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Abstract
Cropmodels are common tools for simulating crop yields and crop production in studies on food
security and global change. Various uncertainties however exist, not only in themodel design and
model parameters, but also andmaybe evenmore important in soil, climate andmanagement input
data.We analyze the performance of the point-scale cropmodel APSIM and the global scale crop
model LPJmLwith different climate and soil conditions under different agriculturalmanagement in
the low-inputmaize-growing areas of Burkina Faso,West Africa.We test themodels’ response to
different levels of input information from little to detailed information on soil, climate (1961–2000)
and agriculturalmanagement and compare themodels’ ability to represent the observed spatial
(between locations) and temporal variability (between years) in crop yields.We found that the resolu-
tion of different soil, climate andmanagement information influences the simulated crop yields in
bothmodels. However, the difference betweenmodels is larger than between input data and larger
between simulations with different climate andmanagement information than between simulations
with different soil information. The observed spatial variability can be representedwell fromboth
models evenwith little information on soils andmanagement but APSIM simulates a higher variation
between single locations than LPJmL. The agreement of simulated and observed temporal variability
is lower due to non-climatic factors e.g. investment in agricultural research and development between
1987 and 1991 in Burkina Fasowhich resulted in a doubling ofmaize yields. Thefindings of our study
highlight the importance of scale andmodel choice and show that themost detailed input data does
not necessarily improvemodel performance.

Introduction

Importance of input data and scale for process-
based cropmodeling
(1) Modeling agro-ecosystems aims at describing and

understanding relevant plant processes and their

interactions with abiotic and biotic factors and as well

as future behavior of the system e.g. in the face of

global climate change. While on the field scale it is

possible to study crop growth and yield going to the

regional/national scale opens the possibility to also

analyze crop production, crop-climate interactions

and land use and cropping pattern simulations for a

country or larger region (Yu et al 2012). Rötter et al

(2011) identified ways of getting crop models to

account for the variable landscape and environmental

conditions across larger areas and estimate larger-scale

regional productivity as a main future research activ-

ity. Studies on the up-scaling of indicators of agricul-

tural productivity should therefore consider

indicators of temporal, spatial and the interaction of

temporal and spatial variation (Olesen et al 2000). (2)

Using appropriate input data is one requirement for

this task. For larger scales input data is less frequently

available and more uncertain due to interpolation.

Large-scale data sets are available for soils, weather or
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climate and management (incl. crop type, planting
dates, cultivar) that is the typical input for a crop
model and also varies spatially (Hansen and
Jones 2000). The quality of this data is different in
world regions. Especially in the tropics the quality of
climate data is low or data is scarce. The two largest
continents together covering about half of the Earth’s
land surface, Africa and Asia are the regions most
weakly covered with only about 5.000–6000 stations
each (11–12% of total), reporting precipitation
between 1950 and 2012 for the Global Precipitation
Climatology Centre database which challenge the
efforts to achieve a highly reliable gridded climate
product (Becker et al 2013). Crop modelers are
concerned about input data accuracy as this together
with an adequate representation of plant physiology
processes and choice of model parameters are the key
factors for a reliable simulation. (3) The spatial scale
and aggregation level of the input data influences
simulation results. Mearns et al (2001), for a modeling
study in Central Great Plains of the United States,
found that the spatial scale of the climate scenario had
a large effect on the mean yields. At the same time the
spatial scale of soils had a larger effect on the spatial
variability of yields than did the spatial scale of the
climate scenarios. In contrast Van Bussel et al (2011)
concluded that aggregating weather information had
only little effect on predicting wheat phenology in a
modeling study in Germany but point out that the
aggregation error might be larger in regions with large
spatial heterogeneity in weather conditions. De Wit
et al (2005) showed that aggregatedwinter wheat yields
on a national scale are independent on the accuracy of
precipitation and radiation data in France and Ger-
many and concluded that the uncertainty in input data
strongly decreases when simulation results are spa-
tially aggregated to regional or national scale. In
agreement with these finding Olesen et al (2000)
showed that for estimating the aggregated effects of
climate change on national productivity of winter
wheat in Denmark it is not necessary to apply climate
information on a fine resolution. (4) For West Africa,
the influence of uncertainty in weather information
can be very different. For example, Ramarohetra et al
(2013) showed that uncertainty in rainfall can intro-
duce large biases in simulated maize and millet yields
in Benin and Niger. Also Baron et al (2005) showed
that aggregating weather information, in particular
rainfall, produced biases in yield simulations which
needs to be considered in drought-related studies in
semi-arid Niger. (5) Simulated crop yields will differ
depending on the crop model used. Several crop
model intercomparison studies showed that simulated
crop yields largely depend on the crop model applied
(Porter et al 1993, Singh et al 2008, Palosuo et al 2011,
Eitzinger et al 2012, Rötter et al 2012, Asseng et al 2013,
Rosenzweig et al 2013) and that differences in model-
ing approaches affect the simulation results as shown
e.g. for cassava growth and development (Gray 2000),

