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Abstract
Uncertainties in terrestrial carbon (C) cycle projections increase uncertainty of potential climate
feedbacks. Efforts to improvemodel performance often include increased representation of
biogeochemical processes, such as coupled carbon–nitrogen (N) cycles. In doing so,models are
becomingmore complex, generating structural uncertainties inmodel form that reflect incomplete
knowledge of how to represent underlying processes. Here, we explore structural uncertainties
associatedwith biological nitrogen fixation (BNF) and quantify their effects onC cycle projections.
Wefind that alternative plausible structures to represent BNF result in nearly equivalent terrestrial C
fluxes and pools through the twentieth century, but the strength of the terrestrial C sink varies by
nearly a third (50 PgC) by the end of the twenty-first century under a business-as-usual climate
change scenario representative concentration pathway 8.5. These results indicate that actual
uncertainty in future C cycle projectionsmay be larger than previously estimated, and this uncertainty
will limit C cycle projections untilmodel structures can be evaluated and refined.

1. Introduction

The global carbon (C) cycle provides a critical set of
feedbacks that influences climate change in Earth
system model (ESM) simulations of the twenty-first
century. However, simulations of the terrestrial C
cycle show considerable spread among models, and
much of the uncertainty in C cycle feedbacks with
climate change arises from terrestrial processes (Frie-
dlingstein et al 2006, Arora et al 2013, Jones et al 2013,
Friedlingstein et al 2014). Uncertainty in projections
of global surface temperature change arising from C
cycle feedbacks compares in magnitude to the uncer-
tainty arising from physical climate processes (Hun-
tingford et al 2009). Moreover, many ESMs poorly
simulate key metrics of the present-day terrestrial C
cycle such as vegetation and soil C, plant productivity,
and C turnover rates, among others (Anav et al 2013,
Piao et al 2013, Todd-Brown et al 2013, Carvalhais
et al 2014). These uncertainties in the terrestrial C
cycle present a critical challenge for the development
of the next generation of ESMs, reflecting both an
incomplete understanding of the underlying biological

and ecological processes themselves, and how to
represent them at global scales. Indeed, while the
methodology used to derive the C cycle feedback
parameters among models varies, and thus results are
not directly comparable, the coupled C cycle-climate
simulations reported in the IPCC fourth assessment
report (Friedlingstein et al 2006, Denman et al 2007)
show a similarly broad range in the carbon-concentra-
tion feedback and the carbon-climate feedback for
land as those reported in the IPCC fifth assessment
report (Arora et al 2013, Ciais et al 2013).

Efforts to analyze model uncertainty fall into sev-
eral broad categories. First, model intercomparisons
characterize uncertainty among different models
using a multi-model ensemble of simulations, and
often compare results with standardized datasets
(Anav et al 2013, Todd-Brown et al 2013). A second
approach involves perturbing key model parameter
values and to show that a wide range of C cycle projec-
tions (of equal magnitude to multi-model ensembles)
can be obtained from a single model given a plausible
range in parameter values (Booth et al 2012, Booth
et al 2013, Exbrayat et al 2013, Lambert et al 2013).
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Third, data assimilation provides a mathematical fra-
mework to constrain a particular model with observa-
tions (Smith et al 2013, Hararuk et al 2014). Finally,
the mathematical properties of a model in terms of C
pools, the partitioning of C input to those pools, and
the transfers of C among pools (Xia et al 2013, Luo
et al 2014) have been analyzed to assess model uncer-
tainty. While these different approaches yield valuable
insight into differences in model states, fluxes and
responses to forcings, they often fail to provide insight
into the underlying model structures that are collec-
tively responsible for C cycle projections.

Structural uncertainties reflect incomplete knowl-
edge of how to represent processes in models. Struc-
tural uncertainty tends to increase with greater model
complexity, which often accompanies process-level
model development aimed at improving model per-
formance. For example, one key component of ESMs
has been the recent inclusion of a terrestrial nitrogen
(N) cycle. Terrestrial nutrient availability, specifically
nitrogen (N), strongly limits plant productivity and
ecosystem C fluxes (Vitousek and Howarth 1991,
Hungate et al 2003, Lebauer and Treseder 2008). As
such, terrestrial C cycle responses to environmental
change, like elevated CO2 and/or climate change, may
be strongly mediated by N availability (Luo et al 2004,
Finzi et al 2006, Reich et al 2006a, Norby and
Zak 2011), and particularly inputs of new N (Cleve-
land et al 2013).

