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Abstract
Carbon isotopic evidence revealedDeepwaterHorizon (DWH) oil entering coastal planktonic and
lower terrestrial foodwebs. The integration of spilled oil into higher terrestrial trophic levels, however,
remains uncertain.Wemeasured radiocarbon (14C) and stable carbon (13C) in seaside sparrow
(Ammodramusmaritimus) feathers and crop contents. Lower 14C and 13C values in feathers and crop
contents of birds from contaminated areas indicated incorporation of carbon fromoil. Our results,
although based on a small sample of birds, thus reveal a food-web link between oil exposure and a
terrestrial ecosystem. They also suggest that the reduction in reproductive success previously
documented in the same populationmight be due to the (direct) toxic effect of oil exposure, rather
than to (indirect) ecological effects.We recommend future studies test our results by using larger
samples of birds from awider area in order to assess the extent and implications ofDWHoil
incorporation into the terrestrial foodweb.

Introduction

The 2010Deepwater Horizon (DWH) oil spill released
up to 700 000 m3 of oil (Crone and Tolstoy 2010) and
500 000 t of gaseous hydrocarbons (Joye et al 2011)
into the northern Gulf of Mexico over 87 days. It is
estimated that 10%–29% of the spilled oil was
chemically dispersed, 20%–25% evaporated or dis-
solved, 23%–27% was recovered at the well head,
burned or skimmed at the surface, while 12%–13%
naturally dispersed (Lehr et al 2010). The remaining
oil was at least partly deposited on the seafloor
(Chanton et al 2015), or reached coastal marshes and
beaches of the northernGulf ofMexico (Joye 2015).

Several studies have since attempted to trace the
ecological fate of spilled DWH oil. Fossil carbon, such
as oil, completely lacks radiocarbon (14C) because of
its geologically short 5730-yr half-life. Oil carbon is
also depleted in stable carbon (13C) compared to sur-
face production in the open ocean. The incorporation
of oil carbon into an ecosystem, therefore, may be
tracked by measuring the depletion in 14C and/or 13C
that results from the admixture of oil carbon and car-
bon derived from surface water primary production
(White et al 2005).

A metagenomic analysis of microbial commu-
nities demonstrated that they had responded to the
release of oil (Redmond and Valentine 2012), thus
making it potentially available to higher trophic levels.
A stable carbon (δ13C) analysis has demonstrated that
subsurface DWH oil carbon entered zooplanktonic
communities soon after the spill (Graham et al 2010).
Other radiocarbon analyses confirmed this finding in
the planktonic food web of the open waters of the Gulf
of Mexico (Chanton et al 2012). However, the extent
to which DWH oil was incorporated into the coastal
food web is less clear. Depleted radiocarbon values in
the tissues of coastal invertebrates and fishes indicated
that DWH oil was assimilated by coastal organisms
(Wilson et al 2016). Yet only a minimal trace of DWH
oil seemed to have reached estuarine filter-feeding
barnacles (Balanus sp.) and marsh mussels (Geukensia
demissa) (Fry and Anderson 2014). Moreover, oysters
from coastal waters of Mississippi contaminated by
the DWH oil did not show any evidence of oil incor-
poration into their shells or soft tissues (Carmichael
et al 2012).

We know of no reports of DWH oil in tissues of
entirely terrestrial animals; such a link would demon-
strate contamination into higher trophic levels beyond
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direct contact with oil. We screened for oil carbon
assimilation at higher trophic levels by investigating
hydrocarbon-related changes in carbon isotopic com-
position in a terrestrial bird, the seaside sparrow
(Ammodramus maritimus). Wemeasured radiocarbon
and stable carbon content in feathers and crop con-
tents collected from birds in 2011 from sites that were
oiled or left uncontaminated by the DWHoil spill. We
also analyzed coastal sediments collected in 2011 in
nearby locations that were reached by Macondo 252
(MC252) oil, and conducted oil source-fingerprinting.