and for the effect of increased atmospheric CO2 on
grain yield (Tubiello and Ewert 2002). (6) However
the differences in simulated crop yield have not been
explicitly attributed to different assumptions, pro-
cesses included, training and validation of the model,
or the scale a cropmodel is usually applied at, although
Rosenzweig et al (2013) distinguish between crop yield
changes on a global scale from site-based models and
from ecosystem models. (7) Except for Angulo et al
(2013) (four barley models, Finland, weather data)
and Asseng et al (2013) (27 wheat models, global, soil,
climate, management data) there is no dynamic crop
model by input data comparison study in a larger
region which limits the robustness of conclusions in
studies which only analyze the effects of different input
data because crop models differ in their sensitivity to
input data.

Research questions
The overarching research question is if more detailed
input data provided for crop modeling improves the
simulations of two different crop models. We postu-
late that input data resolution and the level of
information will matter more or less depending on the
crop model used and its model-specific sensitivity to
soil parameters, climate variables and management
information. While one might argue that the higher
the resolution of the model input the better this might
not be true considering the scale the model was
developed for and the aggregation level of the model
output. We seek to answer the following question. (1)
How does the level of information of different soil,
climate and management data sets influence the crop
yields simulated from two crop models, and how well
do they comparewith agricultural statistics? Regarding
the importance of model output aggregation for
comparison among the two models and with agricul-
tural statistics we further aim at answering the
questions. (2) Are there important differences in the
simulated spatial variability of simulated crop yields
on the grid-cell level and (3) are there important
differences in the simulated temporal variability of
simulated crop yields on the aggregated national level?
(figure 1).

Study area
(1) Mean annual rainfall in Burkina Faso follows a
gradient from wetter southwest with up to 1200 mm
rainfall (Guinean zone) to drier Northeast with
300–600 mm (Sahelo-Sudanian zone). The central
region is characterized by 600–1000 mm rainfall
(Sudanian zone) (figure 2). The climate follows the
seasonal movement of the intertropical convergence
zone which leads to strong influence of the northern
dry, high pressure system from October to April and
from tropical maritime masses between May and
September. (2) About 43% of the land area is covered
with agricultural land (annual and perennial crops and
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pastures) and almost all of it is rainfed; the area under
full or partial irrigation control was reported to be
18 600 ha in 2001 (0.15% of land area), mostly in the
regions Hauts Bassins and Boucle du Mouhoun in the
Central-South part (FAO 2014). Maize is the third
most important crop in Burkina Faso in terms of
harvested crop area (950 500 ha in 2012) after sor-
ghum (180 000 ha) and millet (1 300 000 ha)
(FAO2013).

Methods

The cropmodels APSIMand LPJmL
(1) Process-based cropmodels simulate crop develop-
ment and growth. We compare two models which
were developed for different scales: the point-scale
model APSIM (Keating et al 2003) and the global
model LPJmL (Bondeau et al 2007). APSIM is a

modeling framework influenced by models like
CERES while LPJmL is based on the dynamic global
vegetation model LPJ that was developed to assess
changes in terrestrial vegetation structure and bio-
mass, carbon stored and water fluxes. The crop
routines of LPJmL are largely based on EPIC and
SWAT/SWIMmodels. (2) Both models aim at reflect-
ing themanagement as well as actual and possible crop
yields properly at a certain location. For APSIM this
location is mostly a paddock, a field but also, in a
multi-point simulation a sub-national unit or a
country. For LPJmL this location is a grid cell but
usually model outputs for grid cells are aggregated to
sub-national units, countries, continents or world
regions. Both types ofmodels differ in their input data,
their model components and approaches to simulate
soil, water, nitrogen and crop growth processes
(table 1). (3) The point-scale model APSIM runs on

Figure 1.Analytical framework in this study.

