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Abstract
There is a lack offield data on thewater withdrawal and consumption intensity of thermoelectric
power plants inChina.WithChina’s ambitious electricity capacity expansion and ever-growingwater
deficit, the overlookedwater dimension of thermoelectric power generation could soon have sig-
nificant water sustainability implications, andfield data onwater intensity of thermoelectric power
plants will be essential to further our understanding of China’s water-electricity nexus. To address this
knowledge gap, this paper presents field data on thewater withdrawal intensity andwater balance of
19 coal-fired power plants in Shandong, China, categorized by different generator capacities
(<100MW∼>600MW) and boiler technologies (subcritical, supercritical and ultra supercritical).
This paper suggests that the annual average waterwithdrawal intensity of coal-fired power plants in
Shandong (1.50–3.75 L kWh−1) is within the range of values reported for other countries, and that the
distinction betweenwater withdrawal andwater consumption effectively vanishes since very little
water is returned fromwithdrawal. This paper also suggests that there is quite significant seasonality in
power plants’water intensity whereby thewater intensity in July can be approximately 15–28%higher
than the annual average. The seasonality is on a similar scale across all generator capacities, except for a
small co-generation plant (<100MW),which had substantially lowerwater intensity in Januarywhen
a heat exchanger was used to provide heating.

1. Introduction

The strategic importance of water for power plants is
widely recognized only recently. In fact, thermoelec-
tric power plants withdraw a large amount of water in
their operation, thus giving rise to the concept of
water-electricity nexus (Dennen et al 2007, Sova-
cool 2009, Sovacool and Sovacool 2009). In countries
like theUSA, the power sector has long been the largest
water-withdrawing sector, accounting for approxi-
mately 40% of the country’s total freshwater with-
drawal (Solley et al 1998, Kenny et al 2009, Maupin
et al 2014, ). Such magnitude of water demands has
exposed thermoelectric power plants to high water
supply chain risks and given them unique importance
in water sustainability and climate change adaptation.
In the past decade, water-related power plant service
disruptions were not uncommon: US, France, Spain

and Germany (Kimmell and Veil 2009, Förster and
Lilliestam 2010, Rogers et al 2013), all experienced
cooling-related shutdowns due to fluctuation in water
availability or increase inwater temperature.

The water dimension of electricity generation is
perhaps even less recognized in emerging economies
like China. Besides the institutional disconnect
between energy and water planning, another reason is
that the water withdrawal by the power sector is dwar-
fed by the agriculture sector in China. As the world’s
second largest agricultural irrigator (Wang et al 2012),
agricultural irrigation is responsible for a pre-
dominant 65% of China’s total freshwater withdrawal
(NDRC 2005), whereas the power sector withdraws
only 1/6 of agriculture’s (Wai-Shin Chan 2012). As
such, the water-electricity tradeoff in the agricultural
sector, e.g. the carbon emissions from agricultural
water pumping (Wang et al 2012), has drawn earlier
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attention than the water-electricity tradeoff in the
power generation sector. Water-related electric power
plant dysfunctions were reported occasionally
(CCTV 2001) but failed to raise enough attention to
motivate the coupling of electricity and water from a
resource management perspective. However, with
China’s ever-increasing water deficit (which is esti-
mated to be 40 billion cubic metres annually)
(NDRC 2005, Liu and Diamond 2005) and its plan to
add 1.2 TW water-reliant power capacity by 2030
(which is double Russia’s and 5.9 times India’s entire
power generation capacity in 2009) (Wai-Shin
Chan 2012), it is not inconceivable that China’s elec-
tricity sector may soon reach a point where it will face
stringentwater constraints.

Compounding the inadequate awareness, the geo-
graphical distribution of China’s water resource is dis-
proportionate to the electricity generation capacity:
North of Yangtze River is home to over 60%of China’s
generation capacity with only 17% of China’s water
resources (National Bureau of Statistics of
China 2011). In themetropolitan Beijing area (includ-
ing Tianjin, Shandong andHebei), the per capita water
availability is well below the 500 m3/person extreme
water scarcity threshold (Wai-Shin Chan 2012), while
this area also happens to be where the electricity
demand and production are highest and growing fast-
est. The major water sources in the region, Huang,
Huai and Hai Rivers, are already over-exploited with
use-availability ratios as high as 59%–123% (Kahrl
andRoland-Holst 2008).