Methods

Seaside sparrow sample collection
The seaside sparrow is a year-round resident of
Louisianamarshes requiring highly specific habitat for
foraging and nesting (Post et al 1983). The seaside
sparrow is socially monogamous, and both parents
feed their chicks during the nine days fromhatching to
fledgling, as well as for a few days after fledging (Post
et al 1983).

Adults and juveniles both feed on a variety of prey,
including terrestrial as well as marine invertebrates
(Post and Greenlaw 2006), thus exposing this species
to a variety of contaminants through a number of
potential routes. Consistent with this, the seaside spar-
row was found to be a sensitive indicator species for

mercury contamination in salt marshes (Warner
et al 2010,Winder 2012).

We collected ten seaside sparrows (eight juveniles,
two adults) in August 2011 with a shotgun loaded with
22 dust (collection permits: USFWS MB679782;
LDWF LNHP11-068) on two sites (four juveniles and
one adult bird each; figure 1) that we classified as oiled
or uncontaminated (control) based on Shoreline
Cleanup and Assessment Technique (SCAT) surveys
maps (http://gomex.erma.noaa.gov/erma.html#/

x=-89.37870&y=29.14486&z=7&layers=16+6770
+15879+19872+19897) (Santner et al 2011). In order
to control for the potential confounding effect of sex,
wemolecularly sexed all birds according to established
protocols. All birds were male, with the exception of
two females from the control site. Crop contents were
flash-frozen using liquid nitrogen in the field follow-
ing terminal collection. One or two primary or sec-
ondary feathers were collected from each bird.

Sample preparation and carbon isotopic analyses
Feathers and crop contents were analyzed for their
carbon isotopic composition at the Rafter Radio-
carbon Laboratory (Lower Hutt, NZ), where their
radiocarbon content was measured using accelerator
mass spectrometry. The feathers and crop contents
were combusted using a combination of either ele-
mental analysis combustion or sealed tube combus-
tion methods. Feather samples were cleaned with
washes of hexane, isopropanol, and acetone, while no

Figure 1.Map of the sampling area in southern Louisiana. The green dots are the locations of the sampling sites for seaside sparrow
tissues and theDeepwaterHorizon drilling platform.
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surface cleaning was performed on crop contents. We
dried crop contents in a convection oven at 60 °C, and
then pulverized them using an automated shaker and
stainless steel capsules and ball bearings.

Carbon dioxide (CO2) gas was produced from
the pretreated residue of samples and purified for gra-
phitization. Samples were combusted at 900 °C for 4 h
in evacuated, sealed quartz tubes with cupric oxide
and silver wire (Turnbull et al 2014). The cupric oxide
provides oxygen for the combustion and the silver
isolates sulfur and halogens in a solid form. CO2 was
cryogenically purified after combustion by passing it
through traps of ethanol/dry ice to remove water. The
purified CO2 was then collected in a glass vessel for
transport to the graphitization and mass spectrometry
laboratories.

14C measurements are expressed using the nota-
tionΔ14C, which is the per mille (‰) deviation from
an oxalic acid international standard for radiocarbon
dating (Stuiver andPolach 1977).

Sediment sample collection and oil source-
fingerprinting
In order to confirm the information from the SCAT
maps, we collected sediments from each site, and
determined stable carbon and radiocarbon values for
these samples. Sediment samples were collected as a
composite sample of the upper 5 cm and stored on ice

until delivery to the laboratory, and either immediately
extracted or refrigerated for no more than 14 days at
4 °C until extraction, as recommended by the US EPA
(2007). Sample analysis is described in detail in Turner
et al (2014), which discusses changes in the total
alkanes and total polycyclic aromatic hydrocarbons
(PAHs) in time and space for the study area. In brief,
we identified 28 alkanes and 43 aromatic hydrocar-
bons and their respective alkyl homologs (18 parent
PAHs, and 25 alkyl homolog groups) using GC/MS-
SIM (gas chromatography/mass spectrometry in
selective ion monitoring mode), including the normal
and branched saturated hydrocarbons (from C10 to
C35), the one- to five-ringed aromatic hydrocarbons
and their C1–C4 alkyl homologs, as well as cyclic
biomarker compounds like the hopanes, steranes and
triaromatic steroids (SIM ions 191, 217, 218, and 231
eluting between C23 and C31) (Turner et al 2014). A
daily calibration standard and blank were analyzed
with each sample batch to verify proper instrument
performance. The identities of all analytes were
established using retention times and full scanning
mass spectral data of the riser oil sample. The spectral
data were processed by Chemstation Software (Agilent
Technologies).

