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Abstract
The variability inwind-generated electricity complicates the integration of this electricity into the
electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid
grows, but variability can be reduced by exploiting geographic diversity: correlations betweenwind
farms decrease as the separation betweenwind farms increases. But how far is far enough to reduce
variability? Gridmanagement requires balancing production on various timescales, and so
consideration of correlations reflective of those timescales can guide the appropriate spatial scales of
geographic diversity grid integration. To answer ‘how far is far enough,’we investigate the universal
behavior of geographic diversity by exploringwind-speed correlations using three extensive datasets
spanning continents, durations and time resolution. First, one year offive-minute wind power
generation data from29wind farms span 1270 km across Southeastern Australia (Australian Energy
MarketOperator). Second, 45 years of hourly 10mwind-speeds from117 stations span 5000 km
across Canada (National ClimateData Archive of Environment Canada). Finally, four years offive-
minutewind-speeds from14meteorological towers span 350 kmof theNorthwesternUS (Bonneville
Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we
investigate dependence of correlation length on time scale by digitally high-pass filtering the data on
0.25–2000 h timescales and calculating correlations between sites for each high-pass filter cut-off.
Correlations fall to zerowith increasing station separation distance, but the characteristic correlation
length varies with the high-passfilter applied: the higher the cut-off frequency, the smaller the station
separation required to achieve de-correlation. Remarkable similarities between these three datasets
reveal behavior that, if universal, could be particularly useful for gridmanagement. For high-pass filter
time constants shorter than about τ= 38 h, all datasets exhibit a correlation length ξ that falls at least as
fast as τ−1 . Since the inter-site separation needed for statistical independence falls for shorter time
scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas
smaller than otherwise estimated.

1. Introduction

Low CO2 emission footprints make wind and solar
power attractive choices for future electricity needs.
However, their natural variability is challenging for the
electric grid, which requires instantaneous matching
of generation and load on all time scales from one ac
cycle, through operational scheduling horizons (a day
or two), out to planning horizons of more than a

decade (von Meier 2006). Variability can be reduced
and the grid-integration challenge lessened by inter-
connecting renewable electricity generators distanced
enough that their variation is not fully correlated
(Thomas 1945, Kahn 1979). At a great enough
distance, which depends on variability time scale as we
see here, thewind-speed variations approach statistical
independence: an ensemble of wind plants separated
at least this distance from each other is ‘geographically

OPEN ACCESS

RECEIVED

9December 2014

REVISED

12March 2015

ACCEPTED FOR PUBLICATION

13March 2015

PUBLISHED

2April 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd

http://dx.doi.org/10.1088/1748-9326/10/4/044004
mailto:clara.st.martin@colorado.edu
http://dx.doi.org/10.1088/1748-9326/10/4/044004
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/10/4/044004&domain=pdf&date_stamp=2015-04-02
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/10/4/044004&domain=pdf&date_stamp=2015-04-02
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


diverse,’ and at the associated time scale, variability of
the ensemble’s summed power output will be reduced
compared to that of an individual plant.

Better plans for future grids could be made if this
effect were better understood. Many previous studies
have relied on an empirical approach where the degree
of smoothing that might have occurred over a specific
region was estimated from historical meteorological or
reanalysis data or even calculated from actual renewable
generation (Molly 1977, Palutikof et al 1990, Land-
berg 1997, Milligan and Factor 2000, Wiemken
et al 2001, Archer and Jacobson 2003, 2007, Holtti-
nen 2005, Sinden 2007, Kiss and Jánosi 2008, Kempton
et al 2010, Fertig et al 2012, Cosseron et al 2013, Fisher
et al 2013, Huang et al 2014, Louie 2014). However, it is
often difficult to generalize the findings from the study
scenario to realistic planning scenarios. As a first step,
some have sought to model how correlation falls off
with distance, using a variety of different forms: expo-
nential, both with (Haslett and Raftery 1989, Land-
berg 1999, Kiss and Jánosi 2008, and Katzenstein
et al 2010) andwithout (Giebel 2000, Simonsen and Ste-
vens 2004, Holttinen 2005, Achberger et al 2006, and
Kempton et al 2010) a nugget (non-unity correlation at
zero separation), stretched exponentials (Hasche 2010,
Louie 2014), Gaussian forms (Buell 1972) and Cauchy
forms (Buell 1972, Julian and Thiebaux 1975); see
table 1. A few have gone further to propose forms pre-
dicting probability distributions of aggregated power as
a function of the region size (Justus and Mikhail 1978,
Carlin and Haslett 1982, Haslett and Raftery 1989,
Hasche 2010).

