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Abstract
Köppen bioclimatic classification relates generic vegetation types to characteristics of the interactive
annual-cycles of continental temperature (T) and precipitation (P). In addition to predicting possible
bioclimatic consequences of past or prospective climate change, a Köppen scheme can be used to
pinpoint biases inmodel simulations of historicalT andP. In this study aKöppen evaluation of
CoupledModel Intercomparison Project (CMIP) simulations of historical climate is conducted for
the period 1980–1999. Evaluation of an example CMIP5model illustrates how errors in simulating
Köppen vegetation types (relative to those derived fromobservational reference data) can be
deconstructed and related tomodel-specific temperature and precipitation biases.Measures of CMIP
model skill in simulating the reference Köppen vegetation types are also developed, allowing the
bioclimatic performance of aCMIP5 simulation ofT andP to be compared quantitatively with its
CMIP3 antecedent. Although certain bioclimatic discrepancies persist acrossmodel generations, the
CMIP5models collectively display an improved rendering of historicalT andP relative to their CMIP3
counterparts. In addition, the Köppen-based performancemetrics are found to be quite insensitive to
alternative choices of observational reference data or to differences inmodel horizontal resolution.

1. Introduction

Future deviations of temperature or precipitation
from today’s climatological normals may severely
endanger multitudes of the Earth’s living organisms
(e.g.Williams et al 2007, Garcia et al 2014). Vegetation
species are especially threatened, since they cannot
easily migrate in response to changes in climate
(Thomas et al 2004, Thuiller et al 2005, Jiang et al 2013,
Xu et al 2013).

Wladimir Köppen (1900) was the first to system-

atically quantify perceived relationships between the

climatological annual cycles of continental tempera-

ture and precipitation (hereafter, T and P) and asso-

ciated generic vegetation types inhabiting different

regions (e.g. tundra vegetation, evergreen or decid-

uous forests, grasslands, etc). Variousmodifications of

Köppen’s initial classification scheme were later intro-

duced by Köppen and Geiger (1930), Trewartha

(1968), and Lamb (1972), for example. Other
researchers have attempted to improve on Köppen’s
methodology, for instance by considering plant phy-
siological factors in defining the operative climatic
variables (e.g. Holdridge 1947, Thornthwaite 1948,
Prentice 1990, Fedema 2005, Jolly et al 2006) or by
applying statistical clustering techniques to more pre-
cisely define the boundaries of ecoregions whose cli-
mate characteristics evolve in time (Hargrove and
Hoffman 1999, Hoffman et al 2005). In common with
Köppen classification, these alternative schemes
implicitly assume that the geographical distribution of
dominant vegetation types is both in equilibriumwith,
and largely determined by, the climate state. Instead,
probabilistic approaches such as that of Brovkin et al
(1997) allow for the coexistence of several vegetation
types in the same region that have different prob-
abilities of occurrence which may vary continuously
under changing climate conditions.
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In spite of their shortcomings from an ecological
perspective, Köppen and alternative deterministic
schemes have proved very useful for identifying the
first-order bioclimatic consequences of past climate
change (Guetter and Kutzbach 1990, Wang and Over-
land 2004, Gerstengarbe and Werner 2009, Rubel and
Kottek 2010, Chen and Chen 2013) or of prospective
future climate change inferred from simulated projec-
tions of T and P under diverse greenhouse-gas emis-
sions scenarios (Leemans et al 1996, de Castro
et al 2007, Diaz and Eischeid 2007, Gao and
Georgi 2008, Roderfeld et al 2008, Jylhä et al 2010, Feng
et al 2012, 2014; Hanf et al 2012, Gallardo et al 2013,
Mahlstein et al 2013, and Elguindi et al 2014). It is also
noteworthy that Mahlstein et al (2013), Elguindi et al
(2014), and Feng et al (2014) have conducted such stu-
dies using future-climate projections provided by the
most recent generation of global coupled ocean-atmo-
sphere climate model entries in phase 5 of the Coupled
Model Intercomparison Project (CMIP5), described by
Meehl andBony (2011) andTaylor et al (2012).