Figure 2. Land cover (left), rainfall regimes and land surface (right) in Burkina Faso. Annual rainfall isohyets are calculated frommean
annual rainfall in 1996–2000 fromCRU-TS 3.0 (Mitchell and Jones 2005) at 0.5° spatial resolution. Land cover classes are as inGlobal
LandCover (GLC) 2000 (EuropeanCommission 2003).
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daily time steps and uses daily meteorological data. It
is frequently applied for one or several locationswithin
a country or across countries on themicro (1–20 km2)
—to meso-scale (20–50 km2). Daily input data can be
created from nearby weather stations, grids or climate
surfaces. Soil data is taken from a soil database
comprising individual soil profiles or representative
soils for a location are created by the user. (4) The
global agricultural model LPJmL runs on daily time
steps as well and with monthly or daily meteorological
data. If monthly data is provided, monthly tempera-
ture, precipitation and fractional cloud coverage/
radiation are downscaled to daily resolution via a
semi-stochastic weather generator. The model runs
for all 0.5 × 0.5° grid cells on the Earth’s land surface
(macro-scale, 50–5000 km2) and results are usually
aggregated to the national or world region level. A
grid-cell model output can be interpreted as a point
(center of the grid cell) ormean value for that grid cell.
By default, soil texture classes are taken from the
Harmonized World Soil Database version 1.2 from
FAO-IIASA (Nachtergaele et al 2012) and soil water
dynamics are simulated with the multi-bucket
approach described in Schaphoff et al (2013). Sowing

dates in both models can be prescribed or calculated
internally from aweather dependent sowing day rule.

Input data and nomenclature formodel simulations
We simulate grid-cell and national maize yields
between 1961 and 2000 with APSIM and LPJmL. We
compare simulated maize yields with different input
data for climate, soil and sowing dates (table 2). Up to
eight combinations of different input settings are
possible for the two crop models. Even though some
settings might not be very practicable for an actual
model application they represent the upper and lower
level of information/resolution of input data available
for the study area. The eight combinations that are
investigated in this study are labeled: (1) CRU-FAO-
MIRCA, (2) CRU-FAO-Variable, (3) CRU-AfSIS-
MIRCA, (4) CRU-AfSIS-Variable, (5) WFD-FAO-
MIRCA, (6) WFD-FAO-Variable, (7) WFD-AfSIS-
MIRCA and (8) WFD-AfSIS-Variable. Using this
setup we can assess both, input and model structure
uncertainty.

Model settings
(1) Prior to the simulation we have to set a manage-
ment intensity factor (1)–(7) as it is an unknown

Table 1.Basicmodel components and processes, partly as described inWang et al (2002), Tubiello andEwert (2002) andNair et al (2012).

APSIMv. 7.4 Point/Field, 1 m2 paddock

LPJmL v. 3.5.003—rev 1875Global,

0.5° × 0.5° grid cell

Biomass production from light Radiation use efficiency approach based onMon-

teith (1977)

Biochemical approach based onHax-

eltine and Prentice (1996)

Biomass partitioning and yield Empirical ratios and grain number, empirical ratios

and harvest index increase

Empirical ratios, harvest indexmodified

frommanagement intensity andwater

stress

Stresses involved Water, nitrogen, oxygen, heat Water, temperature

Phenology Function of temperature, photoperiod and vernaliza-

tion, simulation of eleven phenological stages and

nine phases between stages

Function of temperature and vernaliza-

tion, phenological crop-specific devel-

opment curve

Soil water processes Runoff, solutemovement, leaching, unsaturated and

saturatedwaterflow, evaporation

Runoff, unsaturated and saturatedwater

flow, evaporation

Nitrogen processes Mineralization, immobilization, denitrification, nitrifi-

cation, leaching

No explicit nutrient cycle

Leaf area Function of leaves per stalk and unit leaf area Prescribed crop-specific function linked

to phenological stage

Table 2.The level of information in soil, climate andmanagement data used in APSIMand LPJmL simulations. For amore detailed descrip-
tion of data sets see supplementarymaterial S1, available at stacks.iop.org/ERL/10/024017/mmedia.

