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Abstract

Carbon (C) and nitrogen (N) interactions contribute to uncertainty in current biogeochemical
models that aim to estimate greenhouse gas (GHG, including CO, and N,0) emissions from soil to
atmosphere. In this study, we quantified CO, and N,O flux patterns and their relationship along with
increasing C additions only, N additions only, a C gradient combined with excess N, and an N gradient
with excess C via laboratory incubations. Conventional trends, where labile C or N addition results in
higher CO, or N, O fluxes, were observed. However, at low levels of C availability, saturating N
amendments reduced soil CO, flux while with high C availability N amendments enhanced it. At
saturating C conditions increasing N amendments first reduced and then increased CO, fluxes.
Similarly, N,O fluxes were initially reduced by adding labile C under N limited conditions, but
additional C enhanced N,O fluxes by more than two orders of magnitude in the saturating N
environment. Changes in C or N use efficiency could explain the altered gas flux patterns and imply a
critical level in the interactions between N and C availability that regulate soil trace gas emissions and
biogeochemical cycling. Compared to either N or Camendment alone, the interaction of Nand C
caused ~60 and ~5 times the total GHG emission, respectively. Our findings suggested that the
response of CO, and N, O fluxes along stoichiometric gradients in C and N availability should be
accounted for interpreting or modeling the biogeochemistry of GHG emissions.

1. Introduction

Carbon dioxide (CO,) and nitrous oxide (N,O) are
major greenhouse gases (GHGs) that produce a strong
positive radiative forcing in the atmosphere. Extensive
work has been directed to understanding single
substrate dependences of CO, on organic carbon (C)
and N,O to nitrogen (N), both experimentally and
through modeling of microbial CO, and of N,O
emissions (Davidson et al 2012, Manzoni et al 2012,
Liu et al 2012, Jassal et al 2005, Signor et al 2013,
Burzaco et al 2013). However, the plasticity of Cand N
metabolism in microorganisms (Ter Schure 2000,
Horak 1997) produces large uncertainties in coupling
of either CO, or N,O trace gas emissions to single
substrate availability.

Recent evidence suggests N availability can influ-
ence CO, production and in turn C availability may
influence N,O emissions (Piao et al 2013, Jain

etal 2013, Liu and Greaver 2009). Studies have generally
not evaluated emissions of both trace gases simulta-
neously, although potential interactions between sub-
strate availabilities may lead to important connections
between the two fluxes through a coupling of the C and
N biogeochemical cycles (Sokolov et al 2008, Thornton
et al 2009, Bonan and Levis 2010, Zaehle and Dalmo-
nech 2011, Lal 2008). The interactive influence of C and
N substrate dependences on the biogeochemical pro-
cesses mediating soil CO, and N,O fluxes remains a key
uncertainty in understanding the regulation and mag-
nitude of GHG emissions from soils.

As directly measured byproducts of microbial C or
N metabolism, CO, and N, O fluxes provide a window
to inspect the energy (C) and nutrient (e.g. N) alloca-
tion of soil microorganisms through direct relation-
ships with C and N use efficiency (CUE and NUE). In
ecological stoichiometry, CUE or NUE is commonly
applied to quantify the balance of C or N between

©2015IOP Publishing Ltd
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biomass growth and consumption (Mooshammer
etal 2014, Manzoni et al 2012, Roland and Cole 1999).
In general, a high CUE or NUE means an increasing
microbial biomass but slowed C or N mineralization
rate, resulting in low soil CO, or N,O fluxes. In con-
trast, a low CUE or NUE indicates an inefficient con-
version of C or N to biomass, a large return of C or N
to the environment, and increased soil CO, or N,O
fluxes. A limiting C substrate produces a relatively
high CUE while a limiting N source can reduce the
CUE, a consequence of coupling or uncoupling of
microbial catabolism and anabolism (Sinsabaugh
et al 2013). Microbial NUE is likely controlled and
regulated similarly to CUE but directly coupled to the
N cycle and associated emissions of N trace gases
(Mooshammer et al 2014). Thus, variation in CO, or
N, O flux patterns can be used as an assessment of CUE
or NUE under different C or N levels (Eberwein et al
revised). Because of the intrinsic linkage between
microbial C and N metabolism (Richardson 2000,
Robertson and Groffman 2007), how the overlap
between microbial CUE and NUE simultaneously
mediates CO, and N,O fluxes needs evaluation.