In US and Europe, there are growing interests and
efforts in managing water and electricity in tandem
(Sovacool 2009, Tidwell et al 2011). Unfortunately,
even with the heightened policy interest and public
concern, people have yet to find a way to overcome the
accumulated institutional inertia and coordinate the
competing use. Early awareness and intervention on
water-electricity nexus in China may help to circum-
vent a much larger scale reinvention of infrastructure
and policies in the future and alleviate the tension
between water and electricity before the rapid growth
in electricity production and the uneven spatial dis-
tribution of water resources cause irreversible sustain-
ability issues.

Thus far, there is limited information in literature
on the water intensity of the electric power sector in
China. Water intensities of one or two thermoelectric
power plants were reported occasionally in Chinese
literature from a unit operation efficiency perspective
(Li and Mo 2002, Chen et al 2008), but there is not yet
a regionalized, field-data-based assessment of the elec-
tric power sector’s water dependence and its water
policy implications inChina.

The lack of information, particularly the lack of
field data on water intensity by different generator
capacities, cooling technologies and water sources, has
precluded further exploration of the water-electricity
nexus challenge in China, which is the knowledge gap

we intended to address in this study. Central to our
study is the first field data on water intensities and sea-
sonality of thermoelectric power plants in Shandong,
China and a comparison of the annual average and
seasonality of power plants’ water intensities in Shan-
dongwith that in other countries.

Shandong Province makes a uniquely important
case study for water-electricity nexus in China for two
reasons: (1) Shandong is an extremely water-scarce
area where the per capita water availability is only 1/6
of China’s average and well below the extreme scarcity
level (<500 m3/capita) (Wai-Shin Chan 2012); (2)
Shandong has the largest installed capacity of coal-
fired power plants in China, including two of the lar-
gest coal-fired power plants that are already in opera-
tion, and one coal-fired power plant that is designed to
be the largest coal-fired power plant in China
(NBS 2011). The growing gap between water avail-
ability and electric power capacity expansion makes
Shandong emblematic and representative of China’s
challenge. Given Shandong’s unique position in Chi-
na’s electricity and water management, our study will
bring to light China’s water-electricity nexus challenge
and provide data for future water-electricity nexus
research on the national or global scale.

2.Methods

2.1.Water use in coal-fired power plants
Coal-fired power plants contribute more than 70% to
China’s electricity portfolio (Wang 2007). Coal-fueled
electricity generation uses water throughout the life
cycle, including the operation phase (e.g., cooling, flue
gas scrubbing) and the non-operation phases (e.g., the
upstream fuel acquisition and downstream discharge)
(Fthenakis and Kim 2010). In this study, we focused
on the water intensity in the operation phase and
excludedwater used in the non-operation phase.

2.2. Type of cooling systems
The cooling process is the largest water-withdrawing
step in the operation phase of thermoelectric power
plants. Four types of cooling systems are commonly
used: a once-through system, a cooling pond, a wet
cooling tower and a dry cooling tower (Fthenakis and
Kim 2010). Except for dry cooling towers, water is
used in the other three cooling processes to condense
steam and dissipate waste heat.

In Shandong, wet cooling towers are the most
commonly used type of cooling system. In a wet tower,
the water withdrawal is known as the makeup water
and is used to compensate for water losses in three
processes: (1) evaporation, which usually accounts for
the majority of the water loss in wet towers; (2) blow-
down, which refers to the water discharged to prevent
buildup of solids; (3) drift and blow-out, which are
losses caused by exhaust air and wind (Feeley
et al 2008). The cycles of concentration is an indicator
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used to control the accumulation of minerals in the
cooling water and is directly related to the amount of
blowdownneeded (Feeley et al 2008).

2.3.Waterwithdrawal andwater consumption
Similar to USGS, we distinguish the general concept of
water use as water withdrawal and water consumption
(Cohen and Ramaswami 2014). Water withdrawal
refers to the total amount of water that is taken from
water sources, including what is consumed and later
returned to the original source without significantly
lowering the water quality. In contrast, water con-
sumption refers to processes in which water is diverted
from its original source permanently or substantially
damaged in terms of quality. The implications of
distinguishing between water withdrawal and water
consumption have been discussed in literature (Cohen
and Ramaswami 2014). In particular, the distinction
between water withdrawal and consumption is most
used for future water-shed planning, addressing
return flowmanagement andmultiple competing uses
(Cohen andRamaswami 2014).