Level of informa-

tion/Resolution Climate Soil Management—sowing date

Low CRUTS3.0; simple, grid-cell

specificmonthly climate data

(Mitchell and Jones 2005)

FAO/IIASA-v1.2;multiple, grid-cell

specific soils from global soilmap

(Nachtergaele et al 2012)

MIRCA2000; single national sowing

date from global crop calendar

(Portmann et al 2010)

High WFD; grid-cell specific daily

climate data (Weedon

et al 2011)

AfSIS;multiple, grid-cell specific soils

fromAfrican soil database

(Leenaars 2012)

Variable;multiple, grid-cell specific

sowing date from a climatic rule

based on rainfall (Dodd and

Jolliffe 2001)
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parameter in the LPJmLmodel. In LPJmL themanage-
ment intensity factor i.e. the degree and frequency of
crop production control and input application (fertili-
zer, technology, labor, weed and diseases control etc)
is represented by three parameters: the maximal
attainable leaf area index LAImax, the harvest index
HImax, and the parameter α–a, scaling leaf-level
biomass to field level. Comparing the factor to
industrial fertilizer application rates (N, K2O, P2O5)
showed that there is a positive relationship especially
with N but with some exceptions as manure applica-
tion strongly determines the intensity level in many
countries (Fader et al 2010). We set the management
intensity factor in LPJmL to 2which is the default value
for Burkina Faso. The simulated mean national maize
yields in 2000 (1.35–1.68 t ha−1) are in a similar range
but slightly lower than FAO statistics in the year 2000
and the detrended maize yields in 1996–2000
(1.75 t ha−1). The model is initialized with this para-
meter which is kept constant over the simulation
period and for different input data. (2) For APSIM
simulations, the nitrogen fertilizer application rate
(kgN ha−1) is required. We set it to 5 kg N ha−1

according to an estimate from FAO for the N fertilizer
application rate per hectare arable land in Burkina
Faso (FAO 2013). The simulated maize yields in 2000
(0.53–1.64 t ha−1) are slightly lower than the FAO
statistics but mostly also in a similar range. (3) The
objective of the cropmodel simulations is to assess the
influence of input data on the simulated crop yields
and production and to understand the propagation of
uncertainty in input data to uncertainty in simulation
results but not to adjust the models to perfectly
simulate observed yield levels. We use standard model
parameters or available data from literature or data
bases instead of calibrated parameters and therefore
accept over- or underestimation of absolute yield
levels. We later discuss how absolute yield levels and
trends in yield over time and space are simulated
compared to observations.

Metrics used to describe differences between yields
The level of agreement in simulated and observed
grid-cell yields for one year indicates how well the
spatial variability in crop yields can be simulated over a
country. The level of agreement in simulated and
observedmean national yields over time indicates how
well the temporal variability in yields can be simulated.
The agreement ismeasured by comparing the standard
deviations in simulated and observed grid-cell yields
in one year and in mean national yields over time as
well as correlation coefficients and root mean square
errors between simulated and observed yields. All
three statistics are related and can therefore be
represented by one point simultaneously in the two-
dimensional Taylor diagrams in figures 3 and 6
(Taylor 2001). They are calculated as follows:

For spatial variability
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where R is the correlation coefficient, rms is the
centered root mean square error and σy and σo the
standard deviations. yn is the simulated maize yield in
t ha−1 in grid-cell n in 2000 withN= 86 grid cells, on is
the observed maize yield in t ha−1 in grid cell n in 2000
created from district-level maize production and
maize area in 2000 (see supplementary S2).

For temporal variability
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where again R is the correlation coefficient, rms is the
centered root mean square error and σy and σo the
standard deviations. yc n, is the simulated national-

mean maize yield in t ha−1 in year n withN= 40 years,
oc n, is the observed national-meanmaize yield in t ha−1

in year n (see supplementary material S2). The
simulated national-mean yield yc n, in one year is

calculated as the crop area-weighted mean yield from
grid-cell yield yn and crop area in grid cell n and year
2000an (see supplementarymaterial S2):
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Results and discussion

Effect of soil, climate and sowing dates on spatial
variability inmaize yields
(1) The Taylor diagram (figure 3) summarizes how
well the spatial variability in maize yields in Burkina
Faso in the year 2000 can be simulated with APSIM