How correlations depend on the variability time
scale is equally important to how they depend on dis-
tance, since, for a given magnitude operational power
excursion, the faster the excursion generally the more
costly its regulation (Kirby 2004). Without suggesting
a particular functional form for the dependence, stu-
dies by Ernst et al (1999) and by Mills and Wiser
(2011) have found for wind and solar, respectively,
that faster variations become uncorrelated at smaller
spatial separations than slower variations. Variability
time scale τ or frequency f can be inserted into func-
tional forms for correlation ρ versus distance r by
introducing a characteristic velocity v, and replacing
correlation length ℓ by vτ or v/f, as proposed by
Davenport (1961). Beyer et al (1990, 1993),McNerney
and Richardson (1992), Nanahara et al (2004), and
Sørensen et al (2008) have taken this approach for
wind-speed correlation. Calling r/(vτ) a ‘dispersion
factor’, Hoff and Perez (2010) introduced this concept
to the study of solar variability and identified velocity v
with cloud motion; it has since been used in solar cor-
relation studies by Marcos et al (2012), Lave and
Kleissl (2013), and Hinkelman (2013). None of the
studies based on characteristic-velocity functional
forms have considered regions much larger than
100 km in extent, andmore typically have been limited
to the size of a single PVplant.

Here we revisit the methods used by Ernst et al
(1999) and by Mills and Wiser (2011), apply them to
both wind-speed data and wind generation data from
three different geographical regions, and find a single
quantitative relationship between correlation length
and time scale that parsimoniously characterizes beha-
vior on time scales ranging from an hour to a quarter-
year and over distances of a kilometer to a continent.

In section 2, we highlight the unique features of the
datasets used in this analysis as well as novel methods
for investigating correlations between sites and quan-
tifying correlation length scales. Section 3 describes
the results found in our investigation and section 4
sums up our conclusions and suggestions for future
work. In the provided supplementary data (stacks.iop.
org/ERL/10/044004/mmedia), we describe, in detail,
the filtering methodology used to eliminate non-sta-
tionarities in the time series and present the correla-
tion results from all datasets.

2.Data andmethods

2.1.Datasets
Although previous studies have characterized correla-
tions within an individual region, the present study
seeks universal behavior across multiple regions and
datasets: an Australian wind generation dataset (AUS),
a Canadian wind speed dataset (CAN) and a Bonne-
ville Power Administration wind speed dataset (BPA).
The three datasets presented here bring different
features to the study, such as wind power production
data (AUS), great extent (CAN) or fine time resolution
(AUS, BPA). More details on these datasets, including
maps of the stations used, appear in the supplementary
data (stacks.iop.org/ERL/10/044004/mmedia).

2.1.1. Australian generation dataset (AUS)
The Australian Energy Market Operator (AEMO)
provides a 1 year (October 2013–October 2014)
dataset of five-minute electricity generation data from
32wind farms across Southeastern Australia including
the provinces of New South Wales, South Australia,
Tasmania and Victoria (table 2). AEMO reported in
2013 that theymight curtail wind power systems in the
future (Australian Energy Market Operator 2013);
therefore we suspect few curtailment effects in this
dataset. We utilize a subset of 29 wind farms, combin-
ing production for different wind farm stages and
selecting only the larger-producing member of wind
farm pairs within 5 km of one another. We make no
correction for wake effects of neighboring wind farms
(Fitch et al 2013) in this analysis.