2.4.Data collection
Wepersonally networkedwith 19 electric power plants
in Shandong, China and collected water intensity data
via on-site interviews. We chose plants with different
generator capacities and locations in order for the data
to be representative of the entire region. Data collected
included generator capacity (MW), electricity produc-
tion (kWh), type of boiler (subcritical, supercritical,
and ultra supercritical), type of cooling technologies,
water balance within the thermoelectric power plant,
annual average water intensity in 2013 (which was
defined as the amount of water withdrawn to produce
a unit of electricity, L kWh−1), and water intensities in
January and July (L kWh−1) in 2013.

All 19 plants have measurement-based cooling
water withdrawal intensities as plant-aggregates. Five
out of 19 plants have provided measurement-based
per generator cooling water withdrawal intensities and
seven out of 19 plants have provided measurement-
based water balance tables. In other plants, the best
estimatesmade by the technical staff were used to con-
struct thewater intensity andwater balance tables.

3. Results and discussion

3.1. Source ofmakeupwater of power plants in
Shandong
In Shandong, thermoelectric power plants use wet
cooling towers and withdraw makeup water from a
variety of sources (table 1). The most common source
is surface water (14 out of 19 plants use 15∼ 100% of
surface water), of which the most commonly used
source is the Huang River. Groundwater is another
source of makeup water (used by 3 of 19 plants),
although the use of groundwater for cooling has been

strictly prohibited for newly constructed electric
power plants. Use of grey water for cooling is becom-
ing increasingly popular and encouraged in recent
years. 10 out of 19 plants have a certain percentage of
grey water as water source (5%∼ 80%). However,
feedback from plants indicates that grey water is
currently subject to much higher quantity and quality
variations than surface and groundwater, and is only
economically feasible for plants in the close vicinity of
metropolitan areas. Seawater is another source of
cooling water for power plants located on the coast
line. In unique cases, small power plants with gen-
erators less than 100MW may rely completely on
wastewater (1 out 19) or tap water (1 out of 19) as the
source ofmakeupwater.

3.2. Cooling technologies
Dry cooling towers are not used in Shandong and
rarely used in China for cost considerations. The
extremely lowwater availability has practically prohib-
ited electric power plants in Shandong from using
once-through or pond cooling except for power plants
that use seawater for cooling (table 1). To reduce the
water withdrawal, thermoelectric power plants try to
maximize the cycle of concentrations. In our survey,
the cycles of concentrations ranges between 2 and 6.5,
which are largely determined by the quality of the
water source.

3.3. Returnflowofmakeupwater
It is estimated that the evaporative loss accounts for
80%–90% of water withdrawal per the technical staff
(figure 1). The remaining 10–20% blowdown is high
in salt concentrations and is usually used for flue gas
scrubbing (and/or ash flushing), which is then sold to
construction companies as a raw material (figure 1).
There is usually little blowdown remaining after flue
gas scrubbing (less than 5% of total withdrawal),
which is then treated through constructed wetlands
and discharged to the environment (figure 1). How-
ever, when there is extreme water shortage in the
summer, the remaining blowdown is sometimes used
as irrigation water. Given the insignificant return flow,
the water consumption intensity is effectively numeri-
cally equivalent to the water withdrawal intensity for
thermoelectric power plants in Shandong from awater
balance perspective (figure 1).

3.4. Annual averagewaterwithdrawal intensity in
the operation phase of coal-fired power plants in
Shandong
Overall, the water withdrawal intensity of thermo-
electric power plants in Shandong is within the range
of values reported for US coal-fired power plants
(Macknick et al 2011, Woldeyesus 2012) and else-
where (table 2). The water intensity of once-through
cooling is lower than wet towers, although the water
intensity of once-through cooling reported here is the
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water loss in cooling auxiliary equipment, rather than
the evaporative loss as reported elsewhere (Macknick
et al 2011). The annual average water intensity is lower
and more consistent for larger plants and larger
generators (>100MW)while small plants (<100MW)
appear to have higher variability, which seems to
suggest a lower cooling efficiency in smaller plants
(table 1).