In this study, we conducted a series of soil incuba-
tions to identify the potential interactions between soil
CO, and N,O emissions in response to variation in labile
C and N amendments. We asked: 1) are soil CO, and
N,O soil emissions dependent on the availability of both
Cand N, and 2) are emissions of the two trace gasses cor-
related in their flux rates? Answering these questions will
test alternate hypotheses of trace gas emission regulation,
1) a single-substrate hypothesis currently used in most
trace gas emissions models that predicts regulation by a
single resource and 2) a dynamic efficiency hypothesis
for C and N that predicts interactions between resources
will regulate both CO, and N,O fluxes. The results from
this study will improve understanding of how both C
and N biogeochemical cycles are influenced by multiple
limiting resources and demonstrate the potential cou-
pling between these biogeochemical cycles with direct
consequences for total GHG emissions.

2. Materials and methods

2.1. Soil characterization

The soil used for our study was collected from an
agricultural field (13 ha) located at the University of
California Desert Research and Extension Center, El
Centro, California (32°N 48’ 42.6', 115°W 26’ 37.5”).
The site is a high temperature, low elevation, desert
environment with mean annual precipitation of
5.8 mm and monthly mean air temperatures between
13.9 and 33.9 °C, and extremely high midday tempera-
tures up to 50 °C (www.weather.com). The site has
deep alluvial soils (42% clay, 41% silt, 16% sand) with
2.34% C and 0.13% N, and a pH of 8.3 (Oikawa
et al 2014). Prior to soil collection, the field was fallow
for 8 months then planted with forage sorghum for
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two years. Soils were collected between 0-10cm
depths from 5 random locations in the field.

2.2.Laboratory incubations

Prior to incubations, the soil was air dried in the lab,
sieved (2 mm mesh), and then homogenized. Soil
water holding capacity (WHC) was determined by the
gravimetric method (Pansu and Gautheyrou 2006).
Three replicate samples (100 g dry weight) were placed
in glass jars (~473 ml) and maintained a 40% WHC by
weighing the jar every two days and adding de-ionized
water as necessary during the incubation period.

To investigate soil CO, and N,O flux responses to C
and N amendments and their interaction, two series of
laboratory incubations were conducted that included a
control (de-ionized water only), dextrose (as a labile
carbon source) only, N (ammonium nitrate, NH,NOs3)
only, and both dextrose and N. The first series of incu-
bations (Experiment 1, Exp1) were conducted to quan-
tify soil CO, and N,O fluxes under six levels of N
amendment with two levels of C amendment (with and
without C). Six levels of N amendment as 0, 10, 50, 200,
700, or 1500 ug N'g~' soil were selected. Along the N
gradient, a control and saturating C level (60 g L ™" dex-
trose, which is equivalent to 18 mg g~ ' soil) were selec-
ted to investigate C and N interactions. Each treatment
included three replicates with 36 samples in total. For
the second series of incubations (Experiment 2, Exp2),
another 36 samples were used to investigate CO, and
N,O fluxes under different C level with saturating N
supplement. A C amendment of 0, 1.5, 3, 7, 18, or
30 mg dextrose g ' soil was set and combined with
either no N or a saturating N level (700 ugN g™ soil).
All 72 jars were incubated at 25 °C in the lab for 7 days
and CO, and N, O fluxes were measured daily.

2.3. Flux measurements

We used a flux measurement system that allowed
simultaneous measurements of both CO, and N,O
trace gases within a total sampling period of less than
five minutes. Soil N,O emissions have typically relied
on syringe extraction over a thirty minute to one hour
sampling period at minimum and subsequent analysis
on a gas chromatograph (Alves et al 2012, Dobbie and
Smith 2003). Our system provides the capability to
measure the instantaneous fluxes of N,O and CO, and
allows investigation of the potential relationships
between CO, and N, O fluxes.

We built a dynamic closed system (figure 1) to
measure CO, and N,O fluxes simultaneously with a
Li-7000 infrared gas analyzer for CO, (Licor Bios-
ciences, Lincoln, Nebraska, USA) connected to a N,O
gas analyzer (913-EP, Los Gatos Research, Mountain
View, California, USA). The N,O analyzer uses off-
axis integrated cavity output spectroscopy (Off-Axis
ICOS) to provide a real-time accurate N,O concentra-
tion measurement with a precision of 0.05 ppb at 1 hz
sampling frequency. The CO, and N,O fluxes were
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Figure 1. Schematic of the flux measurement system (a) and example of observed CO, and N,O concentration increase by time within
the jar during a single measurement (b) 1 ym pore size filter prevented contamination of instruments. The vertical lines in the lower
panel (b) indicate the measured intervals for CO, and N, O fluxes calculation, respectively.
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determined by the linear regression fit between the
CO; or N,O concentration change and the measured
time. For CO, flux calculation, the original model
from Licor (Licor 8100 Manual) was adapted for our
jar measurements as follows:

o
1000
Rﬂdg<15-+ 273.15)