The terrain elevations of these wind farms range
from 3 to 900 m above sea level (asl). Plant output data
are normalized by each wind plant’s generation capa-
city, which range from 20 to 420MW. The closest pair
of farms is separated by 8 km and the farthest by
1274 km.
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Table 1.Correlation functions found in previous work.

Source Functional form (r is distance) Adjustable parameters Length (km) Data description

Buell (1972) Longitudinal: α− rexp ½( )2⎡⎣ ⎤⎦ α 500 mbwind data fromEurope and theNorth Atlantic during the summer

Transverse: α+ − −r[1 ( ) ] q2 1, α, q

α α− −r r1 ( ) exp ½( )2 2⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦, α

α α− + +
− −( )q r r1 (2 1)( ) 1 ( )

q2 2 2⎡⎣ ⎤⎦ α, q

Julian andThiebaux (1975) α ω α λ+ − +
γ−

r z r[ cos( ) ] 1 ( )2⎡⎣ ⎤⎦ α,ω, λ, γ, z 2 yr of 500 mbwind data fromNorthAmerica during thewinter (3months)

Justus andMikhail (1978) α −r Lexp( / )a α, L αL= 395–560a (fit to data in J&Mfigure B-4) 1 yr of 3 hrly data at 10 m from22US sites

Haslett andRaftery (1989) α β− rexp( ) α, β αβ−1= 722 18 yr of hrlymeanwind speeds from12 Ireland stations

Beyer et al (1993) − krexp ( )m⎡⎣ ⎤⎦ k,m k−1 = 870 3 yr of hrlymeanwind speeds (converted to power) from four sites inNWGermany

Landberg (1999) β− −r aexp( / ) a, β (1−β)a= 425 1 yr of 10 min power output from 17wind farms inDenmark

Giebel (2000) −r Dexp( / ) D D= 723 1 yr of hrly 50 mwind speeds from60European stations

Simonsen and Stevens (2004) α− rexp( ) α α−1 = 323–588 1 yr of hrly averaged 50 mwind speeds (converted to power) from28Midwest US sites

Holttinen (2005) −r aexp( / ) a a= 500 1 yr of hrly wind power output from100s ofNordic sites

Gibescu et al (2006) α β− rexp( ) a, β 1 yr of 10 min averagedwind speeds for 18 sites in theNetherlands

Achberger et al (2006) −( )r xexp / 0 x0 x0 = 310a (curve inAchberger figure 6(a)) 2 yr of 3 hrly 10 mwinds From142 sites in Sweden

Kiss and Jánosi (2008) −r Lexp( / ) L L= 400–600 44 yr of 6 hrly wind (converted to power) fromECMWFERA-40model output

Adams andCadieux (2009) α− rexp( ) α α−1 = 333 2 yr of hrly production fromwind farms inOntario

Hasche (2010) − α( )arexp a,α a−(1/α) = 322; 1 yr of hrly 10 mwind speeds (converted to power) from 24German sites

a−(1/α) = 22 As above, 2 h ramps

Katzenstein et al (2010) α −r Dexp( / ) α, D αD= 271 15 min power output from20wind farms in Texas

Kempton et al (2010) −r Dexp( / ) D D= 430 5 yr of (5–49 m)wind data (converted to power) from11 stations on theUSEast Coast

Baïle andMuzy (2010) λ L rln ( / )2 λ, L L= 600 17 yr of hrly 10 mwind at 27 locations in theNetherlands

ŠaltytėBenth and Šaltytė (2011) θ θ+( )x yexp /2
2 2

1 θ1, θ2 θ1 = 370 (r2 = x2 + y2) 31 yr of daily wind data from 18 stations in Lithuania

Hill et al (2012) α −r Lexp( / ) α, L αL= 340 Multiple y of wind speed from14 sites in theUK

Louie (2014) α− β( )rexp α, β α−(1/β)= 1100 3 yr of hrly power output fromUS system operators

a Ourfit to cited data.
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2.1.2. Canadianwind speed dataset (CAN)
The National Climate Data Archive of Environment
Canada provides a 54 year dataset of hourly surface
wind-speeds from 117 stations ranging across more
than 5000 km of Canada (table 2). While the entire
dataset spans 1953 through 2006, missing data are less
frequent in later years, so we use a 45 year subset of
data, from 1962 to 2006. During the data collection,
themeasurement heights of the stations ranged from 5
to 32 m above ground level (agl), but Wan et al (2010)
homogenized these data to the standard 10 m height
assuming a logarithmic wind profile. The terrain
elevations within this dataset vary from sea level to
1084 m asl. Separation distances between sites vary
from aminimumof 19 km to amaximumof 5344 km.