5

Environ. Res. Lett. 10 (2015) 024017 KWaha et al



and LPJmL and eight different input settings. The
correlation of the simulation from e.g. LPJmL with
monthly climate (CRU), global soil information
(FAO) and variable sowing dates and observation is
about 0.65. The centered rms difference between the
simulated and observed patterns is proportional to the
distance to the point on the x-axis identified as
‘observed’. The green contours indicate the rms values
and it can be seen that in the case of thismodel (LPJmL
CRU-FAO-Variable) the centered rms error is about
0.38 t ha−1. The standard deviation of the simulated
pattern is proportional to the radial distance from the
origin. For this model the standard deviation (about
0.28 t ha−1) is smaller than the observed standard
deviation of 0.55 t ha−1. (2) All simulations except
APSIM simulations withmonthly climate and variable
sowing dates have a correlation coefficient of more
than 0.20 and are significantly correlatedwith observa-
tions at the 0.05 level (N= 86). The correlation
between simulated grid-cell yields and observed yields
is between 0.40 and 0.80 for LPJmL and between 0.20
and 0.65 for APSIM. The four LPJmL and APSIM
simulations with uniform sowing dates have highest

correlation coefficients. The correlation in APSIM
simulations with uniform sowing dates and monthly
climate is slightly larger than in APSIM simulations
with uniform sowing dates and daily climate, however
also the standard deviation is larger (>0.70 t ha−1). (3)
APSIM simulations with daily climate and uniform
sowing dates are closest to the observations. In LPJmL
the differences between these four simulations are
smaller and simulated standard deviations are closer
to the observed standard deviation in simulations with
monthly climate. LPJmL simulations with monthly
climate and uniform sowing dates are closest to the
observations. (4) The observed spatial variation in
maize yields is overestimated in all APSIM simula-
tions, except the simulations with daily climate and
variable sowing dates and underestimated in all LPJmL
simulations (figures 3 and 4). (5) Some triangles/
points are grouped together in particular points
representing LPJmL simulations. These are simula-
tions with the same crop model, climate and sowing
dates but different soil input data. They have similar
statistics and therefore similar skill to reproduce the
observed spatial variability. Soil data is less important

Figure 3. (A) Taylor diagramdisplaying a statistical comparisonwith observations of 16model estimates (two cropmodels by eight
input data sets) of grid-cell yields in 2000. The closer the colored symbols to the unfilled circle on the x-axes the higher the correlation
and the smaller the rootmean square error. The solid green and dotted blue contours indicate the centered rootmean square (rms)
difference between simulations and observations and the standard deviation respectively. (B) The coefficient of variation in input data
is shown in the upper right of thefigure. Formore details see table S5 in the supplementarymaterial.
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for the skill of the two crop models to reproduce the
observed spatial variability even though the spatial
variation in the two soil data sets differs to a larger
extent than the spatial variation in the two climate data
sets and is of similar magnitude as in the two sowing
date settings (figure 3(B) and table S5). The difference
between cropmodels is larger than between input data
settings and APSIM is more sensitive to input data, in
particular to soil data than LPJmL.

(6) The difference between APSIM and LPJmL
simulated maize yields and between yields from the
different climate data sets can be partly explained by
different soil processes in the models in particular
NO3 leaching. NO3 leaching out of the root zone is
simulated in APSIM as a function of rainfall and soil
texture. Crop yields in APSIM increase with rainfall
but drop after about 600 mm in-crop rainfall
whereas crop yields in LPJmL increase linearly with
increasing in-crop rainfall (figure 5, left). This is
because the soil texture type in APSIM determines
not only the water holding capacity but also the soil
fertility level which decreases with increased NO3

leaching rates (figure 5, right) whereas in LPJmL
soils only differ in their water holding capacities.
Therefore maize yields simulated for different soil
texture types differ considerably in APSIM leading to
a higher spatial variability in yields while soil texture
has less impact on yields in LPJmL. Rainfall and thus
NO3 leaching in simulations with daily (WFD) cli-
mate data is higher than with monthly (CRU) cli-
mate data. (7) Mean NO3 leaching rates in APSIM
from all simulation years in individual grid cells are
between 0 and 2.9 kg N ha−1 with a maximum of
17.1 kg N ha−1 in clay, clay-loam and loam soils and
0 and 7.8 kg N ha−1 with a maximum of 2 kg N ha−1