When linearly scaling up our field data, we project
an annual total water withdrawal of approximately
7 × 108 m3 by the thermoelectric power sector in
Shandong (total electricity production data taken
from Shandong Statistical Yearbook 2013), which agree
with the sectoral water withdrawal data reported in
Shandong Statistical Yearbook 2013. With the planned
capacity expansion and increased electricity consump-
tion in China (Shiu and Lam 2004, Crompton and
Wu 2005), the annual total withdrawal will soon reach
the order of billion cubic metres before 2030, putting
additional pressure on the already over-exploited
water resource in the area.

3.5. Seasonal water intensities in the operation
phase of coal-fired power plants in Shandong
The water withdrawal intensity of power plants in July
was significantly higher than in January in Shandong
(figure 2). On average, the water withdrawal intensity
in summer is 15–28% higher than annual average
water withdrawal intensity while in winter, the water
withdrawal intensity tends to be 12–24% lower than
annual average (figure 2). The seasonality of water
withdrawal intensity tends to be higher in small plants
(<100MW), particularly in a small co-gen plant which
has significantly lower water intensity in winter. The
seasonal variability reported here seems to be on par
with Macknick et al 2007 (Macknick et al 2011), but
less significant than reported by Koch and Vogele
(Koch and Vögele 2009) based on actual data and by
Yang andDziegielewski (Yang andDziegielewski 2007)
based on a regression analysis.

The higher water intensity from power generation
coincides in time with the peak electricity demand
(Gnansounou and Dong 2004) and the highest irriga-
tion water demand in Shandong (Zhen et al 2005).
Assuming a 25% increase in the average water inten-
sity in the summer, the water withdrawal by thermo-
electric power plants in Shandong could be as high as
90 million m3/month in the summer of 2013, which
highlights the importance of peak water demandman-
agement in addition to the total annual demand
management.

4. Conclusion

Overall, our data indicate that the water withdrawal
intensity and water consumption intensity of coal-
fired power plants are effectively numerically equiva-
lent in Shandong. An insignificant amount of water is
discharged as a result of cross-using blowdown water
for flue gas scrubbing, although 10–15% of the water
withdrawal is usefully transformed into a saleable
product during flue gas scrubbing. The annual average
water intensity is ∼2 L kWh−1 for coal-fired power
plants in Shandong, which is on par with water
withdrawal intensities of thermoelectric power plants
worldwide using similar cooling technologies.

Our results also indicate quite significant intra-
plant seasonality and plant-to-plant variability in ther-
moelectric power plants’ water intensity. Overall,
smaller thermoelectric power plants (<100MW) tend
to have larger annual average water withdrawal inten-
sity and seasonality, particularly if they are co-genera-
tion plants. The higher water withdrawal intensity
from thermoelectric power plants in the summer
coincides in time with the peak electricity demand and
peak irrigation water demand in Shandong, which
makes peak water demand management in summer
potentially more critical than the total annual demand
management from awatermanagement perspective.

Figure 1.Water balance in a typical coal-fired power plant in Shandong, China. There is virtually no returnwater (<5%) and 10–15%
ofwater withdrawal is usefully transformed to saleable solid products.
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Table 1.Water withdrawal intensity of thermoelectric power plants in Shandong, China (some plants havemultiple types of boilers).

Generator capacity Fuel Boiler type Cooling technology

Fuel efficiency (g coal equiva-

lent/kWh) Sample size

Annual average consumptionwater loss

(L kWh−1) Water source

Coal Ultra supercriticalc 260∼ 275 3 1.88–2.21

>600 MW Coal Super critical 280∼ 290 2 2.00–2.18

Coal Supercritical 290∼ 310 5 2.08–2.5 Groundwater’ surface water, and grey

waterb

300∼ 600 MW Coal Supercriticald Wet tower 290∼ 310 3 1.76–2.80

100∼ 300 MW Coal Supercritical 290∼ 320 6 1.50–2.78

<100 MW Coal Supercritical 290∼ 320 2 2.16–3.75

>100 MW Coal Generic Once-through 260∼ 340 2 0.15∼ 0.45a Seawater

a Water loss in cooling auxiliary equipment.
b Amix of surfacewater and greywater is used inmost power plants. Use of groundwater for cooling has been prohibited for new power plants.
c Thermoefficiency 41%∼ 43%.
d Thermoefficiency 37%∼ 40%.
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