2.1.3. BPAwind speed dataset
The BPA provides a dataset of five-minute wind-
speeds from meteorological towers in Washington
and Oregon in the Northwestern US (table 2). For this
analysis, we use data from 14 sites from 2010 to 2014
due to the higher temporal resolution of these data,
although several stations provide data for longer
durationswith lower time resolution (BPA).

These 14 towers in the BPA network are generally
located along the Columbia River Gorge on the border
of Washington and Oregon or along the Pacific Coast.
The elevations of these stations range from 19 to 1261m
asl. The anemometer heights range from 9 to 53m agl.
No ‘standard height’ homogenization methodology is
used on this dataset; correlation coefficient calculations
between sites would be unchanged if either a logarith-
mic wind profile was assumed or the wind power law
was used to homogenize the measurements to a 10m
height. Separation distances between sites vary from a
minimumof 13 km to amaximumof 354 km.

2.2.Data processing
2.2.1. Pre-processing
Although both deterministic variability, such as diur-
nal or seasonal cycles, and random or stochastic
variability will figure in any complete accounting of

wind power variability, it is the stochastic phenomena
that are less understood and not as predictable, so we
focus on them here. The analysis of underlying
stochastic components is complicated by the presence
of temporal periodicities, as noted by Haslett and
Raftery (1989), Gunst (1995), Robeson and Shein
(1997), Achberger et al (2006), and Hill et al (2012).
To remove the diurnal cycle in order to more clearly
characterize stochastic spatial correlations, we make a
‘local’ estimate of the amplitudes of the first four daily
harmonics by least-squares fitting using a 90 day
moving window to allow for seasonal variation in the
daily cycle (Baïle et al 2011). This cycle, estimated once
for each of the days in the dataset, is subtracted from
that day’s wind-speed or power data, as further
described in the supplementary data. By also subtract-
ing the 90 day moving average, we remove low-
frequency variability, including the seasonal or annual
cycle.

As shown by previous investigators (Ernst
et al 1999), rapid wind-speed or power variations
become uncorrelated at smaller spatial separations
than do slow variations. In order to further investigate
this effect, we prepare versions of each time series with
trends slower than a chosen time-constant removed
by calculating the average of the wind speed or power
data over a segment centered at each time point and
subtracting the segment average from the value at the
center point. By varying the width of the segment
(‘window width’), we control the corner frequency of
this high-pass filtering operation. Our process, descri-
bed further in the supplementary data (stacks.iop.org/
ERL/10/044004/mmedia), differs from that used by
Ernst et al (1999),Mills andWiser (2011), andHinkel-
man (2013) in that it subtracts from the original data
an averaged version of that data, rather than calculat-
ing ‘ramps’ by differencing one block average value
from the next. Thus, the number of data points in the
filtered versions of our time series is reduced from the
original only by the width of filter window, rather than
being decreased by a factor of the window width. We
analyze the effects of high-filtering for window widths
τ⩽ 1049 h, and denote by τ= 2160 h data from which
the 90 day seasonal bias term has been subtracted but
no furtherfiltering applied.

2.2.2. Correlation length
After pre-processing the data as described above and
discussed in more detail in the supplementary data
(stacks.iop.org/ERL/10/044004/mmedia), we calcu-
late correlations between each pair of stations for each
high-pass filtered version of the data. The scatter plot
in figure 1, for example, shows the correlation data for
CAN at filter window τ= 65 h. Given the high degree
of scatter shown here, estimating a single correlation
length for each dataset at each filtering window τ is
problematic since a functional form of correlation
versus distance appropriate for fitting is not known
a priori.

