capacity should be
of tremendous value to a number of public and pri-
vate sector stakeholders dealing with flood disaster
preparedness and loss estimation/forecasting and
financial indemnification of victims of floods
around the world: scientific forecasters, emergency
teams, engineers and urban planners, local and
national governments as well as residence and
building owners and their insurers, when flood
insurance is available [45].
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