We conducted oil source-fingerprinting using
diagnostic ratio analysis of petroleum biomarkers,
according to an established gas chromatographic-

Figure 2.Radiocarbon (Δ14C) values (±SE) in (a) feathers and (b) crop contents of seaside sparrows from the control and oiled plots.
Sample sizes are indicated on bars. The significant differences for isotope content in both tissues are all consistent with the
incorporation of oil carbon into tissues of exposed birds.

3

Environ. Res. Lett. 11 (2016) 114023



mass spectrometer (GC/MS) methodology (Daling
et al 2002, Hansen et al 2006), which had been pre-
viously validated for Macondo 252 (MC252) oil
(Meyer et al 2014, Ramsey et al 2014). Petroleum bio-
markers are compounds that are ubiquitous across
different crude oils, resistant to degradation, and spe-
cific to the oil’s biogenic precursors (Wang et al 2006).
We used pattern recognition and retention times of
specific hopane, sterane, and triaromatic steroid cyclic
biomarkers to determine eleven quantitative diagnost-
ic indices (ratios) between target samples and aMC252
reference standard.We classified oil detected in a sedi-
ment sample as a positive match with MC252 oil only
if all 11 diagnostic ratios consistently indicated a
match.

Statistical tests for the difference between birds in
the control and oiled sites were run as one-way
ANOVA. Due to the small sample size, and uneven age
and sex composition in the two experimental groups,
we could not test the two-way interaction effects
between treatment, age and sex. The associations
between radiocarbon and stable carbon values were
tested using simple regression analyses.

Results

The average radiocarbon value (Δ14C)was 18.4‰ (3.7
SE) in feathers, and 25.1‰ (2.0 SE) in crop contents.
The radiocarbon content was lower in the feathers as
well as in the crop contents of birds from oiled
compared to control plots (figures 2(a) and (b)), which
is consistent with the incorporation of DWH oil into
the tissues of exposed birds.

The average stable carbon (δ13C) value was
−12.6‰ (0.7 SE) in feathers and −15.0‰ (0.7) in
crop contents. Sparrow feathers from the oiled site
had lower δ13C values than those from unexposed

birds (δ13C control:−11.2‰ (0.7 SE); oiled:−13.7‰
(0.7 SE); F1,7=5.6; p=0.0499, N=9). The δ13C
values for crop contents did not differ between
birds from control and oiled sites (δ13C control:−13.8
(0.8 SE); oiled: −16.1 (1.1 SE); F1,8=2.92;
p=0.126,N=10).

When we restricted the analyses to the juvenile
birds, the radiocarbon values were significantly lower
in birds from the oiled site, in the feathers (control site:
28.7‰ (2.9 SE), oiled site: 9.4‰ (2.5 SE);
F1,6=25.22, P=0.004, N=7) as well as the crop
contents (control site: 30.18‰ (1.45 SE), oiled site:
18.73‰ (1.45 SE), F1,7=31.19, P=0.0014, N=8).
δ13C values, however, did not differ between the two
groups for either feathers (control site: −11.1‰ (1.0
SE), oiled site: −14.0‰ (0.8 SE); F1,6=5.17,
P=0.072, N=7) or crop contents (control site:
−14.1‰ (0.7 SE), oiled site: −15.1‰ (0.7 SE);
F1,7=0.94, P=0.371, N=8). Results were qualita-
tively unchanged whenwe excluded the two females in
order to check for the potential confounding effect of
sex on the difference between the oiled and control
sites (details not shown).