For projections of future climate to be credible,
however, models must demonstrate an ability to accu-
rately simulateT and P in the historical climate record.
Early applications of Köppen schemes for evaluating
the performance of particular climate models were
reported by Manabe and Holloway (1975) and Loh-
mann et al (1993). More recently, Gnanadesikan and
Stouffer (2006) (hereafter, ‘G and S’) used a Köppen
scheme to evaluate selected simulations of late-20th
century continental climate rendered bymultiple cou-
pled ocean-atmosphere global climate model
(AOGCM) entries in Phase 3 of the Coupled Model
Intercomparison Project (CMIP3, see Meehl
et al 2007). G and S pointed out that a model bias in T
or P in one region may not have the same biological
consequences as in another. They emphasized that, for
climate models to provide useful bioclimatic predic-
tions, they must correctly simulate specific thresholds
of T and P that determine the natural regional bound-
aries of different vegetation types.

The present study aims to extend the work of G
and S by providing an updated Köppen evaluation of
CMIP5 simulations of the recent historical climate.
(Elguindi et al 2014 also evaluate the CMIP5 historical
climate simulations, but instead employ a revised
Thornthwaite bioclimatic scheme.) We conduct our
evaluation by comparing the Köppen mappings of
vegetation types derived from each CMIP5 simulation
with those obtained from observational reference
values of T and P. To illustrate typical bioclimatic
strengths and weaknesses of the models, we discuss
detailed results for an example CMIP5 model simula-
tion and that of its CMIP3 antecedent. In addition, we
show how model errors in rendering Köppen vegeta-
tion types may be deconstructed to reveal the char-
acter of corresponding biases in regionalT andP.

A secondary goal of our study is to compare the
bioclimatic performance of the CMIP5 models with

that of their CMIP3 antecedents. This is an important
exercise, since the collective improvement or dete-
rioration of CMIP models impact periodic assess-
ments of the Intergovernmental Panel on Climate
Change (e.g. IPCC 2007, IPCC 2013), which rely heav-
ily on the CMIP simulations of historical or future cli-
mate. To this end, we develop bioclimatic measures to
quantify the performance of the CMIP3 and CMIP5
simulations of T and P relative to observational refer-
ence data.We also conduct a preliminary investigation
of the effects of observational uncertainty, and of the
impact of model horizontal resolution on these simu-
lation performancemeasures.

Subsequent sections describe the methods and
data employed (section 2) and the salient model-eva-
luation results (section 3). We offer concluding
remarks in section 4, and discuss additional technical
details in a supplementary material (SM) appendix
available at stacks.iop.org/ERL/10/064005/mmedia.

2.Methodology and data

A Köppen classification scheme identifies generic
vegetation types associatedwith regional climate zones
defined by characteristics of the annual cycles of T and
P (e.g. the value of maximummonthly temperature or
the season of maximum precipitation). A Köppen
vegetation type thus embodies the interplay of the
amplitude and seasonal phase of the associated
regionalT andP annual cycles.

Because variants of Köppen classification define
generic vegetation types somewhat differently, one
should choose a scheme that is appropriate for evalu-
ating the CMIP models. For example, the Köppen–
Geiger classification differentiates some 30 vegetation
types (Kottek et al 2006, Peel et al 2007)—probably too
many for practical application on the coarse hor-
izontal grid (resolving only several degrees latitude/
longitude) that is typical of a CMIPmodel.

We instead adopt the scheme that G and S
employed, which distinguishes 14 regional climates and
associated vegetation types, but still sets a challenging
standard for model evaluation. Choosing the G and S
scheme also permits their initial evaluation of selected
CMIP3 models to be extended consistently to the cur-
rent-generation CMIP5 models. The criteria defining
the 14 generic vegetation types and their associated
regional climates are listed in table 1. Because these
vegetation types are rather ambiguously described (e.g.
‘evergreen forest’, ‘evergreen broad-leaf forest’, etc),
hereafter we will refer to the vegetation types by their
corresponding Köppen regional climate designations
(Dc,Cw,Cs, etc). Further details of theG and SKöppen
scheme are discussed in the SMappendix.