Given the importance of nutrient dynamics on
global C projections (Hungate et al 2003, Gruber and
Galloway 2008, Wang and Houlton 2009, Peñuelas
et al 2013, Zaehle et al 2015,Wieder et al 2015a), global
land models are increasingly considering coupled C–
N biogeochemistry explicitly (Thornton et al 2007,
Wang et al 2007, Sokolov et al 2008, Yang et al 2009,
Gerber et al 2010, Zaehle et al 2010, Wania et al 2012).
Despite the complexities of simulatingN biogeochem-
istry at the global scale, these models consistently
demonstrate an attenuation of C-cycle response to
environmental change when considering C–N

dynamics, relative to C-only simulations. Preliminary
efforts to evaluate models that simulate C–N interac-
tions indicate that they partially capture ecosystem
responses to elevated CO2 (Zaehle et al 2014), but also
illustrate that representing N inputs, transformations,
and losses from terrestrial ecosystems introduces mul-
tiple degrees of freedom that increase model uncer-
tainty (Thomas et al 2015). Here, we use one key
process in the terrestrial N cycle—N inputs from bio-
logical nitrogen fixation (BNF)—to demonstrate the
importance of evaluating model structural
uncertainty.

Although global increases of N deposition from
human activities like fertilizer application and fossil
fuel combustion have increased global terrestrial N
availability (Townsend et al 1996, Galloway et al 2004),
the vastmajority of N entering unmanaged ecosystems
still comes from BNF (Cleveland et al 1999, Wang
et al 2010, Cleveland et al 2013). As such, BNF influ-
ences the global C cycle and climate, both now and in
the future. Unfortunately, however, estimates of glo-
bal BNF rates from synthesis and extrapolation are
highly uncertain (100–290 Tg N y−1; Cleveland
et al 1999), with more recent estimates suggesting that
global rates of BNF either fall on the lower end of this
range (∼125 Tg N y−1; Galloway et al 2004, Wang and
Houlton 2009), or are perhaps much lower
(40–100 Tg N y−1; Vitousek et al 2013, Sullivan
et al 2014). These uncertainties reflect both a paucity
of empirical measurements of N fixation, as well as an
incomplete understanding of the biophysical controls
on BNF across space and through time (Houlton
et al 2008, Menge et al 2008, Reed et al 2011). Thus,
most C–N models use simple, modified-empirical
relationships to generate spatial estimates of BNF
based on evapotranspiration (ET) and/or net primary
productivity (NPP) (table 1; Cleveland et al 1999).
These phenomenological relationships are not derived
from mechanistic understanding of BNF, but broadly
capture biogeographical observations of higher rates
of BNF in humid environments with (seasonally) high

Table 1. Summary of the global landmodels that include coupledC–Nbiogeochemistry, the parameterizations each uses to calculate BNF,
and relevant references justifying the chosen parameterization.

Model BNF approach NFixation reference

CLM4cn andCLM4.5bgc (Thornton et al 2007,Oleson

et al 2013)

f(NPP) (Cleveland et al 1999)

JSBACH (Parida 2011) f(NPP) (Cleveland et al 1999)

UVic (Wania et al 2012) f(ET) (spin-up) f(NPP) (transient) (Cleveland et al 1999)

Century (Schimel et al 1996) f(ET) (Cleveland et al 1999)

ISAM (Jain et al 2009, Yang et al 2009) f (ET, biome) (Schimel et al 1996, Cleveland

et al 1999)

OC–N(Zaehle and Friend 2010) f(ET) (Cleveland et al 1999)

TEM(Hayes et al 2011) f(ET) (Cleveland et al 1999)

GFDL-LM3V (Gerber et al 2010) f(soil N, LAI,mortality, dis-

turbance, etc)

(Rastetter et al 2001)

CASA-CNP (Wang et al 2010) f(soil N, LAI, P, temperature, etc) (Wang et al 2007,Houlton

et al 2008)
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solar radiation. Thus, ET and NPP are good bases to
derive empirical BNF estimates that are consistent
with the view that the energetic costs of ‘fixing’ atmo-
spheric di-nitrogen (N2) into a biologically usable
form (NH3) broadly limit rates of BNF (Gut-
schick 1981). Estimating BNF using relationships
between ET andNPPproduce similar estimates of pre-
industrial BNF inputs, but lead to differing predictions
about the response of BNF to changing climate and
CO2. Here, we compare the differences in N fixation
inputs using these two commonly used approaches,
and the associated effects on NPP and the global land
C sink using the most recent version of the Commu-
nity LandModel (CLM4.5bgc).