Table 2.Description of datasets used in this work.

Dataset AUS CAN BPA

Location SEAustralia Canada NWUS

Type of data Wind farm

generation

Wind speed Wind speed

Height Hub height 10 m 6–53 m

Time

resolution

5 min 1 h 5 min

Duration 1 yr 45 yr 4 yr

Horizontal

extent

1274 km 5344 km 354 km

Closest

Site Pair

8 km 19 km 13 km

Number of

stations

29 117 14
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Wishing to avoid the functional-form con-
undrum, we sought a ‘non-parametric’ distance mea-
sure. For a given averaging window width τ we order
the correlation coefficient values ρij by increasing sta-
tion separation distance, with increasing values of
separation distance signified with single index as rk, r1
denoting the smallest separation (the closest pair of
stations) and rN denoting the largest separation (the
farthest pair). We then numerically ‘integrate’ the cor-
relation data over distance using the trapezoid rule:

∑ξ ρ ρ= − +
=

− −( )r r r( )
1

2
( ) . (1)n

k

n

k k r r
1

1 k k 1

In the familiar case ρ(ri) = exp(−ri/ℓ) + εi, where εi
is mean-zero noise, this procedure gives ξ=ℓ in the
limit of large r. For our observations, we take r0≡ 0,
and estimate ρr0

as the intercept of a local regression

curve (see section 2.2.3 below). As shown by the light
blue line in figure 1, ξ(rn) varies smoothly with rn and
approaches a near-constant value at the largest separa-
tions (here 139 km at rN= 5300 km) as the ρrk

scatter

there around zero. We refer to the value at the greatest
separation ξ(rN) (at a given high-pass filter window
width τ hereinafter ξτ) as the correlation length; it has a
meaning similar to Bretherton’s ‘correlation radius’
(1999) or the term ‘integral scale’ in turbulence
(Batchelor 1953). Our methodology bears some
resemblance to that of Şen’s cumulative semivario-
gram (Şen andŞahin 1997,Şen 1989).

2.2.3. Local regression curves
To facilitate graphical comparisons of correlation
versus distance behaviors that might otherwise be
obscured by the high degree of scatter in the individual
ρ(rk) values, we also calculate ρ(r) curves using local
regression techniques (Cleveland 1979), where, to find
the curve value at a given site-separation distance r′,
we fit a 2nd-order polynomial to the fraction α of the
correlation data points that are closest to the given

distance (for example in theCANdataset and choosing
α= 0.05, the 339 correlation data points out of 6786
total having the smallest values of − ′r r ) . This gives
results as exemplified by the thick blue line infigure 1.

2.2.4. Importance of pre-processing
The high-pass filtering and diurnal-cycle removal (out-
lined in detail in the supplementary data (stacks.iop.org/
ERL/10/044004/mmedia) have significant effects on the
correlation behavior, as shown in figure 2, which, to
facilitate comparison, portrays correlation versus dis-
tance as local regression curves. With no pre-processing
(raw data, dashed brown curve), correlation doesn’t fall
below about 0.04 at the largest site separations, while
with the diurnal cycle and seasonal bias removed (solid
brown curve), correlation falls to zero. For raw data
high-pass-filtered with τ=33 h (aqua), the correlation
does not fall below about 0.10 (dashed curve) for
separations smaller than 4000 km, while if the high-pass
filter is applied to data from which the diurnal cycle has
first been removed, correlation falls to near zero for
separations of 600 km(solid curve).High-pass cutoffs of
τ=25–37 h give similarly high correlation floors on raw
datawhile the height of thefloor decreases noticeably for
cutoffs smaller than21 hor larger than 41 h.