By applying the defining criteria of table 1, the 14
vegetation types can be mapped from observations of
the climatological annual cycles of regional T and P.
Because fully global, satellite-based estimates of T and
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P were not available prior to 1979, and because the
CMIP3 historical climate simulations did not extend
past the year 2000 (Meehl et al 2007), we focused on
the 20 year climatological period 1980–1999. Observa-
tionally based estimates of climatological monthly
continental T for this 20 year period were obtained
from the National Center for Environmental Predic-
tion/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis surface air temperature
field (Kalnay et al 1996), and climatological monthly

continental P amounts from the Global Precipitation
Climatology Project (GPCP) data set (Adler
et al 2003).

The vegetation types of table 1, derived from the
chosen observational estimates of T and P (hereafter
referred to as the ‘OBS’ vegetation reference) are map-
ped on a 72× 144 (2.5º× 2.5º) grid in figure 1(a). It is
seen that the climate zones A to E in figure 1(a) align
roughly according to latitude, but their respective clas-
ses/subclasses and associated vegetation types display

Table 1.Köppen climate types (and associated vegetation-type description), with their corresponding continental temperature/precipita-
tion (T/P) defining criteria, afterGnanadesikan and Stouffer (2006). (See further explanation in section S1 of the supplementarymaterial).

*Here Tmin,max,avg are, respectively, the minimummonthly, maximummonthly, and annual-average continental temperature T in degrees

Celsius (C). Pmin,max,year are theminimummonthly, maximummonthly, and annually integrated continental precipitation P in centimeters

(cm). The dimensionless precipitation seasonality index Poff is set to a value of 0 if > 30% of Pyear falls in winter, to 7 if there is no distinctly

wet season, and to 14 if > 30%of Pyear falls in summer.
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substantial longitudinal variation. For example, tun-
dra (Et) and boreal forest (Dc) dominate northern
Eurasia, but also the Tibetan plateau. Desert (BW) and
semi-arid (BS) vegetation types occupy subtropical
Africa and central Asia, but also intrude in ‘rain sha-
dows’ to the east of the Rockies and Andes, and to the
north of the Himalayas. Where subsiding air dom-
inates the continental interiors of southern Africa and
Australia, desert (BW) and semi-arid (BS) vegetation
coexist with temperate types that occupy wetter

regions nearby. Tropical vegetation (Af, Am, Aw)
populates southern and southeastern Asia, as well as
Amazonia and equatorial Africa. Over North America,
tundra (Et) and boreal forest (Dc) coexist with broad-
leaf forests (Dab, Cs, Cfa), while semi-arid (BS) and
desert (BW) vegetation dominates the southwest US
and Mexico. A patchwork of temperate forests (Cs,
Cw, Cfa, Cfb, Cfc) also occupy portions of South
America, Africa, Australia, Europe, and China—not-
withstanding the absence of forests resulting from

Figure 1.Themapping of 14Köppen vegetation types after Gnanadesikan and Stouffer (2006), on a 72 × 144 (2.5 × 2.5º) grid (see
table 1 for type definitions). In (a), the vegetation types (referred to as theOBS reference) are derived fromobservationally based
estimates of themeanmonthly annual-cycle climatologies of continental temperatureT and precipitation P, for the period
1980–1999. In (b) the same vegetation types aremapped according to the 1980–1999 annual-cycle climatologies ofT andP simulated
by theNCARCCSM4 climatemodel, an entry in theCMIP5 intercomparison.
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historical land-clearing practices in many of these
locations.

The OBS vegetation mapping of figure 1(a) serves
as a reference standard against which the G and S vege-
tation types derived from CMIP3/5 historical climate
simulations of T and P can be evaluated. Our study
considers 1980–1999 historical climate simulations of
T and P from 27 CMIP5 models and their 18 CMIP3
antecedents (for the same modeling groups). In many
cases, a CMIPmodel producedmultiple realizations of
historical climate that were usually distinguished by a
different specification of the initial conditions of the
model’s coupled ocean-atmosphere state. In such
cases, we arbitrarily chose only the first in a series of
these realizations (denoted as ‘run 1’ of a CMIP3mod-
el’s 20th Century (‘20c3m’) experiment, or ‘r1i1p1’ of
a CMIP5 model’s ‘historical’ experiment—see web
address http://cmip-pcmdi.llnl.gov/cmip5/docs/
cmip5_data_reference_syntax_v0-25_clean.pdf for
notational details on the CMIP5 realizations). All cho-
sen simulations were mapped to the same 72 × 144
grid as that of theOBS reference. Detailed information
on technical features of individual CMIP3modelsmay
be obtained at web address www-pcmdi.llnl.gov/ipcc/
model_documentation/ipcc_model_documentation.
php, and for individual CMIP5 models at http://es-
doc.org. The CMIP3/5model names, their native hor-
izontal grid resolutions, and the associated modeling
groups are listed in table 2.