A1~ ) ofe0r]

dat

(1)

where F. is CO, flux (umol CO, g ™' soil s ') from the
soil in the jar. V (cm’) is the volume difference
between the jar plus the tubing and the soil (calculated
using a bulk density value 1.15 g cm > of our soil). Py is
the initial pressure (kPa). wy is initial water vapor in
mole fraction (mmol mol™!). R is the ideal gas
constant (8.314 x 10° kPa cm® K ' mol™!). M; is the
mass of soil (g) and Ty is the initial air temperature

o o co:]
(°C). The factor -
concentration along time (ymol mol™'s™). The N,O
flux was calculated using the same method but the dry
N,O concentration reported from N,O analyzer during
the measured intervals was used and thus the water
correction term in equation (1) was not needed. Both
trace gas measurements were completed within
3-10 mins depending on flux rate. Seven day cumulative
CO, and N, O fluxes were calculated by interpolating the
measurements from each day and then integrating.

is the changing rate of CO,

2.4. Statistics

We performed two-way fixed-model ANOVA to test
the response of the seven day cumulative CO, and
N,O fluxes to carbon and nitrogen addition. Prior to
conducting ANOVA, the normality of the data and the
homogeneity of variances were tested using the
Shapiro-Wilk test (Royston 1982, Shapiro and
Wilk 1965) and the Levene's test (Brown and For-
sythe 1974, Levene 1960), respectively. The Tukey's
honestly significant difference (HSD) test (Tukey 1949)
was used to examine intra-group differences. When
necessary, Box—Cox transformations (Box and
Cox 1964) were applied to meet the assumptions of
ANOVA. For N,O fluxes, we added a constant positive
value to meet the logarithmic transformation because
of some negative values observed during the incuba-
tion in association with low rates of net uptake
(Majumdar 2013). All statistical analyses and data
processing were performed using MATLAB R2011b
(The MathWorks Inc., Natick, MA, USA) and the
R package (R Core Team 2013).

3. Results

3.1. C02 flux
Cumulative CO, flux was significantly affected by
C (p<0.0001 in Expl and Exp2) and N (p <0.0001
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in Expl and p=0.0006 in Exp2) amendments and
their interaction effects (p<0.0001 in Expl and
Exp2) based on a two-way ANOVA. C effects on
CO, flux were positive, indicating a higher dex-
trose concentration produced higher CO, flux
(figure 2(a)). However, the N effects on CO, flux
were diverse. Under saturating N conditions, the
CO, flux was reduced 39% and 36% at low
dextrose levels (1.5 and 3mgg ' soil, respectively)
compared to treatments without any N amend-
ment (figures 2(a)-(b) without N). But high
dextrose levels (18 and 30 mgg™" soil) resulted in
significantly higher CO, fluxes with N addition
compared to without N (figures 2(a)—(b) with N).
Although no significant decrease in CO, flux was
found at lower dextrose levels (1.5 and 3 mgg '
soil) with N addition, there was a significant
decrease in CO, flux at lower N addition when
dextrose was saturating (figures 2(c)-(d) with
dextrose). CO, flux increased at a high but sub-
toxic N level (700 ugg ' soil) and decreased at an
inhibitory N level (1500ugg ' soil). However,
there were no significant effects of N addition on
CO; flux when dextrose was not added (figure 2(c)
no dextrose).

3.2. Nzo flux
Cumulative N,O fluxes were significantly affected
by amendments of C (p<0.0001) and N

(p<0.0001) and their interaction (p<0.0001) in
both experiments. N amendments had consistent
positive effects on N,O fluxes (figures 3(a), (b).
However, additions of C led to contrasting N,O
flux responses. When N additions were low (con-
trol, 10 and 50 ugN g ' soil), the additional C
source significantly reduced N,O fluxes (figure 3(a)
no nitrogen and figure 3(b) with dextrose) but
increased fluxes under a higher N level (200 and
700 ugN g ' soil) (figure 3(a) with nitrogen and
figure 3(b) with dextrose) until N additions
became inhibitory (1500 ugN g~' soil). Thus, N,O
fluxes were reduced by adding extra dextrose under
a limited N condition but were dramatically
increased when both N and C resources were
sufficient.

