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Abstract
In coastal habitats artificial structures typically support lower biodiversity and can support greater
numbers of non-native and opportunistic species than natural rocky reefs. Eco-engineering
experiments are typically trialed to succeed; but arguably asmuch is learnt from failure than from
success. Our goal was to trial a generic, cost effective, eco-engineering technique that could be
incorporated into rock armouring anywhere in theworld. Artificial rock pools were created from
manipulated concrete between boulders on the exposed and sheltered sides of a causeway.
Experimental treatments were installed in locationswhere theywere expected to fail and compared to
controls installed in locations inwhich theywere expected to succeed. Control pools were created
lower on the structurewhere theywere immersed on every tidal cycle; experimental pools were created
abovemean highwater spring tidewhichwere only immersed on spring tides.We hypothesised that
lower and exposed pools would support significantly higher taxon and functional diversity than upper
and sheltered pools. The concrete pools survived the severe winter storms of 2013/14. After 12
months, non-destructive sampling revealed significantly highermean taxon and functional richness
in lower pools than upper pools on the exposed side only. After 24months the sheltered pools had
become inundatedwith sediments, thus failing to function as rock pools as intended. Destructive
sampling on the exposed side revealed significantly highermean functional richness in lower than
upper pools. However, a surprisingly high number of taxa colonised the upper pools leading to no
significant difference inmean taxon richness among shore heights. A high number of rare taxa in the
lower pools led to total taxon richness being almost twice that of upper pools. Thesefindings highlight
that evenwhen expected to fail concrete pools supported diverse assemblages, thus representing an
affordable, replicablemeans of enhancing biodiversity on a variety of artificial structures.

1. Introduction

Urban sprawl—the expansion of humans away from
central urban areas on land and its impacts on the
environment has long been recognised as a global
problem (Van Metre et al 2000, Johnson 2001, Chad-
wick et al 2006). Recently, ‘ocean sprawl’—the pro-
liferation of artificial structures associated with coastal

protection, shipping, aquaculture, and other coastal
industries (coastal andmarine infrastructure (CMI)) is
gaining recognition as one of the biggest threats to
marine ecosystems (Airoldi and Beck 2007, Firth
et al 2013a, Dafforn et al 2015). Globally, coastal
development is accelerating with many regions now
dominated by artificial coastlines (e.g. Chapman 2003,
Lai et al 2015, Burt et al 2013, Firth andHawkins 2011,
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Firth et al 2016, Knights et al 2016). Coasts are
increasingly ‘hardened’ as new CMI is proliferating to
support and protect burgeoning populations (Thomp-
son et al 2002, Gerland et al 2014). There are however
costs associated with replacing natural habitats with
hard artificial structures including the loss of ecosys-
tem services provided by those habitats (Beaumont
et al 2007, Wyles et al 2014, Knights et al 2015), and
alteration of connectivity patterns (Airoldi et al 2015,
Bishop et al in press).

Sometimes CMI can provide important ecosystem
services such as habitat or protection for species of
commercial or conservation importance (e.g. Inger
et al 2009, Toft et al 2013, Pearce et al 2014, Firth
et al 2015, García-Gómez et al 2015). However, an
increasing body of literature described how artificial
habitats are poor surrogates for natural rocky reefs; sup-
porting lower biodiversity (Moschella et al 2005, Firth
et al 2013b), different communities (Chapman 2003,
Evans et al 2016a), and promoting opportunistic and
non-native species (Airoldi and Bulleri 2011, Firth
et al 2011, Floerl et al 2009, Bracewell et al2013).

Over 50% of CMI is constructed with Portland
cement (Sharma 2009), which, despite being known to
be toxic to some marine life (Nandakumar et al 2003,
Togero 2006), can support diverse communities (e.g.
Griffin et al 2010, Noël et al 2010). Colonising organ-
isms with calcareous skeletons (e.g. oysters, corals)
deposit calcium carbonate onto surfaces in a process
termed biogenic build-up; which can contribute to the
strength and durability of structures (Risinger 2012).

In response to mitigating the potential negative
impacts of CMI, the field of eco-engineering has blos-
somed recently with a particular focus on demonstrat-
ing how CMI can be modified to enhance the habitat
and promote biodiversity (reviewed in Dyson and
Yocum 2015, Dafforn et al 2015, Firth et al 2016), in
part, off-setting the negative consequences of lost nat-
ural habitat. Techniques include retrofitting novel
microhabitats, such as rock pools, pits and surface
roughness (Chapman and Blockley 2009, Martins
et al 2010, Browne and Chapman 2014, Coombes
et al 2015, Evans et al 2016a), deployment of precast
concrete units (Perkol-Finkel and Sella 2014, 2015,
Firth et al 2014a, Sella and Perkol-Finkel 2015, Loke
and Todd 2016) and the transplantation of habitat-
forming species onto artificial structures (Perkol-Fin-
kel et al 2012,Ng et al 2015, Ferrario et al 2016).