3. Results and discussion

3.1. Correlations
Despite the differences in methodology, the behavior
of correlation with distance and high-pass filtering
window width qualitatively resembles the previous
wind-power results of Ernst et al (1999) and insolation
work of Mills and Wiser (2011): correlation falls off
more rapidly with site separation the smaller the
window-width τ, as seen for the CAN data in figure 3.
Interestingly, we observe that for some high-pass filter
window widths (for example, a 65 h window width in
CAN), the correlations actually become negative

Figure 1.Correlation versus distance forCANdata high-pass filteredwith τ= 65 h (scatter plot and dark-blue local-regression curve,
left axis). Numerically integrated correlations as a function of integration range (integration of scatter points, light-blue curve, right
axis).
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between 500 and 1000 km separation distances, per-
haps for reasons similar to those identified for solar
correlations by Hoff and Perez (2010) and Hinkel-
man (2013).

Substantial scatter of the correlation versus dis-
tance values is a prominent feature of data from all
three regions at all but the shortest filter widths (see
supplementary figures S5–7). We explored several
potential causes of this large scatter as well as the nega-
tive correlations by separating stations by region
(North versus South as well as East versus West) and
by azimuthal bearing. East/West differences
(figure 4(a)) and North/South differences
(figure 4(b)) explain neither the scatter nor the slight
anti-correlations. It is clear from previous work
(Buell 1972, Ramanathan et al 1973, Julian and Thie-
baux 1975) that the longitudinal and transverse hor-
izontal wind components have different correlation

behaviors, with the transverse correlation falling faster
and exhibiting more negative values, similar to the
behavior of fully developed turbulence (von Kár-
mán 1948, Batchelor 1953). Unfortunately, the CAN
dataset provides wind speed but not wind direction.
Nevertheless, some of the scatter in the CAN correla-
tions can be attributed to the azimuthal bearing of
each station pair, as stations separated along a line 10°
North of West–East are systematically less correlated
and more often anti-correlated than those perpendi-
cular to that line (figure 4(c)). Šaltytė Benth and Šalt-
ytė (2011) also observed directional anisotropy in
wind-speed correlation fall off.We presume the aniso-
tropy we observe arises from the prevailing westerly
winds produced by the large-scale circulation in this
region, although, contrary to our expectation, we see
higher correlations for stations separated along the
crosswind direction.

Figure 2.Effect of diurnal-cycle and low-frequency removal on 1962–2006CANhourly data correlation (local regression curves).
Brown: no pre-processing (dashed,∞); diurnal-cycle and seasonal bias removed (solid, 2160). Aqua: τ=33 h high-pass filteredwith
diurnal cycle subtracted (solid, 33) andwithout diurnal-cycle subtracted (dashed, 33).

Figure 3.CANcorrelation coefficients versus site separation simplified by robust local regression formultiple indicated high-pass
windowwidths in hours.
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Finally, given previous work that has identified a
connection between the interannual climate oscilla-
tion of the El Niño SouthernOscillation and Canadian
wind resources (St. George andWolfe 2009), we sepa-
rated the time series into intervals with strong climate
signals (1988–1989 La Niña and 1982–1983 El Niño,
1964–1965 La Niña and 1965–1966 El Niño,
1970–1971 La Niña and 1972–1973 El Niño), and cal-
culated each site-pair’s correlation coefficient over the
El Niño interval and over the La Niña interval. Com-
parison of all these periods gave results similar to that
seen in figure 4(d) for the 1964–1966 periods. No dif-
ference in correlations between El Niño and La Niña
periods emerges (figure 4(d)). The pairwise differ-
ences between the ‘65–66 El Niño and the ‘64–65 La
Niña correlations havemean |μ|= 0.0011 and standard
deviation 0.044 (see figure S8); the non-parametric
sign test of null hypothesis H0 that μ= 0 against alter-
native hypothesisH1 that μ≠ 0, fails to rejectH0 with a
p-value of 0.12.

3.2. Correlation length estimates
Figure 5 shows the results of our ‘integral-scale’
calculations for CAN, AUS and BPA. The 5300 km
geographic extent of Canada clearly exceeds the
observed correlation lengths, allowing the integration
to fully saturate for even the widest filter, giving
ξ2160h = 273 km. The AUS data yield slightly larger

values, with ξ2160h = 368 km. The geographic extent of
the BPA region is not sufficient for the correlation
integration to saturate, making the ξ2160h = 89 km
value, obtained an underestimate of the full correla-
tion length.