in sandy-clay-loam, sandy-loam and loamy-sand
soils. Similar N losses from leaching are simulated
with EPIC-maize for Benin (Ramarohetra et al 2013)
and summarized by Smaling et al (1993) from several
studies. Depending on the clay content, rainfall and
N application type 18%–53% N leaching is reported
while mean N leaching relative to available N in this
study is between 0.4% and 21%.
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Figure 4. Sample grid-cell maize yields relative tomean national yield in 2000 (%) as simulated frommodel LPJmLCRU-FAO-
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Effect of soil, climate and sowing dates on temporal
variability inmaize yields
(1) The agreement in simulated and observed tem-
poral variability is smaller than in spatial variability
indicated by smaller correlation coefficients for most
of the simulations (figure 6). The two LPJmL simula-
tions with monthly climate and uniform sowing dates
have a correlation coefficient of more than 0.25 and
are significantly correlated with observations at the
0.05 level (N= 40). The agreement with observations
improves in 8 out of 12 simulations displayed in
figure 6 if only the time period 1961–1987 is analyzed.
This is because national mean maize yields doubled in
the 5 years period from 1987 to 1991 which is not
simulated from the crop models (figure 7). The
doubling of maize yields is most likely a result from an
increase of research expenditures in this time period in
Burkina Faso (Stads and Kaboré 2010). This is related
to a World Bank funded National Agricultural
Research Project which amounted to a five billionCFA
loan (∼ten million US $) for the period 1989–1994
(Mazzucato 1994). Therefore both crop models’ cap-
ability to simulate the temporal variability in maize
yields for the whole time period 1961–2000 is smaller
than for the years 1961–1987. (2) For the period
1961–1987 the LPJmL and APSIM simulations with
monthly climate and uniform sowing dates have
higher correlations (R= 0.45 – 0.55) than simulations
withmonthly climate and variable sowing dates. These
correlationswith FAO statistics are slightly higher than
those reported from Sultan et al (2013) for sorghum
and millet yields in 1961–1990 in Burkina Faso
(R= 0.28) and in a similar range to those reported
from Berg et al (2010) for millet yields in 1965–2000
(R= 0.09 – 0.58). (3) All APSIM simulations over-
estimate the observed temporal variability, except
simulations withmonthly climate and variable sowing
dates. All LPJmL simulations underestimate the

observed temporal variability and the best agreement
to observations is with monthly climate and uniform
sowing dates (correlation∼0.5, rms∼0.15 t ha−1), just
as for spatial variability. The correlation between CRU
annual rainfall and observed, detrended maize yields
are 0.34 in 1961–2000 and 0.65 in 1961–1987 (similar
for WFD annual rainfall) so higher than the correla-
tion of any modeled yields with observations. (4) For
estimating the long-term mean of national maize
yields information on sowing dates becomes less
important. The 40 year national mean maize yields
simulated from LPJmL vary between 1.24 and
1.61 t ha−1 and between 0.86 and 1.55 t ha−1 as simu-
lated from APSIM (see supplementary material S4).
Yields simulated with LPJmL, monthly climate and
global soil information and simulated with APSIM,
monthly climate and local soil information are closest
to statistics.

Propagation of uncertainty and importance of input
andmodel uncertainty
(1) The importance of sowing dates for simulating
mean national maize yields has been shown before for
Burkina Faso from Waongo et al (2014). The study
found a deviation of potential maize yields in
2000–2010 between −10% and +60% simulated with
the crop model GLAM with sowing dates varying
between −20 and +12 days. In this study similar
deviations in maize yields in 2000 of −32% and +47%
result from variations in sowing dates between −27
and +10 days for e.g. LPJmL simulations with CRU
climate and global soil information. (2) Depending on
the model and input setting Burkina Faso’s maize
production in e.g. 1999 of about 469 000 tones is
underestimated by 1–17% in LPJmL simulations.
Maize production in 1999 is underestimated in most
APSIM simulations by 3–46% but overestimated by
15% in APSIM simulations with daily climate, local

Figure 5.The relationship between in-crop rainfall (growing season rainfall) andmean grid-cellmaize yields inAPSIM and LPJmL
simulations (left) and in-crop rainfall andNO3 leaching inAPSIM simulationswith input setting CRU-FAO-Variable.
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Figure 6.Taylor diagramdisplaying a statistical comparisonwith observations of 12model estimates (two cropmodels by eight input
data sets) of themean nationalmaize yields in 1961–2000 (unfilled) and 1961–1987 (filled symbols). The four APSIM simulations
with daily climate are not displayed here but in supplementarymaterial S3 (figure S5). The closer the colored symbols to the unfilled
circle on the x-axes the higher the correlation and the smaller the rootmean square error. The solid green and dotted blue contours
indicate the centered root-mean-square (rms) difference between simulations and observations and the standard deviation
respectively.