The majority of eco-engineering experiments has
been implemented at small spatial scales, with poor
replication, limited monitoring and understandingly,
designed to succeed. Thanks to the recent surge of
research in this area coastal managers are now faced
with a toolkit of potential mitigation and reconcilia-
tion options when planning coastal infrastructure (see
Dafforn et al 2015, Firth et al 2016 for reviews). How-
ever, all too often decisions about ‘ticking the green
box’ are made without consulting ecologists and thus
projects can potentially fail, wasting taxpayer’smoney.

Perhaps even more serious is the possibility that the
promise of incorporating eco-engineering into devel-
opment plans may be used as a ploy for getting the
green light on harmful coastal developments. Argu-
ably, it is more important to know when schemes fail
than when they succeed, as greater knowledge is
gained from failure than from success.

To date, eco-engineering experiments conducted
in the intertidal zone are largely carried out below
mean high water spring tide (MHWS) where biodi-
versity enhancement is likely to bemost successful due
to more favourable abiotic conditions lower on the
shore (Raffaelli and Hawkins 1996, Firth et al 2013b).
Furthermore, trials are typically carried out under
particular wave exposure conditions (e.g. Browne and
Chapman 2011, Firth et al 2014a, Evans et al 2016a)
making it difficult to generalise about success outside
of the environmental conditions experienced at that
location. The primary aim of our study was to trial a
novel eco-engineering technique under conditions in
which it was expected to succeed and compare the out-
comes to treatments installed in conditions where it
was expected to fail. The objective was two-fold.
Firstly, to demonstrate proof-of-concept of a new
technique, but secondly and perhaps more impor-
tantly, to identify where such an approach may not be
suitable, thereby minimising the likelihood of invest-
ment in unsuitable technology and preserving con-
sumer confidence (e.g. Knights et al 2014) in
reconciliation and conservation efforts.

Artificial rock pools were created from concrete
manipulated between boulders beneath the precast
concrete hollow-core Shepherd Hill energy dissipa-
tion (SHED) units on a causeway in Galway Bay, Ire-
land (figure 1). The causeway offered a unique
opportunity to trial the same technique under differ-
ent environmental conditions simultaneously within a
small spatial area. The west side of the causeway is
exposed to swells coming in from the Atlantic Ocean,
whilst the eastern side is relatively sheltered in com-
parison. Biodiversity patterns differ with varying levels
of wave exposure (Ballantine 1961) with sheltered
pools typically supporting lower biodiversity than
moderately exposed rock pools (Firth, pers. obs.). The
SHED units on the causeway were arranged in straight
horizontal lines at different shore heights. Previous
studies have found an inverse relationship between
biodiversity and shore height in artificial habitats
(Firth et al 2013b, Browne andChapman 2014), but no
studies to date have investigated the combined effects
of wave exposure and shore height on colonisation of
eco-engineered habitats.

The design of the causeway enabled the testing of
the efficacy of the artificial rock pools among two dif-
ferent wave exposures (‘exposed’ and ‘sheltered’) and
two different shore heights (‘lower’ and ‘upper’)
simultaneously. Reference (control) pools were instal-
led lower on the structure where they were immersed
on every tidal cycle and experimental pools installed
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above MHWS, which were only immersed on spring
tides. Upper pools were deliberately placed above
MHWS with an expectation of failure (i.e. very few
species were expected to colonise the upper pools).We
tested two hypotheses: (1) lower pools would support
greater taxon and functional richness and different
taxon and functional composition than upper pools;
(2) exposed pools would support greater taxon and
functional richness and different taxon and functional
composition than sheltered pools.

2.Materials andmethods

2.1. Study area
Galway Bay is a large marine-dominated bay on the
west coast of Ireland. The total length of coastline in
Galway Bay from Cloghmore, Co. Galway (53°13′N,
9°31′W) to Black Head, Co. Clare (53°09′N, 9°15′W)
is 191 km, comprising ∼180 km (93%) natural and
∼12.6 km (7%) artificial coastline. The present length
of coastline within the Galway City limits is ∼23 km,
comprising ∼13 km (55%) natural and ∼10.5 km
(45%) artificial coastline. There are plans to expand
the existing harbour to create commercial quays and a
deep water docking facility (figure 2); the proposed
development will increase the extent of the artificial
coastline from 10.5 to 14.6 km (53%), an increase
of 39%.

2.2. Experimental set up
2.2.1. Causeway engineering details
Mutton Island is connected to Galway City by a 0.8 km
causeway (figure 2, 53°15′27″N, 09°03′18″ W). The
top of the causeway is 1.4 m above MHWS. Precast
concrete toe units hold concrete SHED units in place,
which are frontedwith rock armour toes (figure 1).