The Δ14C and δ13C values were positively corre-
lated in feathers (slope (SE)=4.12 (1.49); R2=0.45,
p=0.028, N=9; figure 3), but not in crop content
samples (slope (SE)=1.19 (0.89); R2=0.08,
p=0.216, N=10). Irrespective of the location,
Δ14C values for feathers and crop contents were sig-
nificantly and positively correlated to each other (slope
(SE)=1.74 (0.27); R2=0.83, p=0.0004, N=9),
while this was not the case for stable carbon values
(slope (SE)=0.35 (0.19); R2=0.23, p=0.11,
N=9). Finally, there was a strong positive relation-
ship between δ13C values in feathers and Δ14C values
in the crop contents (slope (SE)=0.27 (0.07);
R2=0.61, p=0.0083, N=9), which is somewhat

Figure 3.The correlation betweenΔ14C and δ13C values in the feathers of seaside sparrows (red diamonds: birds from the oiled site;
black circles: birds from the control site). The significant correlation betweenΔ14C and δ13C values is consistent with the
incorporation of oil carbon into seaside sparrow feathers. The equation of the fitted line is: y=4.12x+70.26.
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puzzling given the different timescales that are indi-
cated by the two tissues.

The sediments from control compared to oiled
locations did not differ in either stable carbon isotopes
(δ13C control: −18.4‰ (2.2 SE); oiled: −14.5‰ (0.4
SE); F1,8=.3.03; p=0.120,N=10), or radiocarbon
content (Δ14C control: 19.4‰ (29.5 SE); oiled:
120.0‰ (65.3 SE); F1,8=1.97; p=0.198, N=10).
The stable carbon values of sediments were positively
associated with the radiocarbon values, although the
relationship was marginally non significant (slope
(ES)=16.99 (8.91);R2=0.31, p=0.093).

In three of five sediment samples from the oiled
site the diagnostic ratios of the eleven biomarkers con-
firmed the presence of MC252 oil. In the other two
samples, our analyses yielded inconclusive or negative
evidence, with only ten or eight out of eleven bio-
markers matching MC252 oil, respectively. In none of
the five sediment samples from the control site did the
diagnostic ratios indicate the presence ofMC252 oil.

Discussion

Our analyses of carbon isotopic composition of seaside
sparrow tissue indicated incorporation of oil carbon
into the tissues of birds collected from an area reached
by DWH oil. To our knowledge, this is the first
demonstration that we know of where DWH oil was
incorporated into a terrestrial vertebrate species.
Importantly, data from the same population of seaside
sparrows examined here indicated that reproductive
success was reduced in birds from oiled plots in the
early years after the spill (Bergeon Burns et al 2014),
although reproductive success seemed to recover in
subsequent years. In principle, such reduction of
population fitness could be due to the indirect effects
of oil contamination on the salt marsh ecosystem.
Such indirect effects include a reduction in habitat
quality as well as in the abundance of insects and other
invertebrates that are part of the seaside sparrow diet.
Consistent with this interpretation, several studies
have shown population declines in insects, spiders and
other invertebrates in sites oiled as a result of theDWH
accident (McCall and Pennings 2012, Zengel
et al 2015, Husseneder et al 2016, Zengel et al 2016).
DWH oil also impacted vegetation cover (Zengel
et al 2015), including plant species (particularly
Spartina alterniflora, Distichlis spicata and Juncus
roemerianus) used by seaside sparrows as nesting
habitat, thus potentially affecting the outcome of
reproductive attempts. Because we could trace the
direct incorporation of DWH oil into the tissues and
prey of seaside sparrows, the present results suggest
that direct toxicological effects, not only habitat
degradation or trophic interactions, might be respon-
sible for the demonstrated reduction in seaside
sparrow reproductive success.

Furthermore, the oil incorporation and direct
toxic effects are consistent with our finding of
increased expression of cytochrome P-4501A
(CYP1A), a marker of exposure to PAHs. CYP1A
expression in 2011 was higher in birds from sites
reached by DWH oil versus unoiled sites (Bergeon-
Burns, Stouffer, Taylor, Woltmann, in review), echo-
ing findings from marine organisms (Whitehead
et al 2012).