Figure 7. Sample time-series (1961–2000) of detrended nationalmeanmaize yields fromFAO (t ha−1), annual rainfall fromCRU
climate (mm) and simulatedmean area-weighted nationalmaize yields (t ha−1) frommodel LPJmLCRU-FAO-Variable andAPSIM
CRU-FAO-Variable. See supplementarymaterial S2 for details on calculating and removing the trend.
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soil information and variable sowing dates. The same
simulation with global soil information result in
exactly the same maize production as observed. (3)
Similarly to Baron et al (2005) and Ramarohetra et al
(2013) for simulation studies in Benin and Niger we
found that uncertainty in weather data can introduce
large biases in simulated crop yields and production.
(4) However model uncertainty can be larger than
input uncertainty. Similarly Rosenzweig et al (2013)
found that including ecosystem-based models like
LPJmL increases the range of uncertainty in model
intercomparison studies when simulating climate
change impacts on crop yields. This is for a different
reason than in our study namely because of different
approaches to model effects of elevated atmospheric
CO2 concentrations on crop yields in site-based and
ecosystem-based crop models. In a crop model
comparison study for wheat models at four locations
with temperate climate Asseng et al (2013) also
concluded that model uncertainty is more important
than uncertainty fromdifferent climate projections.

Summary and conclusions

(1)We found that the level of information of different
soil, climate and management data sets influences the
simulated crop yields in both models. The uncertainty
in input data propagates to uncertainty in simulated
maize yields and production in which, for the present
modeling setup and study area information on soil
parameters is less important than information on
sowing dates and climate. However, the difference
betweenmodels can be larger than between input data
in particular when assessing the spatial variability of
crop yields. (2) Further, the agreement between
simulated and observed spatial variability is higher
than between simulated and observed temporal varia-
bility due to abrupt changes in national mean yields
from 1987 to 1991 in Burkina Faso which cannot be
explained by rainfall variability like in the previous
decades and therefore cannot be simulated from the
two crop models used. The most accurate estimation
of spatial variability in maize yields with APSIM is
possible with daily climate information and uniform
sowing dates i.e. with detailed information on climate
data but little information on sowing dates (R= 0.65).
In contrast the most accurate estimation of spatial
variability in maize yields with LPJmL is possible with
monthly climate information and uniform sowing
dates i.e. with little information on both, climate and
sowing dates (R= 0.80). APSIM and LPJmL tend to
overestimate and underestimate, respectively the spa-
tial and temporal variability of maize yields. (3) Soil
data that determines water holding capacities is less
important for the skill of the two crop models to
reproduce the observed spatial variability even though
the spatial variation in the two soil data sets differs to a
larger extent than the spatial variation in the two

climate data sets and is of similar magnitude as in the
two sowing date settings. However soil fertility levels
and soil processes in the crop models such as NO3

leaching from the root zone are important and partly
explain the deviations between both models and
between simulations with monthly and climate data.
(4) Our results and conclusions are valid for the low-
input agricultural systems in Burkina Faso and other
parts of West Africa with low yield levels compared to
other world regions and they depend on the limita-
tions to crop growth specific to this study area. We
expect changes in spatial and temporal variability with
increasing yield levels which might lead to different
conclusions on the ability of the two crop models to
simulate observed yield levels. (5) However the find-
ings of our study highlight the importance of scale,
model choice and aggregation level and show that
using the most detailed input data or crop model does
not necessarily increase the agreement between simu-
lations and observations. Therefore we suggest that
not only the resolution of input data but rather its
appropriateness regarding the study area, the model
used and the aggregation level of the model output
should be assessed before using it. Both models are
able to represent the national mean maize production
with an appropriate set of input data. Our findings
inform about the magnitude of uncertainty in simu-
lated maize yields and production arising from differ-
ent input data and crop models which will assist
interpretation of results in future modeling studies in
West Africa. (6) Small scale crop models such as
APSIM respond to little changes in input data and
simulatemuchmore crop and soil processes than large
scalemodels such as LPJmL leading to higher variation
in simulated crop yields (temporal and spatial). This
strength gives them a potential weakness because
uncertainty in input data will affect model outcomes
much more than from large scale models. We suggest
that a careful analysis of drivers of changes in historic
crop yield patterns should be compulsory and precede
the choice of input data and model, simulation
settings, and model projections. For developing both
types of models, modelers can build on detailed
knowledge and dynamics in small scale models and
together think about smart ways of incorporating
them in a simple way into large scalemodels.
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