In June 2013, artificial rock pools were created by
pouring quick-drying concrete around buckets in the
base of the SHED units (figure 1(c)). The concrete was
sufficiently coarse and dry enough not to run among
the boulders beneath, but could be easily manipulated
to fill the interstitial spaces among boulders. Once the
concrete had set, the buckets were removed to reveal
water-retaining depressions (hereafter referred to as a
‘pool’) of opening diameter 13–14 cm, bottom dia-
meter 10.6 cm and 10–12 cm depth (∼1250 cm3

volume). In total, 80 pools were created: 20 upper (0.4
m aboveMHWS) and 20 lower (1.9 m belowMHWS),
and replicated on both the eastern (hereafter ‘shel-
tered’) and western (hereafter ‘exposed’) sides of the
causeway.

2.2.2. Sampling
After 12 months (May 2014), all colonising organisms
were sampled visually in situ using non-destructive
techniques. After 24months (May2015), all colonising
organismswere removed from the pools and identified
to the lowest possible taxonomic level in the

Figure 1.Mutton IslandCauseway, Galway Bay, Ireland. (a) Schematic showing engineering design (redrawn formEdger and
Murdock 2003); upper ShepherdHill energy dissipation (SHED) units are positioned 0.4m aboveMHWS (4.3m aboveChart
Datum); lower SHEDunits are positioned 1.9mbelowMHWS (2.0m aboveChartDatum); (b) image showing the rock armour toe
and precast concrete ShepherdHill energy dissipation (SHED) units on exposed side (Photo: L. Firth); (c) image showing the
construction of artificial rock pools at the base of SHEDunits using quick-drying concrete and buckets (Photo: L. Firth).
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laboratory. Flora and fauna were grouped into func-
tional groups based on morphological features (Eriks-
son et al 2002) and feeding strategies respectively.

2.3. Statistical analyses
To address hypothesis 1—that lower pools would
support greater taxon and functional richness and
different taxon and functional composition than
upper pools, data were treated separately for the 12
month and 24 month sampling periods. To address
hypothesis 2—that exposed pools would support
greater taxon and functional richness and different
taxon and functional composition than pools on the
sheltered side, only the data collected after 12 months
was used as pools on the sheltered side became
inundated with sediment some time between 12 and
24months andwere therefore omitted from analyses.

Analysis of variance (ANOVA) and permutational
analysis of variance (PERMANOVA, Anderson 2001)
were used to test hypotheses 1 and 2. ANOVA was
used to test for differences in mean taxon and func-
tional richness based on presence/absence data. PER-
MANOVA was used to test for differences in
multivariate taxon and functional composition, based
on 9999 unrestricted permutations of raw presence/
absence data. Percentage contributions of individual
taxa and functional groups to dissimilarity between
communities were calculated using SIMPER
(Clarke 1993). SIMPER analysis in the PRIMER pack-
age was used to assess which species were most influ-
ential in causing similarity among plots within

treatments and dissimilarity among different treat-
ments (Clarke and Warwick 1994). In all cases, the
same design was used for ANOVA and PERMA-
NOVA, but with separate designs for 12 and 24month
comparisons. For 12 months, a two-way crossed
design was used, with fixed factors Exposure and
Shore Height. The 24 month data were analysed using
a one-way designwithfixed factor ShoreHeight.

Using 24 month data, the likelihood of species
occurring in pools at different shore heights (prob-
ability of occurrence) was estimated from incidence
matrices (i.e. data describing the presence or absence
of a species in a pool, (Dorazio et al 2011)). The sum
presence of a species over the number of pools sam-
pled is used to calculate the likelihood of occurrence of
a species. This uses binary presence–absence data and
not abundance data. Random resampling with repla-
cement was used to generate species accumulation
curves to estimate the predicted number of taxa with
an increasing number of pools.

Beta diversity which has been defined as the ratio
between gamma (regional) and alpha (local) diversities
(Whittaker 1960) can also be used as a measure of
community heterogeneity (Tuomisto 2010a, 2010b).
Here, we used the Sørensen index of dissimilarity
(Whittaker 1960) to compare communities in terms of
the number of shared and unique taxa recorded in dif-
ferent pools within shore heights. Larger values of beta
diversity (i.e. those that tend toward 1) indicate greater
dissimilarity between pools. Species occurrence prob-
abilities, species accumulation curves and Sørensen

Figure 2.Map showing the extent of existing artificial coastlinewithin theGalwayCity limits inGalway Bay, Ireland in 2015 (estimated
fromGoogleEarth). The proposed dock extension is highlighted in grey to the east of the experimental site on theMutton Island
Causeway.
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index estimates were calculated using the R package
‘Vegan’ (Oksanen et al 2016). Pairwise comparisons of
beta diversity between pool pairs after 24 months are
shown using correlation plots, and non-metric multi-
dimensional scaling used to show dissimilarity in
taxon and functional compositions between exposure
and shore heights after 12 and 24 month periods
respectively.

3. Results

3.1. Biotic colonisation of concrete pools after 12
months
Non-destructive sampling identified 19 taxa from 8
functional groups (table 1(a)). All 19 taxa were
recorded in exposed pools in comparison to only 4 in
sheltered pools. A greater number of taxa were found
in the lower (15) than upper pools (10) on the
exposed side.