3. Köppen evaluation results

3.1. Vegetationmappings
Köppen vegetation maps such as those shown in
figure 1(a) were derived for each of the CMIP3/5
model historical simulations. As an illustrative exam-
ple, we focus on the simulation of the widely used
Community Climate System Model Version 4
(CCSM4), a CMIP5 entry. The CCSM4 vegetation
mapping (figure 1(b)) displays strengths and weak-
nesses that are typical ofmany other CMIPmodels.

In general, the CCSM4 vegetation types replicate
salient features of the OBS mapping (figure 1(a)), but
with differences in position and areal extent. Ef and Et
types are generally well-simulated, with the exception
of Alaska. Marked discrepancies include the constric-
tion of desert (BW) and semi-arid (BS) vegetation
areas in the lee of the Rockies, Andes, and Himalayas,
as well as overMexico and in the southern African and
Australian interiors, where they are displaced in many
regions by temperate vegetation types (Cw, Cfa). In
central and eastern Europe also, temperate broadleaf
forests (Cfb) erroneously encroach on deciduous
cold-winter forests (Dab). Some discrepancies in
simulated vegetation types occur elsewhere, such as
Amazonia and equatorial Africa, where the divisions
between different types of tropical forests (Af, Am,
Aw) are notwell reproduced.

3.2.Deconstruction of simulation biases
Because Köppen vegetation maps are built up from
characteristics of the annual-cycle climatologies T and
P (e.g. fields of Tmax/min, Tavg, Pmax/min, Pyear, Poff—see
table 1), we can readily deconstruct the specific biases
in modeled T and/or P that are responsible for
distinctive regional vegetation errors. Here, the
CCSM4 simulation of the vegetation map in
figure 1(b) again provides an illustrative example. The
more egregious CCSM4 vegetation-type errors (rela-
tive to the OBS standard in figure 1(a)) tend to occur
in the drier Köppen climatic zones such as leeward of
topography or over southern Africa and the Australian
interior, where the annual accumulation of precipita-
tion Pyear is excessive for these regions (not shown).
Other CCSM4 dry-zone errors over central Europe
and Mexico instead result from an interplay of the
biases inT andP.

For example, we deconstruct the CCSM4 T and P
biases over Mexico in figure 2. The modeled vegeta-
tion types (figure 2(a)) are quite different from those
seen in the OBS reference (figure 2(b)). In CCSM4,
there is a dearth of semi-arid (BS) vegetation that
appears in the OBS mapping over central Mexico;
instead, temperate vegetation types (Cfa and Cfb,
denoted by shades of green) occupy these model grid
cells. In panels 2 (c) and (d), the CCSM4–OBS differ-
ences in annual-average temperature (ΔTavg) and in
annually integrated precipitation (ΔPyear) are shown.
In some locations, the CCSM4 simulation of Pyear
exceeds that of theOBS reference by∼90 cm, while the
modeled Tavg falls below that of the OBS by ∼4 C. By
examining monthly T and P, it is found that both the
CCSM4 T deficits and P excesses over Mexico are pre-
sent throughout the year, but are most extreme in
May–July (not shown).