Figure 6 shows the variation of correlation length
ξτ with high-pass filter cutoff τ for the three regions,
the ξ values for each region normalized by the max-
imum to facilitate comparison between datasets. The
envelope surrounding the correlation length values as
a function of τ indicates an empirically-found range of
behavior common to all three datasets:

τ

ξ
ξ

τ
+

< <

+

τ1

1
38 h

1

1
38 h

. (2)
2

max 2 ½⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

3.3.Discussion
The characteristics of the correlation length-scale
metric introduced in equation (1) and used above
deserve further explication. This measure has the
advantage that it is essentially free of assumptions about
the functional form of the correlation versus distance
data. It quantifies the site-separation distance needed to
reduce average inter-station correlation to a small value.
However, it is important to remember, especially with
data with such large scatter as observed here, that ξτ is

Figure 4.Correlation versus station separation for τ= 65 h high-passfilteredCAN1962–2006 hourly data. (a) Red: 1326 station pairs
West of 100°W longitude, black 2080 station pairs East of 100°W longitude.Means of 100 kmwide bins are shown by the solid line; the
envelope represents ± one standard deviation σ; (b) red: 45 station pairs North of the Arctic Circle, black: 5671 station pairs South of
the Arctic Circle; (c) azimuth of each station-pair bearing indicated by color in compass; (d) correlations during a 19month period of
strong ElNiño (red) and during a 19month period of strong LaNiña (black).Means of 100 kmwide bins are shown by the solid line;
the envelope represents ± one standard deviation σ.
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just one of multiple possible measures of ‘how far is far
enough’. For example, as seen in figure 1 for the CAN
data, numerically integrating the scattered ρ(r) points
according to equation (1) gives ξ65h= 139 km (right-
hand end of light-blue curve), while integrating the
dark-blue robust local-regression curve for the same
window width gives the significantly larger value of
172 km (integral not shown). This occurs because the
residuals of the local-regression fit are negatively
skewed, and the ‘robust’ fitting process (Cleve-
land 1979) pulls the fit towards themedian by assigning
small weights to points determined to be outliers; here
more oftenbelow the curve than above.

The integral-scale metric ξτ measures the separa-
tion distance required for correlation to fall to a value
small compared to unity; this can be substantially less
than the distance ℓ over which it falls to a fraction (say,
1/e) of its initial value (at r= 0) if the initial value is
small. This discrepancy between the integral-scale
metric and the 1/e distance ℓ can be seen from the
parameters of fitting of an exponential form to the
data, as shown by the dashed-lines in figures 5(b) and
(c). Here we fit ξ(r) = βℓ(1− e−r/ℓ) as would be the
case for correlation falling as βe−r/ℓ with distance.

Fitting results are shown in table 3. Due to the large
nugget effect (Matheron 1963) observed in all three
regions, the best-fit correlation at zero site-separation
β is substantially smaller than unity, proportionately
reducing the area ξ under the ρ(r) curve. For the CAN
data this gives ξ(rN)≈ βℓ, but in the AUS and BPA
regions ξ(rN) < βℓ since the regions sizes do not per-
mit separations r large enough to bring ρ(r) to zero
and hence to bring ξ to saturation.

The nugget effect has a particularly strong influence
on ξτ values at small τ. Had we constrained ρ(0) = 1
rather than estimating the value at the origin using local
regression, figure 6 would have shown the decline in ξτ/
ξ2160 ending at a floor value limited by our trapezoid-
rule integration to half the separation of the closest site
pair (0.03, 0.01, and 0.07 for CAN, AUS, and BPA,

Figure 5.Numerically integrated correlation as a function of integration range for indicated high-pass filter windowwidths in hours
for: (a) CAN, (b) AUS, and (c) BPA; 2160 h curves result from removal of diurnal cycle and 90 daymoving average—curves with
shorter windowwidths are further high-passfiltered. Dashed lines in (b) and (c) are least-squares fits to the form βℓ[1− e−(r/ℓ)],
giving, at τ= 2160 h, β= 0.65 andℓ= 685 km forAUS, and β= 0.40 andℓ= 323 km for BPA. Similar fit gives β= 0.70 andℓ= 388 for
CAN (not shown).