3.1.1. Taxon and functional richness
There was a significant interaction between exposure
and shore height for both taxon and functional
richness (table 2(a), figure 3(a)). On the exposed side
lower pools supported significantly greater mean
taxon (4.6) and functional richness (3.6) than upper
pools (3.7 and 2.3 respectively), whilst on the sheltered
side there was no significant difference between lower
and upper pools (figure 3(a)) in either taxon or
functional richness.

3.1.2. Taxon and functional composition
There was a significant interaction between exposure
and shore height for both taxon and functional

compositions (table 2(b)). Post hoc pairwise tests
revealed significant differences in taxon and commu-
nity composition (table 2(b), figures 4(a) and (b))
between exposures for both lower and upper pools.
Similarly, pairwise tests revealed significant differences
in taxon and functional composition between shore
heights for exposed but not for sheltered pools
(figures 4(a) and (b)). It is clear that there was little
variance in the taxon and functional composition in
sheltered pools (figures 4(a) and (b)), but far more
variance in exposed pools (figures 4(a) and (b)). As
predicted, SIMPER analysis revealed that there were
greater numbers of taxa and functional groups asso-
ciated with lower than upper pools and exposed than
sheltered pools (table S1). The most diverse habitat
was lower exposed pools.

3.2. Biotic colonisation of concrete pools after 24
months
Following the 12 month sampling, the sheltered pools
became inundated with sediments. Consequently, we
refer only to the exposed pools here. After 24 months,
destructive sampling yielded 72 taxa across 11 func-
tional groups (table 1(b)). 63 taxa were found in lower
and 37 in upper pools (figure 3(c)), two of which
classified as non-native: the algae Colpomenia pere-
grina and the barnacle, Austrominius modestus. Of the
72 taxa recorded, 35 (48.6%) and 9 (12.5%) were
unique to the lower and upper pools respectively
(table 1,figures 3(d) and (e)).

3.2.1. Taxon and functional richness
There was no significant difference in mean taxon
richness between lower (16.9) and upper pools (13.9)
(table 2(c), figure 3(b)); but lower pools did support

Table 1. Summary of the number of taxa in each functional group (a) after 12months and (b) after 24months in lower and upper pools on
exposed and sheltered sides of theMutton Island causeway, Galway Bay, Ireland.

(a) 12months (b) 24months

Causeway
Exposed only Sheltered only Exposed

Functional group Total Total Lower Upper Total Lower Upper Total Lower Upper

Thin filamentous 3 3 2 3 1 1 1 14 10 11

Corticated foliose 1 1 1 1 0 0 0 6 4 5

Corticatedmacrophyte 2 2 2 0 0 0 0 4 3 2

Leatherymacroalgae 0 0 0 0 0 0 0 4 4 2

Calcareous algae 1 1 1 0 0 0 0 2 2 1

Suspension feeder 6 6 5 2 0 0 0 15 15 5

Grazer 3 3 1 3 1 0 1 10 9 5

Detritivore 1 1 1 1 1 0 1 5 5 3

Carnivore 0 0 0 0 0 0 0 3 3 0

Omnivore 2 2 2 0 1 1 0 5 5 2

Other 0 0 0 0 0 0 0 4 4 1

Total taxon richness 19 19 15 10 4 2 3 72 63 37

Total functional richness 8 8 8 5 4 2 3 11 11 10

Unique taxon richness 35 9

Rare taxon richness 13 2
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significantly greater mean functional richness than
upper pools (8.5 versus 6.7, table 2(c),figure 3(b)).

The community composition in lower pools was
more variable than in upper pools (figures 4(c) and
(d)), although this variation is largely attributed to a
large number of taxa with relatively low probabilities
of occurrence (table 3, figure 5; species ranks 38–63).
The species with a higher probability of occurrence
(>55%) tended to occur in both lower and upper
pools (with the exception of Rhizoclonium riparium
andUlva linza). For species less likely to occur (<55%
probability of occurrence), 30% were unique to upper
and 67%were unique to lower pools.

Unsurprisingly, mean beta diversity of the upper
pools (0.39) was lower than that of the lower pools
(0.54). Pairwise comparisons of beta diversity between
individual pools revealed considerable differences in
community composition, even between lower pools
established in the same SHED unit (figure 6; L8A ver-
sus L8B—β=0.69), whereas upper pools were more
similar (figure 6).

Comparing taxon accumulation across pools, the
number of taxa in upper pools approached asymptote
with the inclusion of 11 pools (32 taxa), with only an
additional five taxa accumulating across the remaining
nine pools (20 pools: 37 taxa). Conversely, for lower

Table 2. (a)ANOVA comparing taxon and functional richness and (b)PERMANOVA comparing taxonomic and functional
composition among exposures and shore heights after 12months. (c)ANOVAof taxon and functional richness; (d)PERMA-
NOVAcomparing taxonomic and functional composition among shore heights after 24months.WhereCochran’s Cwas sig-
nificantαwas set to 0.01 (Underwood 1997). Significant P-values are in bold.