Importantly, the direct (i.e. toxicological) and
indirect (i.e. ecological) pathways of effect of DWH oil
on seaside sparrow populations are not mutually
exclusive. Rather, they are expected to compound in
additive or synergistic ways to ultimately determine
fitness reductions in exposed organisms (White-
head 2013). Future studiesmight characterize how oil-
derived stress propagated through the coastal food
web, and impacted higher trophic levels. In seaside
sparrows, this will imply analyzing reproductive suc-
cess while also controlling for food abundance as well
as vegetation composition and cover in both oiled and
control sites. Since our study only analyzed ten indivi-
dual birds, we could not examine multiple locations
from a wider region or explicitly analyze variation in
exposure due to age and sex, a task that is left to future
studies with larger sample sizes. Following seaside
sparrows of known sex through reproduction will also
clarify whether offspring of exposed parents are at risk
due to maternal transfer of contaminants through
the egg.

Interestingly, the depletion of radiocarbon in birds
from oiled sites was greater for feathers than for crop
contents (figure 2). As for many songbirds, feather
development in juvenile seaside sparrows continues
for a few days after fledging (9–10 days of age). The
feathers, therefore, incorporate carbon from food fed
by seaside sparrow parents, as well as from items that
the fledglings obtained independently. The informa-
tion provided by feathers, therefore, encompasses
more life stages, locations and time compared to infor-
mation from an analysis of crop contents. In spite of
this, our results indicate that the carbon isotopic com-
position of feathers provides a sensitive, integrated
measure of oil carbon assimilation by birds over
longer timescales than from crop contents alone, with
the additional benefit that feathers can be collected
without the need to euthanize the birds.

Oil source fingerprinting in sediments from the
same site where we sampled the exposed birds indi-
cated the presence of DWH oil. Alternative explana-
tions for the depletion of radiocarbon in seaside
sparrow tissues are therefore unlikely. Wilson et al
(2016) suggested that the decline in 14C values that
they detected in the Eastern Gulf ofMexico in a variety
of fish and invertebrate tissue and shell samples could
be due to the input of radiocarbon-depleted dissolved
inorganic carbon from the karst system of Western
Florida. Given the different geology of our study sites,
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this explanation does not apply to our findings. More-
over, the demonstrated positive relationship between
stable carbon values and radiocarbon values in feath-
ers from seaside sparrows indicated that radiocarbon
depletion was due to oil carbon contribution, rather
than to freshwater input (Chanton et al 2012).

We detected a small, but statistically significant
depletion in stable carbon values in feathers (∼2‰) of
exposed seaside sparrows compared to unexposed
birds. This difference is one order of magnitude smal-
ler than the one detected using radiocarbon (∼20‰).
The difference in stable carbon values in crop con-
tents, instead, was not statistically significant. Thus,
our results confirm that the higher sensitivity of radio-
carbon analyses compared to stable carbon analyses
might be needed to detect oil incorporation into biolo-
gical matrices, particularly in organisms that come in
contact with oil through their diet. Given the absence
of radiocarbon from oil, the organic production in the
ocean differs from DWH oil by 1000‰ for radio-
carbon (Fry and Anderson 2014), as opposed to only
5–7‰ for stable carbon (Graham et al 2010).

Conclusions

We documented statistically significant differences in
radiocarbon values between the tissues of exposed and
control birds following the DWH oil spill. These
results are consistent with the incorporation of DWH
oil into the tissues of the exposed birds, and provide
the first evidence that the oilmade it into the terrestrial
food web. The documented differences are admittedly
small, corresponding to∼2%oil carbon incorporation
in feathers and ∼1% in crop contents. These small
contributions are in line with other findings in
organisms that are taxonomically and ecologically
distant from the seaside sparrow (Chanton et al 2012,
Fry and Anderson 2014). Our data indicating a decline
in reproductive success of exposed birds in 2012 and
2013 (Bergeon Burns et al 2014) suggest that the
toxicological significance of such small incorporation
should not be underestimated.
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