2.Methods

The CLM4.5bgc (Oleson et al 2013) is a revision to
CLM4 (Lawrence et al 2011). Key model improve-
ments pertinent to the C cycle are revisions to the leaf
photosynthesis and canopy integration (Bonan
et al 2011, Bonan et al 2012), vertically resolved soil C
and N biogeochemistry (Koven et al 2013), and
permafrost hydrology (Swenson et al 2012). These
modifications to CLM4.5bgc improve model agree-
ment with observed trends in the terrestrial C cycle
over previous versions of the model (Koven
et al 2013).

We conducted two sets of offline simulations with
CLM4.5bgc that were identical apart from their repre-
sentation of BNF. In the NPP driven case, we use the
standard NPP–BNF relationship from Cleveland et al
(1999) that is used in CLM (Thornton et al 2007, Ole-
son et al 2013):

= − ×− ×( )BNF 1.8 1 e (86400 365), (1)NPP
0.003 NPP

where annual NPP fluxes (g Cm−2 y−1) are used to
calculate instantaneous BNF rates (g Nm−2 s−1). In
the modified case we use the lower bound of ET-BNF
relationship reported byCleveland et al (1999).

= × +
× ×

BNF (0.0102 ET 0.524)/

(10 86400 365), (2)
ET

where instantaneous ET fluxes (converted to an
annual rate, mm y−1) are used to calculate instanta-
neous BNF rates (g Nm−2 s−1). Here, we calculate ET
as the sum of canopy evaporation and transpiration
fluxes, because preliminary results indicated this
would provide initial BNF inputs that were approxi-
mately equal to the NPP driven scenario. Specifically,
including soil evaporation fluxes in the ET calculation
produced a high bias in BNF rates from arid regions,
compared to the NPP driven case (W Wieder,
unpublished data). For comparison, we also show
estimates of BNF simulated by CASA-CNP (Bai and
Houlton 2009, Wang and Houlton 2009; see, Cleve-
land et al 2013). CASA-CNP uses a more process-
based approach to estimate global rates of BNF that
considers light availability, N and phosphorus (P)

supply and demand, as well as putative N fixer
abundance (Wang et al 2007, Houlton et al 2008,
Wang et al 2010).

Subsequently we ran parallel CLM4.5bgc simula-
tions that only differed in their BNF assumptions
(equations (1) and (2)). We used 1900–1919 meteor-
ology, 1850 [CO2], N deposition, and land cover (see,
Koven et al 2015) and an accelerated spin-up proce-
dure (Koven et al 2013) to approximate steady-state
pools and fluxes using the NPP driven configuration,
which was followed by another 500-year standard
spin-up phase for both NPP and ET driven cases. The
initialized simulations were forced with CRU-NCEP
re-analysis data over this historical period
(1850–2005), transient land cover change (Lawrence
et al 2012, Oleson et al 2013), and an anomaly forcing
protocol to replicate a single CCSM4 projection (Gent
et al 2011, Meehl et al 2012) of climate change under
the ‘business-as-usual’ representative concentration
pathway 8.5 (RCP8.5) (Moss et al 2010). Although we
apply transient land cover scenarios with active timber
harvest and agricultural management that extract C
from the system, they do not represent the complex
interactions among disturbance, the site micro-
environment (e.g., increased light), and C–N bio-
geochemistry and are the focus of ongoing model
developments (Levis et al 2012, Thomas and Wil-
liams 2014, Thomas et al 2015). The anomaly forcing
provides a smooth transition between the observed
historical period and the projected RCP8.5 CCSM4
projection. We quantified global differences in mean
steady-state (1850–1859) C and N pools and fluxes
between these two cases. We examined changes in
projected C andNpools and fluxes through the histor-
ical period andRCP8.5.