(a) 12months: univariate ANOVAof richness

Taxon Functional

Source df MS F P MS F P

Exposure 1 33.5868 415.9 0 63.0125 81.65 0

Shore height 1 0.0937 1.16 0.2848 5.5125 7.14 0.0092

Exposure X shore height 1 0.3796 4.7 0.0033 7.8125 10.12 0.0021

Residual 76 0.0808 0.7717

Total 79

Transformation Ln(X) None

Cochran’s C NS P<0.01

(b) 12months:multivariate PERMANOVAof community composition

Taxon Functional

Source df MS F P MS F P

Exposure 1 49 779 49.661 <0.0001 44 404 79.35 <0.0001

Shore height 1 11 624 11.597 <0.0001 6769.6 12.097 <0.0001

Exposure X shore height 1 16 783 16.744 <0.0001 8443.6 15.089 <0.0001

Residual 76 1002.4 559.61

Total 79

Transformation SQRT SQRT

(c) 24months: univariate ANOVAof richness

Taxon Functional

Source df MS F P MS F P

Shore height 1 90 4.55 0.0394 18.225 8.33 0.0064

Residual 38 19.7789 2.1882

Total 39

Transformation None None

Cochran’s C P<0.01 NS

(d) 24months:multivariate PERMANOVAof community composition

Taxon Functional

Source df MS F P MS F P

Shore height 1 18 551 15.6 <0.0001 3534.2 10.593 <0.0001

Residual 38 1189.2 333.64

Total 39

Transformation SQRT SQRT
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pools, the number of species did not reach asymptote
(20 pools: 63 taxa; figure 3(c)) with new taxa recorded
in nearly every additional pool.

3.2.2. Taxon and functional composition
Composition differed among shore heights for both
taxon and functional groups (figures 4(c) and (d)). Of
the top ten taxa contributing most to the dissimila-
rities, five were positively associated with lower and
five were positively associated with upper pools (table
S3). Of the functional groups that contributed most to
the dissimilarities, all but one (corticated foliose) were
positively associatedwith lower pools.

4.Discussion

In this experiment we installed novel concrete pools at
two shore heights (lower and upper) on two sides
(exposed and sheltered) of an intertidal causeway. We
hypothesised that lower and exposed pools would
support greater diversity (i.e. mean taxon and func-
tional richness) than upper and sheltered pools. In
short we expected the upper and sheltered pools
to ‘fail’.

If the experiment was terminated after 12 months
(and used non-destructive sampling techniques), we
would have concluded that a total of 19 species

Figure 3. (a) 12months: comparison ofmean taxon and functional richness in lower (black bars) and upper pools (grey bars) on
exposed and sheltered sides (non-destructive sampling, n=20,±SE); (b) 24months: comparison ofmean taxon and functional
richness in lower (black bars) and upper pools (grey bars) on exposed side only (destructive sampling, n=20,±SE); (c) predicted
total species richness (mean±95%CI)with increasing numbers of pool units in the low shore (black) and upper shore (grey); (d) total
number of taxa unique to lower pools (black), unique to upper pools (grey) and shared (white); (e) proportion of taxa that are unique
to lower pools (black) and upper pools (grey), actual numbers given and numbers in brackets refer to number of taxa that were
observed in a single pool in either lower or upper. Taxawere defined as rarewhen they occurred in a single pool. (ns=not significant;
*P<0.05;**P<0.01.)
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Table 3.Estimated probabilities of occurrence (with 95% confidence intervals) for intertidalmarine species occurring in low shore and high pools. Probabilities are estimated at the average value. Shading indicates species not recorded at
shore height.