In addition, there are sizeable temporal phase
errors in the modeled precipitation, as displayed by a
field of the seasonality index Poff (see table 1 and SM
section 1) for the CCSM4 (figure 2(e)) that contrasts
with the observed Poff (figure 2(f)), notably over cen-
tral Mexico. Here, instead of a pronounced summer
peak in the observed P (Poff = 14) coinciding with
Tmax, CCSM4 precipitation is distributed more evenly
over the entire year (Poff = 7). Hence, the model’s
maximum and annual-averages temperatures Tmax

and Tavg are both depressed relative to observations
(figure 2(c)). In consequence, the simulated Köppen
estimate of potential evaporation Ep = (Tavg + Poff)
over Mexico (see SM section S1) is substantially smal-
ler than that for the OBS, and the defining criteria for
semi-arid vegetation BS (Ep < Pyear < 2 Ep, from
table 1) is not satisfied (since simulated Pyear > 2 Ep).
Instead, temperate broadleaf forest types Cfa and Cfb
(figure 2(a)) erroneously displace much of the Mex-
ican semi-arid (BS) vegetation (figure 2(b)) in loca-
tions where the model’s depressed annual Tmax

satisfies the corresponding temperate criteria (see
table 1).
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3.3. Bioclimatic performancemetrics
For objective comparison of CMIPmodel simulations,
it is necessary to develop quantitative measures of
bioclimatic performance. For example, we define a
vegetation ‘hits’ metric h(vi) as an area-weighted
measure of the percentage of one-to-one matches of
each model-derived vegetation type with the corre-
sponding OBS type vi (where i= 1 to 14) in each grid
cell. Here h(vi) is weighted by the grid-cell areas which
(given the convergence of the meridians toward the
pole) decrease as the cosine of the latitude.

In effect, the metric h constitutes the diagonal of a
hits matrix H(vi, vj) that relates occurrences of model
vegetation type vj in grid cells where the observed
(OBS) vegetation type is vi. In figure 3, hits matrices
are shown for the CCSM4 historical climate simula-
tion and that of its CMIP3 antecedent, the CCSM3
model. The color-coded model-OBS hits percentages
h(vi) for each OBS vegetation type vi are arrayed along

the matrix diagonals. The off-diagonal patches repre-
sent the model ‘misses’ in vegetation type, where their
vertical distances from the diagonal broadly indicate
the degree of mismatch with the OBS vegetation types.
Overall, the CCSM4 simulation displays fewer misses
in vegetation type than theCCSM3.

The hits metric h is a stringent measure of a mod-
el’s bioclimatic performance, since slight but con-
sistent errors in the spatial locations of simulated
vegetation types can have a sizeable negative impact. A
more ‘forgiving’ performance metric instead com-
pares the percentage of total land area a(vi) occupied
by each simulated vegetation type vi with that of the
corresponding OBS reference vi, regardless of whether
there is a one-to-onematch of vegetation types in each
grid box.

Both these metrics are plotted for the CCSM3 and
CCSM4 simulations in figure 4. For the two simula-
tions, the hits percentages tend to be higher for

Table 2. Selected participating CMIPmodeling groups (and home countries) listedwith associated climatemodels (and their native hor-
izontal grids, expressed as the number of latitudes × longitudes). Globally aggregated performance scoresVH andVA (optimal values =
100%) also are listed for eachmodel’s simulation of historical climate evaluated relative to theOBS reference (see text for further details).
VH andVA scores are shaded greenwhere CMIP5model scores improve on those from theCMIP3 antecedentmodel(s).
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vegetation in the Polar, Boreal, and Temperate (E, D,
and C) zones than in the Arid (B) or Tropical (A)
zones (figure 4(a)). Both CCSM3 and CCSM4 display
particular weaknesses in matching the locations of the
semiarid (BS) and the moist tropical (Am) vegetation
types, with CCSM3 performing somewhat better for
BS, andCCSM4 forAm. For themajority of vegetation
types, however, the hits percentages are higher for
CCSM4 than for CCSM3.

The aggregate percentage of total land area a(vi)
occupied by different OBS vegetation types vi (black
line in figure 4(b)) ranges widely, with Evergreen Bor-
eal Forest (type Dc) occupying the largest percentage
area (∼17%), and Temperate Needle-Tree Forest
(Cfc) the smallest (∼1%). Semiarid (BS), desert (BW),

and tropical dry (Aw) vegetation types also cover com-
paratively large (∼11–16%) percentage areas. Both the
CCSM3 and CCSM4 simulations display good agree-
ment with the OBS tropical (Af, Am, Aw) vegetation
areas. The close matching of the simulated moist tro-
pical (Am) vegetation area with that of the OBS
appears to result from compensating errors, with too
little of this type being simulated over Amazonia, and
too much over equatorial Africa. This fortuitous
matching of totalAm areas stands in contrast to a rela-
tively low hits percentage (figure 4(a)), evidenced
most clearly by the erroneous spatial displacement of
theAm type over Amazonia (figure 1(b)).