3. Results

Initial estimates of global BNF were approximately
15% higher when simulated as a function of NPP than
when simulated as a function of ET, totaling 90 and
77 Tg N y−1, respectively (figures 1(a) and (b)). Both
of these values are lower than the BNF estimates of
Cleveland et al (1999), and at the upper end of the
uncertainty estimates in Vitousek et al (2013). In the
ET driven case, rates of BNF across much of the
northern hemisphere were 25–35% lower than in the
NPP driven case. By contrast, rates of BNFwere higher
in many arid ecosystems and savannas using the ET
parameterization, and generally similar across tropical
forests. By comparison, estimates of BNF simulated by
CASA-CNP showmuch higher N inputs in the tropics
and lower rates of BNF in extra-tropical regions
compared to either ET or NPP parameterizations
(figure 1(c)), resulting in larger total rates of BNF
(142 Tg N y−1) (Wang et al 2010; see, Cleveland
et al 2013). Few observational data points and high
uncertainty (Cleveland et al 1999) preclude robust
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corroboration of these estimates, although we argue
they all represent plausible approximations of pre-
industrial BNF rates.

Despite the differences in BNF using the two alter-
native parameterizations (figures 1(a) and (b)), we
found negligible differences in steady-state C fluxes
and pools between cases. Global estimates of plant
productivity from NPP- and ET-driven cases totaled
46.1 and 44.8 Pg C y−1, respectively. Nitrogen limita-
tion in CLM occurs through the instantaneous down-
regulation of photosynthesis based on the availability
and demand for N (Thornton et al 2007). Modifica-
tions to the leaf photosynthesis and canopy integration
(Bonan et al 2011, 2012) and soil N biogeochemistry
(Koven et al 2013) have made the model less sensitive
to N inputs, as extant soil N pools can largely meet
plant demand (figure 2); although, specific aspects of
the representation of N biogeochemistry in CLMwar-
rant more focused attention (Thomas
et al 2013a, 2013b, 2015). In our ET-driven case, esti-
mates of NPP were <10% lower at high latitudes than

in the NPP-driven case, but elsewhere they were very
similar (figures 2(a) and (b)). Differences between
initial total ecosystem C (the sum of all vegetation, lit-
ter, and soil C pools) from NPP and ET cases were
more subtle, totaling 4500 and 4460 Pg C (0–3 m
depth), respectively (2610 and 2570 Pg C (0–1 m
depth)), and representing N fixation using the differ-
ent approaches generated few obvious spatial differ-
ences in C pools (figures 2(c) and (d)). Given the
steady-state similarities, we focus on the evolution of
terrestrial C and N dynamics in transient simulations
with changing climate and [CO2] through 2100.

Representing BNF using the ET relationship
(equation (2); green lines, figure 3) produces equiva-
lent estimates of BNF, NPP, and total ecosystemC sto-
rage through the historical period (1850–2005). By
contrast, in the NPP driven case (equation (1)), rates
of BNF accelerated because of increases in NPP from
CO2 fertilization under the RCP8.5 scenario (black
lines, figure 3), creating a positive feedback between
BNF and NPP that resulted in sustained increases in

Figure 1.Global estimates of biological nitrogen fixation from: (a) CLM4.5 using the standardNPP structure (equation (1)); (b)
CLM4.5 using themodified ET structure (equation (2)); and (c) CASA-CNP. Results fromCLM4.5 show steady-state (1850)
estimates of BNF, totaling 90 and 77 Tg N y−1, respectively. Estimates fromCASA-CNP (Wang et al 2010) are the sumof free-living
and symbiotic BNF, and total 142 Tg N y−1.
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NPP and large increases in terrestrial C storage
through the 21st century. Notably, the trajectories of
terrestrial C storage are virtually identical for both
cases through the historical period, with initial terres-
trial C losses driven by land use and land cover that
recover by the end of the 20th century, with slight
(<2 Pg C) difference in terrestrial C accumulated by
2005.We cannot find empirical support from elevated
[CO2] experiments for the sustained increases in BNF
suggested by the current, NPP-based, configuration of
CLM4.5 (Hungate et al 2004, vanGroenigen et al 2006,
Reich et al 2006b, Hungate et al 2013). Moreover, dis-
turbance currently has no effect on BNF in CLM4.5,
which is inconsistent with empirical work showing the
highest rates of N fixation immediately following dis-
turbance (Batterman et al 2013, Sullivan et al 2014). By
contrast, in the ET driven case N demand outpaces
BFN, which increasingly attenuates CO2 fertilization
effects in the modified case. Thus, reducing terrestrial
C accumulation by nearly 50 Pg C (∼40%) by 2100,
which would increase the atmospheric [CO2] burden
by approximately 25 ppm.