Lower site occurrence probability Upper site occurrence probability

Species Median 2.5% 97.5% Rank Median 2.5% 97.5% Rank

Actinia equina 0.124 0.118 0.194 31 0.000 0.000 0.000 —

Actinia fragacea 0.049 0.045 0.065 54 0.000 0.000 0.000 —

Amathia sp. 0.449 0.422 0.513 17 0.000 0.000 0.000 —

Amphipod indet 0.197 0.190 0.248 27 0.099 0.097 0.138 26

Anuridamaritima 0.773 0.673 0.778 9 0.646 0.610 0.666 11

Apherusa jurinei 0.039 0.028 0.071 60 0.238 0.231 0.304 19

Aquatic larvae (Chironomidae) 0.017 0.009 0.058 63 0.058 0.054 0.088 32

Austrominiusmodestus 0.670 0.589 0.682 12 0.040 0.035 0.061 36

Bryopsis sp. 0.220 0.217 0.285 24 0.000 0.000 0.000 —

Bryozoan indet 0.086 0.074 0.146 41 0.125 0.119 0.165 23

Calliostoma occidentale 0.063 0.054 0.107 47 0.000 0.000 0.000 —

Callithamnion corymbosum 0.780 0.701 0.782 8 0.232 0.228 0.276 20

Carcinusmaenas 0.706 0.616 0.708 11 0.589 0.554 0.601 14

Ceramium sp. 0.501 0.460 0.584 16 0.000 0.000 0.000 —

Ceramium strictum 0.000 0.000 0.000 — 0.115 0.109 0.157 25

Chaetomorpha linium 0.823 0.692 0.813 6 0.713 0.674 0.723 8

Chaetomorpha rupestris 0.000 0.000 0.000 — 0.084 0.078 0.116 28

Chondria dasyphylla 0.093 0.087 0.143 39 0.000 0.000 0.000 —

Chondrus crispus 0.932 0.875 0.940 2 0.045 0.036 0.065 34

Chordaria flagelliformis 0.000 0.000 0.000 — 0.254 0.242 0.311 18

Cirriformia tentaculata 0.114 0.099 0.160 33 0.000 0.000 0.000 —

Cladophora rupestris 0.833 0.753 0.844 4 0.640 0.590 0.662 13

Cladophora sp. 0.074 0.064 0.121 44 0.084 0.074 0.133 29

Colpomenia peregrina 0.000 0.000 0.000 — 0.086 0.081 0.115 27

Corralina officinalis 0.288 0.278 0.344 20 0.000 0.000 0.000 —

Coryne pusilla 0.243 0.236 0.317 23 0.000 0.000 0.000 —

Echinogammarus stoerensis 0.092 0.082 0.134 40 0.000 0.000 0.000 —

Ectocarpus sp. 0.941 0.905 0.943 1 0.874 0.838 0.881 5

Electra pilosa 0.039 0.028 0.071 60 0.000 0.000 0.000 —

Eusyllis blomstrandi 0.120 0.113 0.158 32 0.000 0.000 0.000 —

Fabricia stellaris 0.162 0.152 0.210 29 0.000 0.000 0.000 —

Flustrellidra hispida 0.086 0.074 0.146 41 0.000 0.000 0.000 —

Fucus serratus 0.095 0.087 0.157 38 0.000 0.000 0.000 —
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Table 3. (Continued.)

Lower site occurrence probability Upper site occurrence probability

Species Median 2.5% 97.5% Rank Median 2.5% 97.5% Rank

Fucus sp. 0.133 0.128 0.222 30 0.962 0.947 0.965 1

Fucus vesiculosus 0.055 0.044 0.089 51 0.000 0.000 0.000 —

Gibbula umbilicalis 0.060 0.052 0.086 48 0.000 0.000 0.000 —

Harmothoe imbricata 0.162 0.149 0.218 28 0.000 0.000 0.000 —

Jaera albifrons 0.057 0.051 0.114 50 0.000 0.000 0.000 —

Laminaria sp. juv 0.870 0.816 0.880 3 0.201 0.196 0.257 21

Laomedea flexuosa 0.274 0.260 0.347 21 0.000 0.000 0.000 —

Lepidochitona cinereus 0.000 0.000 0.000 — 0.022 0.015 0.056 37

Lipophrys pholis 0.024 0.014 0.048 62 0.000 0.000 0.000 —

Lithothamnion 0.660 0.558 0.673 13 0.490 0.466 0.526 15

Littorina littorea 0.215 0.208 0.289 25 0.142 0.137 0.187 22

Littorina obtusata 0.098 0.100 0.176 37 0.077 0.074 0.109 30

Littorina saxatilis 0.253 0.247 0.328 22 0.701 0.642 0.713 9

Lomentaria articulata 0.060 0.052 0.086 48 0.000 0.000 0.000 —

Modiolusmodiolus 0.049 0.040 0.081 55 0.000 0.000 0.000 —

Myriogramme sp. 0.054 0.045 0.074 53 0.000 0.000 0.000 —

Mytilus edulus 0.718 0.640 0.737 10 0.896 0.875 0.900 3

Nucella lapillus eggs 0.107 0.090 0.142 35 0.000 0.000 0.000 —

Palaemon serratus 0.304 0.304 0.391 19 0.000 0.000 0.000 —

Palmaria palmata 0.042 0.035 0.073 59 0.122 0.119 0.171 24

Pandalusmontagui 0.049 0.040 0.081 55 0.000 0.000 0.000 —

Peringia ulvae 0.055 0.044 0.089 51 0.000 0.000 0.000 —

Plagiostomum vittatum 0.396 0.366 0.463 18 0.043 0.037 0.063 35

Polydora limicola 0.065 0.059 0.086 45 0.000 0.000 0.000 —

Polysiphonia sp. 0.823 0.733 0.826 5 0.690 0.621 0.696 10

Polysiphonia sp. B 0.113 0.096 0.140 34 0.058 0.054 0.088 32

Procerodes littoralis 0.083 0.080 0.128 43 0.000 0.000 0.000 —

Red filamentous 0.000 0.000 0.000 — 0.291 0.283 0.337 17

Rhizoclonium riparium 0.000 0.000 0.000 — 0.888 0.854 0.896 4

Rhodothaminiella floridula 0.046 0.041 0.068 57 0.000 0.000 0.000 —

Rissoella opalina 0.064 0.058 0.120 46 0.000 0.000 0.000 —

Securiflustra securifrons 0.203 0.195 0.267 26 0.000 0.000 0.000 —

Spirobranchus triqueter 0.571 0.507 0.617 15 0.340 0.334 0.399 16

Spirorbis sp. 0.821 0.740 0.824 7 0.644 0.598 0.652 12
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Table 3. (Continued.)