Both CCSM models also under-predict desert
vegetation areas (BW), as noted in section 2. In

Table 2. (Continued.)
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addition, CCSM4 under-predicts the area of the semi-
arid (BS) vegetation, in agreement with a markedly
low hit percentage for this type (figure 4(a)). However,
CCSM4matches Polar, Tundra, and Boreal Forest (Ef,
ET, Dc, and Dab) vegetation areas much better than
CCSM3. Bothmodels reproduce temperate vegetation
areas comparatively well, but with CCSM4 tending to
over-predict Cw, and Cfa types (figure 4(b)). The
CCSM4 simulation better reproduces the majority of
OBS vegetation areas, however.

In order to assess the overall bioclimatic perfor-
mance of each CMIP model, measures that are aggre-
gated across all 14 vegetation types vi are also

necessary. For example, aggregate performance scores
VH and VA can be derived from the vegetation-spe-
cific indicesh(vi) and a(vi):

v i vVH h h( ) / ( ) /14, (1)
i

i

i i

i∑ ∑ ∑= =

VA 100 , (2)
i

i∑ Δ= −

where ΔI signifies the model-OBS difference in a(vi)
percentage.

Note that both VH and VA have optimum values
of 100%.

Figure 2.Deconstruction of CCSM4-OBS differences inKöppen vegetation types overMexico. Regional vegetation types for the
CCSM4 simulation are displayed in (a) and those for theOBS standard in (b). CCSM4differences in annual average temperature
ΔTavg from that of theOBS are shown in (c) and differences in accumulated annual precipitationΔPyear in (d). The field of the
precipitation seasonality index Poff is shown for theCCSM4 simulation in (e) and for theOBS reference data in (f). Blue areas denote
where Poff = 0 (predominantly wintertime precipitation), red areas where Poff = 14 (predominantly summertime precipitation), and
green areas wherePoff = 7 (no distinct seasonality in precipitation). See table 1 for notational definitions.
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The VH score measures an aggregate agreement
in both vegetation type and location. In similar eva-
luative studies such as that of Elguindi et al (2014) this
agreement is instead expressed by a kappa statistic
(Cohen 1960, Monserud 1990, Prentice et al 1992).
Although VH and kappa both attempt to measure
overall agreement between two fields of vegetation
types, we would point out several basic differences in
these measures. Our study’s objective is to measure
the area-weighted, gridbox-scale agreement of each
modeled vegetation typewith that of the OBS reference
vegetation field, expressed in the area-weighted hits
metric values h(k). Thus, we implicitly treat the OBS
reference vegetation field as a ‘truth’ target that a
simulation of vegetation types matches according
to its h(k) values. The VH aggregate score then is

built up by averaging a simulation’s h(k) over all
vegetation types. The kappa statistic, as implemented
by Elguindi et al (2014), does not implicitly treat the
vegetation reference as a truth target. The kappa sta-
tistic also is strictly an aggregate measure of agree-
ment, and is not built up from any vegetation-specific
measure, nor are vegetation types area-weighted.
Finally, unlike the VH score, the kappa statistic
attempts to account for chance occurrences of agree-
ment in the vegetation fields, and so kappa is con-
sidered a very conservativemeasure.

Table 2 lists theVH andVAmetrical values (roun-
ded to the nearest percent) for the CMIP3 and CMIP5
simulations. For example, the overall performance of
the CCSM4model (VH= 68,VA= 84) is substantially
better than that of CCSM3 (VH= 62 andVA= 73).