4.Discussion

Representing N fixation as a function of either NPP or
ET produces comparable initial land C stocks and
fluxes in CLM4.5bgc (figures 1 and 2), but generate
significant differences in trends of BNF that have large
effects on the global C cycle in transient simulations
(figure 3). These results illustrate one key model
uncertainty that more broadly reflects the status of the
theoretical understanding and numerical implemen-
tation of terrestrial C–N biogeochemistry in ESMs

(Thomas et al 2015). Uncertainty in the representation
of BNF is important, but structural uncertainties in the
representation of C and N cycles extend far beyond
representations of BNF, and include processes like
plant N uptake (Thomas et al 2013a, Brzostek
et al 2014) and soil microbial dynamics (Wieder
et al 2013, 2015b), among others. These uncertainties
broadly limit the ability to accurately simulate changes
in the terrestrial C cycle, and by extension to project
future climate. We contend that evaluating these
structural uncertainties in ESMs can simultaneously
improve the theoretical understanding of biogeo-
chemical processes, inform prognostic climate mod-
els, and highlight critical observational needs in the
most uncertain aspects of the C–N system. This argues
for replacing the empirical approaches (such as those
for BNF described here), with more a mechanistic
representation of biogeochemical processes. Several
approaches for BNF already exist (Gerber et al 2010,
Wang et al 2010, Brzostek et al 2014; discussed below),
however additional efforts are needed to evaluate how
any of these approaches may improve confidence in
futuremodel projections.

Poor understanding and representation of the fac-
tors that regulate rates of biogeochemical processes
significantly impede the ability to improve C-nutrient
dynamics in ESMs. Specifically, we lack both a detailed
theoretical understanding and sufficient empirical
data to validate models and inform likely responses of
BNF to elevated [CO2] and climate change across
biomes. Current approaches that represent BNF rates
as a function of NPP are contradictory (equation (1);
table 1), especially when the purpose of C–Nmodels is
to explore how terrestrial nutrient limitation may
mediate C cycle response. Moreover, data from field

Figure 2.Terrestrial NPP (a), (b) andC storage (c), (d) simulated byCLM4.5bgc. Individual panels show steady-state (1850) estimates
from theNPP driven configuration (a), (c), where BNF rates are described by an empirical functionwithNPP (Thornton et al 2007),
and the percent difference between ET andNPPdriven cases (b), (d), where BNF rates are described by an empirical functionwith ET
(Cleveland et al 1999).Negative values in the difference plots show areas where theNPP driven results are less than estimates from the
ET driven case. Note the quasi-logarithmic scale bar in panel 2(c).
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manipulation experiments do not support the persis-
tent increases in BNF rates that are projected by the
NPP driven case (Hungate et al 2004, van Groenigen
et al 2006, Reich et al 2006b, Hungate et al 2013). Yet,
this approach is currently applied in several land

models, including CLM (table 1), but should likely be
revised.

We recommend alternative model structures be
considered to describe rates of BNF—the largest
source of N inputs to terrestrial ecosystems. In the
short-term, revisions to BNF parameterizations could
include empirical relationships with ET and/or assign-
ment of biome-level rates (Cleveland et al 1999). Both
approaches still have shortcomings, but they would
still represent an improvement over model structures
that directly contradict empirical results. Longer-term
efforts should focus on exploring large-scale and
mechanistic drivers of BNF and potential C–N inter-
actions in response to environmental change. Alter-
native structures that represent competing hypotheses
about the relative importance of different factors
effecting BNF rates are already available (table 1,
figure 1). For example, the structure of the GFDL-
LMV3 model suggests disturbance history controls
BNF rates (Gerber et al 2010), whereas phosphorus
(P) availability is more important in CASA-CNP
(Wang et al 2007, Wang et al 2010, figure 1(c)), and N
availability and plant N demand is critical in the fixa-
tion and uptake of nitrogen model (FUN; Fisher
et al 2010, Brzostek et al 2014). These more mechan-
istic approaches are consistent with recent empirical
work showing that disturbance history (Batterman
et al 2013, Sullivan et al 2014) and soil P dynamics
(Houlton et al 2008, Reed et al 2011, Nasto et al 2014)
influence BNF. Given the complexity of representing
the global N cycle in ESMs, new efforts to mechan-
istically simulate BNF will require a significant invest-
ment in model development and the simultaneous
collection of appropriate observational datasets
to parameterize and evaluate different model struc-
tures and assumptions. Such developmentsmay intro-
duce many more degrees of freedom and uncertainty
to land models, but will simultaneously present
opportunities to address more scientifically and socie-
tally relevant questions about coupled biogeochemical
cycles.