Lower site occurrence probability Upper site occurrence probability

Species Median 2.5% 97.5% Rank Median 2.5% 97.5% Rank

Talitrus saltator 0.044 0.034 0.108 58 0.000 0.000 0.000 —

Testudinalia testudinalis 0.000 0.000 0.000 — 0.060 0.054 0.081 31

Ulva intestinalis 0.105 0.097 0.154 36 0.856 0.802 0.860 6

Ulva lactuca 0.606 0.525 0.624 14 0.915 0.897 0.922 2

Ulva linza 0.000 0.000 0.000 — 0.837 0.805 0.848 7
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colonised the pools, both taxon and functional rich-
ness were significantly greater in lower and exposed
pools than upper and sheltered pools (as hypothe-
sised) and that composition differed among habitats
(as hypothesised). These results would have provided
additional evidence to support the assertion that these
patterns occur in both natural (Hawkins and Hart-
noll 1980, Raffaelli and Hawkins 1996) and artificial
habitats (Browne and Chapman 2011, Firth
et al 2013b).

By running the experiment for 24 months (and
using destructive sampling), a very different picture
emerged. The sheltered pools became inundated with
sediment, thus failing to function as rock pools,
instead supporting muddy habitats—which may be a
desirable habitat to create in some locations. 72 taxa
were observed on the exposed side alone; almost four
times that observed across both exposures after 12
months. A surprisingly high number of taxa colonised
the upper pools (37), including some species that are
typically found in the lower intertidal and shallow sub-
tidal (e.g. the kelp, Laminaria digitata). This diversity
in the upper pools led to no significant difference in
mean taxon richness among shore heights, despite the
total number of taxa in lower pools (63) being almost
double the upper pools (37); a pattern also observed in
natural rock pools (Firth et al 2014b). The opposite
pattern was observed for functional groups with little
difference in the total number observed among shore
heights (11 lower, 10 upper), but significantly higher

mean functional richness in lower (8.1) than upper
pools (6.7). Faunal groups (suspension feeders, grazers
and carnivores) were particularly lacking in upper
pools, whilst filamentous and foliose algal groups were
better represented in upper compared to lower pools.
The differential results obtained among the 12 and 24
month surveys highlights the importance of sustained
monitoring (Hawkins et al 2013a, 2013b, Miesz-
kowska et al 2014) and the most appropriate sampling
technique and response variables for the question
being asked. Species richness, which is indicative of
alpha diversity, is a popular response variable con-
sidered in comparative ecological studies. However, in
the context of habitat creation, the numbers of addi-
tional taxa and total richness revealed by taxon accu-
mulation curves (indicative of beta diversity, Hawkins
and Hartnoll 1980), might in fact be more meaningful
thanmean richness, which is often used in similar stu-
dies (e.g. Firth et al 2014a). Furthermore, the taxon
accumulation curves revealed that the number of taxa
in upper pools approached asymptote at 11 pools
whilst the number of taxa kept increasing for lower
pools. In this context, if the management goal was to
enhance biodiversity compared to the surrounding
structure, then fewer than 20 pools was likely to
achieve this (particularly higher up), thus reducing the
cost of the intervention (see section below on cost). If
enhancement of rare taxa was the management goal,
then the greater the number of pools, the greater the
likelihood of colonisation by rare taxa.

Figure 4.MDSplots of taxon (a), (c) and functional composition (b), (d) compared among the lower (black shapes) and upper pools
(grey shapes) on exposed (squares) and sheltered (triangles) sides after 12months (a), (b); non-destructive sampling, (n=20) and 24
months (c), (d); destructive sampling, (n=20).
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The cessation of experiments at different time
points can yield variable results particularly when con-
sidering groups that exhibit seasonal fluctuations (e.g.
O’Connor and Crowe 2005, Mrowicki et al 2015). The
importance of judging success of rehabilitation studies

over extended time periods has been repeatedly voiced
(Lirman and Miller 2003, Cunha et al 2012), but often
monitoring programmes are finite, and timescales are
determined by funding cycles. For example, a seagrass
restoration project in Florida was reported as

Figure 5.Probability of occurrence of species (mean±SD) in lower pools (triangles) and upper pools (circles) (n=20). The
probabilities for individual species and their ranking are shown in table S2. Colours: blue (occur in upper and lower shore heights);
orange (unique to low shore); green (unique to upper shore).