3.3. Relationships between CO, and N, O fluxes

Comparing CO, and N,O fluxes under different
conditions, there was a clear opposite relationship
between cumulative CO, and N,O fluxes demon-
strated in this study (figure 4). When N was not added,
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additional C increased CO, fluxes (figure 2(a) no
nitrogen) but reduced N,O fluxes (figure 3(a) no
nitrogen), resulting in a negative relationship between
them. In contrast, when N availability was saturating,
CO, and N,O fluxes increased with additional C
amendments from low to high (figures 2(a) and 2(a)
with nitrogen), resulting in a positive relationship. In
an unlimited C environment, a negative N effect on
CO; flux and a positive N effect on N,O flux resulted
in a positive relationship between CO, and N,O
fluxes. When N crossed a critical level (between
50-200 ugN g~ soil in our study), the negative N
effect on CO, flux switched and resulted in a positive
relationship between CO, and N,O fluxes.

4. Discussion

Through a series of laboratory experiments we found
important connections between C and N biogeochem-
ical cycles with both resources important for CO, and
N,O emissions. Additional C or N substrates caused
an increasing soil CO, or N,O flux because of more C
or N resources available for decomposition. The
straightforward prediction of the relationship between
trace gas fluxes and its primary substrate is true,
although it masks substantial contributions from
coupled C and N interactions on microbial activity.
Our results show that N availability can substantially
influence the effect of C availability on CO, emissions,
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and C availability can alter N,O flux sensitivity to N
addition by more than two orders of magnitude.
Notably depending on the stoichiometry of resource
amendments, the effects of the secondary resource
could both enhance or inhibit emissions of gases. CO,
emissions were inhibited by N at non-saturating
conditions and similarly N,O was inhibited by C at
non-saturating conditions. However, saturating levels
of both C and N accelerated trace gas emissions of both
CO, and N,O. These divergent effects of altered
resources with both enhancement and inhibition
suggest complex interactions between C and N
biogeochemical cycles, with substantial implications
for predicting emissions of GHGs.

4.1. Regulating CO, flux by carbon use

efficiency (CUE)

High CUE is commonly observed in response to C
limitation (Sinsabaugh ef al 2013), which results in a
lower respiration rate. At saturating N and sub-
saturated, an increasing CUE could mobilize more C
into microbes, leading to relatively lower CO, fluxes
compared to those without N application (figures 2(a)
and (b)). Owing to more N availability, C becomes
limiting and soil microorganisms with a relatively
fixed organismal stoichiometry require relatively more
carbon for growth, which results in a higher CUE and
reduced CO, fluxes. This dynamic CUE could explain
why N addition triggered a decreased CO, flux. After C
availability increases to a critical level, more C
substrate leads to a decreasing CUE and increasing
CO, fluxes (figure 2(a)). During N limited conditions
(figure 2(c)), even when C substrate is saturating, a
decreasing CO, flux occurs in response to relatively
low levels of N addition. Exposed to an excess C source
and restricted in growth by N, the microorganisms
may adjust their metabolism, i.e., uncoupling catabo-
lism and anabolism via energy spilling pathways
associated with decreased CUE (Sinsabaugh et al 2013,
Gallmetzer and Burgstaller 2002, Vrabl et al 2009,
Larsson et al 1995). However, N amendment will
alleviate N limitation and increase CUE. When N is
not limiting, the microbes coupled catabolism and
anabolism again and the excess C source will introduce
a higher CO, flux associated with lower CUE
(figure 2(c) with dextrose).

Thus, our results support a hypothesis of dynamic
CUE that can explain CO, flux response to C and N
additions. However, the mechanism for soil microbial
changes in metabolic pathway under different
resource environments that allow adjustment of CUE
is unclear and should be targeted for future research.
Nevertheless, process models that incorporate a
dynamic CUE to estimate CO, flux seem warranted.