The lack of real progress in representing N fixation
in models is not surprising—reflecting the fact that
actual rates of BNF in most terrestrial ecosystems are
poorly understood or measured, and in some cases,
completely unknown. Thus, lack of data availability
will significantly hinder the evaluation ofmodel devel-
opments advocated here. The empirical relationships
that inform the BNF parameterizations used in the
majority of land models were formed based on extre-
mely limited data (Cleveland et al 1999, table 1), and
subsequent progress to generate new estimates has
been slow (Cleveland et al 2010, Reed et al 2011). The
lack of a robust method for generating point measure-
ments of symbiotic BNF remains a key limitation to
generating ecosystem level estimates, although some
promising new field sampling approaches may help
overcome this issue (Sullivan et al 2014). Observations
of free-living BNF rates are even more rare than data

Figure 3.Changes in global (a)Nfixation rates, (b) terrestrial
NPP, and (c) terrestrial C storage from fully transient run
from 1850–2100 under RCP8.5 using different structures to
simulate rates of BNF. First, BNF rates were estimated as a
function ofNPP, as currently applied inCLM4.5 (black lines;
Thornton et al 2007). Thus, as plant productivity increases in
response to elevatedCO2 and climate change, BNF also
increases. By contrast, whenBNFwas estimated fromET
(green line, Cleveland et al 1999), terrestrial N inputs do not
keep pacewithNdemand from elevatedCO2. This attenuates
the rate ofNPP increase and reduces the size of the terrestrial
C sink nearly 50 Pg by the end of this century.
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on symbiotic nitrogen fixation rates, and completely
absent from some ecosystems (Reed et al 2011). Nitro-
gen inputs from symbiotic and free-living pathways
likely vary over space and through time (Batterman
et al 2013), and may be subject to different environ-
mental controls. Collectively, these observations pro-
vide a strong theoretical justification for considering
symbiotic and free-living BNF separately in landmod-
els (Wang et al 2010, Hayes et al 2011, Thomas
et al 2013a). For example, in the terrestrial ecosystem
model (TEM), Hayes et al (2011) add N from symbio-
tic BNF to vegetation N pools, while free-living inputs
contributing to soil N pools. Similar approaches may
be feasible in the near-term with CLM; although we
stress that more attention needs to focus on evaluating
the C-cycle implications of such structural changes in
models.

Model response uncertainties extend beyond
representations of N fixation and generate wide varia-
tion in C cycle projections both among and within
models (Jones et al 2013). For example, multi-model
analyses illustrate six-fold variation in steady-state soil
C pools among models represented in the CMIP5
archive, and highly uncertain soil C responses through
the 21st century (Todd-Brown et al 2013, Exbrayat
et al 2014, Todd-Brown et al 2014). Uncertainty
within the parameter space of a single land model can
generate uncertainty estimates similar to multi-model
ensembles (Exbrayat et al 2013). Finally, alternative
model structures generate plausible steady-state soil C
estimates, but simulate very different predictions
about the fate of soil C in a changing world (Wieder
et al 2013, Sulman et al 2014, Wieder et al 2015b).
Existing mathematical techniques, generally known as
model-data fusion, can help improve model predic-
tions and reduce model response uncertainty by: (1)
estimating model parameters that best fit observa-
tions, and quantifying their associated uncertainty; (2)
improving the model state through data assimilation;
and (3) identifying key data deficiencies and model
development needs (Wang et al 2009, Williams
et al 2009, Dietze et al 2014, Hararuk et al 2014, Luo
et al 2014). Although these techniques provide robust
ways to constrain model parameters for interpolation,
theymay not provide reliable insight into how biologi-
cally driven processes may respond to environmental
change as they overlook the theoretical underpinnings
and structural assumptions responsible for process-
level representation in particular models. Structural
errors can more formally be identified—but not
necessarily attributed—with recursive prediction
error algorithms (Lin and Beck 2007), although to our
knowledge similar approaches have not been applied
to ESMs. Our results indicate that considerations of
alternative model structures are critical to improving
both the theoretical understanding of important bio-
geochemical processes (like BNF) and the accuracy of
C cycle projections. As an increasing number of mod-
els represent C–N biogeochemistry, structural

uncertainties associated with the representation of N
inputs, transformations, uptake, and losses need to be
evaluated.
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