Figure 2. (Continued.)
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Adjacent to the CCSM4 results in table 2, perfor-
mance scores are listed for different versions of the
successor Community Earth System Model (CESM1)
which includemore complex representations of atmo-
spheric radiation and cloud-aerosol interactions than
CCSM4 (see www.cesm.ucar.edu/models/cesm1.0/
notable_improvements.html and linked pages). In
addition, emissions of biogenic aerosols and their
deposition on ice, snow, and vegetation are treated in
the CESM1-FASTCHEM,while the CESM1-WACCM
simulates the stratosphere at finer vertical resolution
(although at only half the horizontal resolution of the
other CESM1 model versions—see table 2). CESM1-
BGC also predicts variations in the global carbon
cycle, including flux exchanges between ocean, land,
and atmosphere, as well as related variations in

vegetation types and areas. Note, however, that in the
CMIP5 historical climate experiments, all such car-
bon-cycle prognostics are ‘switched off’. Nevertheless,
for such an Earth System Model (ESM), the Köppen
evaluation subjects the simulation ofT and P to careful
scrutiny, as a prerequisite for a realistic simulation of
the land’s carbon cycle and vegetation cover.

The simulations of all the CESM1 historical simu-
lations display biases in vegetation types (not shown)
that are qualitatively similar to those of the CCSM4
(figure 1(b)). The performance scores VH and VA for
the CESM1-BGC and CESM1-FASTCHEM–despite
the greater complexity of their physical-process repre-
sentations—also are similar to those of the CCSM4
(table 2). (The VH and VA scores for the CESM1-
CAM5-1-FV2 are somewhat lower than CCSM4s, and

Figure 2. (Continued.)
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are lower still for CESM1-WACCM; but theWACCM
version, having only half the horizontal resolution of
its companion models, probably suffers an inherent
disadvantage in such a comparison—see also section
S3.1 of the supplementary material on the effects of
model horizontal resolution.) Performance scores for
other ESMs that are analogous to CESM-BGC in
table 2 (e.g. CanESM2, GFDL-ESM2G, GFDL-
ESM2M, HadGEM2-ES, INM-CM4, MIROC-ESM,
MIROC-ESM-CHEM, MPI-ESM1-LR, and

NorESM1-M) are also close to those of the less com-
plex CMIP5 counterpart(s) from the same modeling
group.

Additional salient model performance results in
table 2 are summarized as follows. For the CMIP3
simulations, the VH score ranges between values of
32–66, and for CMIP5, between 56 and 70. In most
cases, the VH scores for a particular CMIP5 model
simulation roughly equal, or in many instances
exceed, those for its CMIP3 antecedent (see green-

Figure 3.Comparison of the vegetation ‘hits’matrixH for historical climate simulations of theCCSM3model in (a) and of the
CCSM4model in (b). Along eachmatrix diagonal, the color of a cell indicates the hitsmetric h(vi), the area-weighted percentage of
model agreement with the correspondingOBS vegetation type vi. Off-diagonal cells identifymodel ‘misses’ in vegetation type, and
their vertical distances from the diagonal indicate the degree of themodel-OBS disparity for each vegetation type. Patch color of off-
diagonal cells indicates the percentage of area that are vegetation ‘misses’, where the sumof each vertical column, including the
diagonal element, is 100%. The sumof each row, displayed to the right of thematrix, is the percentage area of vegetation type vj
represented in themodel, where, values <100% indicate an under-prediction of a particular vegetation type in themodel, and values
>100% an over-prediction.
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shaded cells in table 2). Notable examples of such
improvedmodel performance include the simulations
by BCC-CSM1-1, CNRM-CM5, GFDL-CM3, GISS-
E2-H, GISS-E2-R, IPSL-CM5A-LR, IPSL-CM5A-Mr,
MIROC4h, andNorESM1-M.

A collective improvement in the CMIP5 models
relative to their CMIP3 counterparts is also evidenced
in multi-model averages of the respective hits index h
(vi), shown in figure 5. However, the CMIP5 improve-
ment mostly occurs in the vegetation types of the Bor-
eal (D) and Temperate (C) climate zones. The
collective VH scores of CMIP5 are close to those of
CMIP3 in the Polar (E) and Arid (B) zone, and are
only slightly higher for some Tropical (Am and Aw)
vegetation classes. The persistent difficulties in repli-
cating the dry vegetation (BS and BW) types may be
related to an erroneous ‘drizzle effect’ exhibited by
many climate models, in which simulated precipita-
tion events occur more frequently than observed (e.g.
Stephens et al 2010). From inspection of Köppen vege-
tation maps of individual CMIPmodels, the collective
failure to reproduce the moist tropical vegetation type
(Am) results mainly from erroneous simulation of
precipitation amounts or patterns over Amazonia.