Figure 6.Correlation plots of beta diversity between pools within lower (left) and upper (right) shore heights. Colour bar indicates
Sørensen’s index of dissimilarity between pool pairs where values nearest to 1 indicate greatest dissimilarity.
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unsuccessful 3 years post-planting in 2005 (Bell
et al 2008). Sustainedmonitoring of the plots for a fur-
ther 4 years meant that the researchers captured a
rapid increase in seagrass growth and cover, thus lead-
ing them to reverse the earlier evaluation of project
‘success’ (Bell et al 2014).We advise that natural seaso-
nal and successional cycles are considered and that
monitoring programmes be tailored appropriately for
the systemwhich has undergone rehabilitation.

The consideration of taxon accumulation across
the number of pools revealed that greater numbers of
rare species were found in lower rather than upper
pools. In a study of intertidal microgastropods on
‘artificial units of habitat’, Chapman and Underwood
(2008) found that rare species showed greater small-
scale (20 cm) and less large-scale (4 km) variation than
common species. If persistence of rare species in artifi-
cial habitats can promote biotic resistance (Stachowicz
et al 2002, Arenas et al 2006) or resilience to external
stress (Benedetti-Cecchi et al 2008), they may play a
very important role in ecosystem functioning (Matias
et al 2012,Mrowicki et al in press).

The colonisation of artificial structures by non-
native species is one of the drivers of global biotic
homogenisation (Mineur et al 2012, Simkanin
et al 2013) and is one of the biggest concerns of coastal
managers (Evans et al 2016b). Traditional methods of
mechanical and chemical removal can be expensive
and have negative effects on the surrounding environ-
ment (Caffrey et al 2010, Atalah et al 2013). Recently
there has been a move towards biological control
through the introduction of natural predators (e.g.
Atalah et al 2014, 2015); or through the development
of diverse and resilient communities—sensu the diver-
sity resistance hypothesis (Elton 1958, Stachowicz
et al 2002, Arenas et al 2006). Rare taxa are typically
missing from artificial structures (Chapman 2003, Pis-
ter 2009). If eco-engineering can create novel habitats
and encourage the settlement of rare taxa (like in the
present study), the resistance of the engineered struc-
tures to biotic invasion may be enhanced (Stachowicz
et al 2002, Arenas et al 2006).

Eco-engineering can also be used to increase abun-
dance of target species. Rock pools are known to be
nursery habitats for limpets (Bowman and Lewis 1977)
which are key grazers on natural rocky shores (Haw-
kins and Hartnoll 1983, O’Connor and Crowe 2005,
Moore et al 2007). Encouraging limpets can increase
grazing pressure leading to removal of algae (Hawkins
et al 1983, Jonsson et al 2006) which can pose a slip
hazard to members of the public that inevitably climb
on the structures. Long-term studies of succession on
natural and artificial rocky shores in Europe shows
that early colonisation is dominated by ephemeral
algae, then fucoids with later colonising limpets graz-
ing down the algae (Southward and Southward 1978,
Hawkins et al 1983). Engineering pits and crevices or
nursery pools (Martins et al 2010, Chapman and
Underwood 2011, Skov et al 2011, Firth et al 2014a)

can all increase grazing pressure, which can break
inhibition during succession by ephemeral algae
(Sousa 1979,Hawkins 1981).

Eco-engineering is expensive and the price is typi-
cally borne by the taxpayer. Managers, therefore, seek
assurance that any enhancements will be resilient to
tidal and storm damage, or more simply function in a
manner that is deemed beneficial. Lack of confidence in
the approach could undermine future rehabilitation
efforts (Knights et al 2014). During winter 2013/14,
Western Europe experienced an unprecedented
sequence of stormy conditions (Huntingford et al 2014,
Matthews et al 2014); the west coast of Ireland was par-
ticularly badly affected. The artificial rock pools in Gal-
way Bay were unaffected (100% survival), suggesting
that this eco-engineering option may represent a long-
term solution thatwill be resilient to stormdamage.

This experiment was conducted at a single site, but
comprised the creation of 80 concrete pools; 20 repli-
cates of each combination of exposure and shore
height; making it a comparably well-replicated study.
Due to the public nature of the site, it was a requirement
to get contractors to set up the experiment, making it
more expensive than if we had done it ourselves. This
involved the hiring of a digger, truck, cementmixer and
three contractors (labour) for 5 days in addition to the
cost of the concretemixingmaterials. The cost was rela-
tively low (∼€38 per pool) in comparison to other
methods, such as the use of drill-coring (Evans
et al 2016a,∼€60 per pool); although both methods are
relatively low-cost and long-termoptions.

In the Galway Bay experiment, the concrete was
manipulated among the SHED units and rock
armouring. This method could easily be adapted by
simply pouring concrete among the boulders of any
rock armouring structure. We advocate that the
manipulated units should be interspersed across a
structure, rather than concentrated in a local area, as
this may have implications for the porosity and thus
the wave dissipation function of the structure. The
manipulation of concrete to create pools and other
microhabitats represents an affordable, robust, uni-
versally applicable method that could be incorporated
into rock armouring anywhere in theworld.
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