4.2. Regulating N, O flux
From ecological stoichiometry, a higher NUE (related
to a lower N,O flux) could be expected under N
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limitation (Mooshammer et al 2014, Sterner and
Elser 2002), which implies the limited N would be
conserved primarily for growth. The decreasing N,O
flux associated with low rates of extra C source
(figure 3(a) no nitrogen; figure 3(b) with dextrose in
lower N levels) suggests that more N has been used to
build soil microbial biomass as the extra C is also
distributed into growth, which results in a higher NUE
and lower N,O flux. Alternatively, exogenous C source
provides additional electrons (i.e., NADH) via carbon
degradation pathways and the TCA cycle to reduce the
N,O to N, by denitrifying enzymes (Giles et al 2012,
Richardson 2000). Regardless of how N, O is generated
from the N cycle pathways (either nitrification or
denitrification) (Butterbach-Bahl et al 2013), NADH
promotes reduction of N,O into N, via the electron
transport chain. Such a reduction in the N,O:Nj, ratio
in response to labile carbon substrates has been shown
(Morley and Baggs 2010, Giles et al 2012, Lee and
Jose 2003, Weier et al 1993), although the magnitude
varies because of the divergence in C substrate quality,
soil conditions and O, availability (Morley and
Baggs 2010, Giles eral 2012, Lee and Jose 2003).

N,O flux responses to additional C source under
limiting N conditions may be regulated by NUE or the
interaction between carbon and nitrogen metabolism
through nitrification or denitrification pathways. As
with CO, emissions, while the mechanism for variable
NUE is unclear, these findings support the need for
improvements in process models that account for
resource stoichiometry and C and N interactions
rather than N availability alone to estimate N,O emis-
sions (Liuetal 2012, Jassal etal 2011).

4.3. Coupled CO, and N, O flux relationships

Availabilities of C and N substrates simultaneously
regulate CO, and N,O fluxes. From our results, the
relationship between soil CO, and N,O fluxes can be
switched from negative to positive (figure 4) based on
the N supplement. The critical level for this switch
might be a result of the switch in elemental require-
ment from C to N for microorganism growth. A
threshold elemental ratio (TER), which is a parameter
in quantifying when growth limitation switches from
one element to another (Frost et al 2006, Sterner and
Hessen 1994), can control the metabolism of micro-
organisms (Mooshammer et al 2014). If the C:N ratio
is above the TER, the metabolism of soil microbial
communities is under N limitation and expresses a
relatively higher NUE but lower CUE. The negative
relationship between CO, and N,O fluxes occurs
(figure 4 and figures 2(c) and 3(b) when N is low). In
contrast, an expected lower NUE but higher CUE
would occur when the C:N ratio is below the TER,
which is a C limiting condition. The negative relation-
ship still occurs between CO, and N,O when N is at
the control level (figure 4 and figures 2(a) and 3(a) no
nitrogen). When C and N availability are both

6



10P Publishing

Environ. Res. Lett. 10 (2015) 034008

LLLiangetal

2

(wmol CO, g”"soil day ™)

Equivelant CO

Figure 5. Total GHG equivalent (equivalent CO,) emissions response to dextrose and nitrogen gradient. The equivalent CO, of N,O
emission was calculated using the global-warming potential (GWP) of N,O as 298 over 100 years based on IPCC (2007).

available at high levels, elevated CO, and N,O
fluxes will be produced and a positive relationship
between them is seen (figure 4). Based on the contrary
relationship between CO, and N,O fluxes, a critical
level of C:N ratio could exist in regulating the
response of soil microbial CUE and NUE to substrate
availability and controlling the pattern of GHG
emissions.

4.4. Implications for total GHG emissions

At global scale, about 80% of N,O emission is derived
from agricultural ecosystems because of synthetic
fertilizers used in agricultural soil management
(Majumdar 2013, Davidson 2012). In high production
agricultural ecosystem, a large amount of carbon
substrate can be introduced into the soil via root
exudation or residues (Oikawa et al 2014). These
substrates have a large influence on CO, emissions and
as suggested here may also influence N,O fluxes.
Similarly, our results suggest patterns of fertilization
may also have direct effects on CO, emissions. With
N,O having a much higher warming potential (298
times that of CO, over 100 years) (IPCC 2007) than
CO,, these interactions between C and N biogeochem-
ical cycles may have important consequences for net
emissions (figure 5). Without additional N, total GHG
emissions increased linearly with C additions, while
without additional C, total GHG emissions increased
minimally with N additions. The largest increases
occurred when both C and N were added and total
GHG emissions were ~70, ~5 and ~60 times higher
than the control samples, C or N amendments,
respectively. Extending these findings to the field is a
clear research need for understanding how soil emis-
sions of both CO, and N,O contribute to total
warming potential in response to coupling between N
and C cycles. The divergent effects from limited C or N
on CO, and N,O fluxes result in an opposite

relationship between them, suggesting the possibility
to minimize total GHG emissions by optimizing
fertilizer level and timing relative to growth in
agricultural management. Moreover, these results
highlight the importance of C and N interactions for
the ability to understand and predict GHG emissions
using biogeochemical models.
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