From table 2, it is seen that a model’s VA score
almost always surpasses its VH value. This is as expec-
ted, sinceVHmeasures the overall ability of amodel to
reproduce vegetation types that correctly match the
OBS reference at each grid cell, while VAmeasures its
ability to simulate only the aggregate percentage areas

of vegetation types. In many CMIP5 simulations there
are also improvements in the VA scores relative to
their CMIP3 antecedents, but with a number of excep-
tions to this pattern (note gray-shaded cells in the
rightmost column of table 2). These outcomes imply
that VA is a less consistent measure of overall model
performance thanVH.

3.4. Sensitivity to observational uncertainty and
model resolution
It is possible that our bioclimatic performance metrics
are sensitive to observational uncertainties (e.g. depend-
ing on the choice of observed reference data) or to the
grid resolution of the Köppen vegetation mappings.
However, further investigation (see SM sections S2 and
S3) implies that the bioclimatic performance measures
are quite insensitive to both these factors.

4. Concluding remarks

Our study demonstrates the efficacy of a Köppen-
based bioclimatic evaluation of the collection of CMIP
model simulations of the annual-cycle climatologies T
and P, as critical determinants of habitability for living
organisms. In particular, a Köppen scheme pinpoints
where simulated T and P deviate from values asso-
ciated with observed regional bioclimatic zones.
Because the Köppen vegetation types are derived from
specific characteristics of the annual cycles of T and P,
it is straightforward to deconstruct the particular

Figure 4.Comparison of performancemetrics for theNCARCCSM3 andCCSM4models. In (a), the area-weighted percentage hits
metric h(vi), computedwith respect to theOBS reference, is plotted for theCCSM3 andCCSM4historical simulations. The optimum
valueh(vi) = 100% is shown for comparison. In (b), the vegetation areametric a(vi) is plotted for theCCSM3 andCCSM4 simulations,
in comparisonwith that of theOBS reference.
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simulation biases that produce distinctive regional
vegetation errors. This approach also lends itself to
developing metrics and related graphical depictions of
model strengths and weaknesses in simulating T and
P, and thus for tracking changes inmodel performance
across development cycles.

Our bioclimatic performance evaluation ismoder-
ately encouraging, in the sense that most CMIP5mod-
els display improvements over their CMIP3
antecedents, especially in representing T and P in
high- and mid-latitudes (i.e. Köppen climate zones E,
D and C). It is also reassuring that the performance of
the ESMs compares well with their less complexmodel
counterparts. Moreover, these improvements appear
robust to different choices of observational reference
data and grid resolution.

On the other hand, the CMIP5 simulations agree
with the observational reference vegetation types in, at
most, about 70 percent of the grid cells (seeVH values
in table 2 and S1), and obvious deficiencies remain in
simulating the Arid (B) and Tropical (A) zones. This
harsh appraisal should perhaps be softened somewhat,
however, in view of the generally more accurate
CMIP5 simulations of aggregate areas of Köppen vege-
tation types.

These outcomes highlight the stringency of a Köp-
pen-based regional evaluation of global climate simu-
lations that are mostly implemented at rather coarse
horizontal resolution. Our study suggests, however,
that such regional discrepancies should not be attrib-
uted mainly to resolution deficiencies. Rather, the
lackluster bioclimatic performance of today’s climate
models reflects a collective inability to predict essential
physical characteristics of T and especially of P, whose
realistic simulation requires accurate representations
of frontal dynamics, convection, and topographic
uplift (e.g. Qian et al 2009, Catto et al 2013, Hirota and
Takayabu 2013). In addition, representations of the
complex aerosol-cloud and biogeochemical interac-
tions relevant to cloud microphysics and precipitation

formation have only recently been introduced in some
of today’s climatemodels (e.g. Gettelman et al 2015).

With the advent of the ESMs, climate-biosphere
interactions stand at the forefront of current modeling
efforts. Hence, there is an acute need tomore precisely
simulate details of T and P on regional scales, as an
essential prerequisite for the prediction of the global
carbon cycle, vegetation cover, and related processes.
We thus anticipate that Köppen-based evaluations of
climate simulationswill continue to prove their worth.
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