Figure 6.Correlation length versus high-pass windowwidth for AUS, CANandBPAdata; shaded envelope spans [1 + τ0/τ]
−2 to

[1 + (τ0/τ)
2]−½,with τ0 = 38 h.Dashed curve segments dependent on non-zero nugget.

Table 3.Comparison of least-squaresfit parameters (β,ℓ) to inte-
gral-scale correlation-lengthmetric (ξmax ).

Dataset τ (hr) β ℓ (km) βℓ (km) ξmax (km)

CAN 2160 0.70 388 273 273

AUS 2160 0.65 685 447 368

BPA 2160 0.40 323 130 89
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respectively), affecting only the dashed portion of the
curves.

4. Conclusions

Variability in wind-generated electricity can be reduced
by interconnecting wind farms across large regions, as
distant wind farms are only weakly correlated. We
investigate the geographic extent needed for this aggre-
gation to be effective using three extensive data sets.
Using a ‘non-parametric’ estimator ξ based on the area
under the correlation versus distance curve, we found
for the slowest variabilities ξ  = 273 kmmax for 10m
wind speeds in Canada, 368 km for wind-plant genera-
tion in Southeastern Australia, and 89 km for tower
wind-speeds in theNorthwesternUS. Since theAustralia
andBPA regions are small enough that even for themost
distant sites correlation never drops to zero, our ξ values
for the widest filter window-widths are underestimates
of the extent needed for fully effective aggregation.
Quantities more representative of the extent needed for
smoothing the slowest variabilities are givenby the larger
βℓ values of 447 and 130 km respectively, in table 3,
obtained by fitting ξ(r) to the form βℓ(1− e−r/ℓ) and
extrapolating ξ to r=∞. These values can be compared
to like values frompreviouswork listed in table 1.

Although the regional length scales have different
magnitudes, we find a dependence of ξ on variability
time-scale that is remarkably similar across the three
regions, as seen in figure 6. At time scales τ shorter
than 38 h, ξ falls at least as fast as τ−1, while at longer
scales it is essentially constant. Thus, on time scales
longer than a day or so, the variability-reduction bene-
fit of aggregating wind power over a region of a given
size will be independent of time scale. For time scales
shorter than a day, the faster the variability, then the
more smoothing that region could provide. It is the
shrinking of correlation length with time scale that
gives high-frequency spectral slopes a larger magni-
tude for power aggregated over a region compared to a
single site (Beyer et al 1990, McNerney and Richard-
son 1992, Nanahara et al 2004, Katzenstein et al 2010,
Tarroja et al 2011, Fertig et al 2012); similarly for solar
power (Curtright andApt 2008,Marcos et al 2011).

Our findings help disentangle the effects on varia-
bility reduction of generator number, region size, and
variability time scale. In general, aggregating the out-
puts of N uncorrelated generators should reduce
variability magnitudes by a factor of N . A geo-
graphic region of area A has roughly N≈A/(2ξ)2

potential uncorrelated sites; thus, for a fully populated
region (Hasche 2010) variability could be attenuated
by a factor up to ξA / (2 ). For time scales shorter than
τ≈ 1.5 days, the number of potential uncorrelated
sites within a fixed area, and hence achievable attenua-
tion, grows at least as fast as 1/τ. If the actual number
of generators in a region is less than A/(2ξ)2, the lesser
numberwill determine attenuation.

Further work to better understand whether the
high degree of scatter in correlation versus distance is a
stable manifestation of some unidentified geographic
process or is just persistent, random temporal varia-
tion that would average away over longer records
would improve model utility. Additionally, analysis of
solar data over a large region could determine if time
and length scale of solar variability are linked in a way
similar towhat we found here forwind.
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