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Abstract

Resolving the debate surrounding the nature and controls of seasonal variation in the structure and
metabolism of Amazonian rainforests is critical to understanding their response to climate change.

In situ studies have observed higher photosynthetic and evapotranspiration rates, increased litterfall
and leaf flushing during the Sunlight-rich dry season. Satellite data also indicated higher greenness
level, a proven surrogate of photosynthetic carbon fixation, and leaf area during the dry season relative
to the wet season. Some recent reports suggest that rainforests display no seasonal variations and the
previous results were satellite measurement artefacts. Therefore, here we re-examine several years of
data from three sensors on two satellites under a range of sun positions and satellite measurement
geometries and document robust evidence for a seasonal cycle in structure and greenness of wet
equatorial Amazonian rainforests. This seasonal cycle is concordant with independent observations of
solar radiation. We attribute alternative conclusions to an incomplete study of the seasonal cycle, i.e.
the dry season only, and to prognostications based on a biased radiative transfer model. Consequently,
evidence of dry season greening in geometry corrected satellite data was ignored and the absence of
evidence for seasonal variation in lidar data due to noisy and saturated signals was misinterpreted as
evidence of the absence of changes during the dry season. Our results, grounded in the physics of
radiative transfer, buttress previous reports of dry season increases in leaf flushing, litterfall,
photosynthesis and evapotranspiration in well-hydrated Amazonian rainforests.

©2015IOP Publishing Ltd
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1. Introduction

Understanding the seasonal variation in functioning
of rainforests and its controls are requisite for under-
standing how rainforests will respond to climate
change. In situ studies report counter-intuitive seaso-
nal variation in wet equatorial Amazonian rainforests
—higher photosynthetic and evapotranspiration rates
and increased litterfall and leaf flushing during the
Sunlight-rich dry season (Saleska et al 2003, da Rocha
et al 2004, Goulden et al 2004, Rice et al 2004, Hasler
and Avissar 2007, Hutyra et al 2007, Negrén Judrez
et al 2009, Costa et al 2010, Jones et al 2014). Water
limitation during the dry season is alleviated in these
forests through deep roots and hydraulic redistribu-
tion (Nepstad et al 1994, Oliveira et al 2005). Satellite
data, which cover a large area and span a long time
period, support findings of in situ studies—higher
radiometric greenness level and green leaf area during
the dry season compared to the wet season (Xiao
etal 2005, Huete et al 2006, Myneni et al 2007, Samanta
et al 2012, Hilker et al 2014, Jones et al 2014, Maeda
etal 2014). This convergent view of seasonality, parsed
from several studies, shows how sunlight interacts
with adaptive mechanisms to result in higher rates of
leaf flushing, litterfall, photosynthesis and evapotran-
spiration in tropical forests if water limitation is
absent (Wright and Van Schaik 1994, Restrepo-Coupe
etal 2013, Borchertetal 2015, Guan etal 2015).

This community-consensual view was questioned
in recent studies (Galvio et al 2011, Morton
et al 2014). The studies claim that the dry season
greening inferred from passive remote sensing data
resulted from an artificial increase in forest canopy
reflectance at near-infrared (NIR) wavelengths caused
by variations in sun-satellite sensor geometry. Their
analyses of satellite-borne lidar data suggested that
these forests exhibited no seasonal variations in
canopy structure or leaf area. Relying on model simu-
lations to guide and imbue a physical meaning to the
satellite data analysis, the studies conclude that Ama-
zon rainforests maintain consistent structure and
greenness during the dry season.

These contradictory results justify a re-examina-
tion of the same satellite data with the goal of assessing
seasonality in wet equatorial Amazonian rainforests.
In addition to data from NASA’s Moderate Resolution
Imaging Spectroradiometer (MODIS) on the Terra
platform and the Geoscience Laser Altimeter System
(GLAS) instrument onboard the Ice, Cloud and land
Elevation Satellite (ICESat) used in (Morton
et al 2014), we also include data from the MODIS
instrument on Aqua and Multiangle Imaging Spectro-
radiometer (MISR) on the Terra satellite. The MISR
sensor views the Earth’s surface with nine cameras
simultaneously, as opposed to the two MODIS sen-
sors, which are capable of only one view each. This fea-
ture enables the rigorous use of the theory of radiative
transfer in vegetation canopies—the fundamental
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theory that explains from first principles the mechan-
isms underlying the signals generated by the canopy
and measured by a remote sensor (Knyazikhin
etal 2005).

This study is focused on terra firme rainforests in
central Amazonia that are relatively undisturbed by
human activities (supplementary data and methods
section 1, figure S1). The period June to May is treated
as one seasonal cycle as per convention (Huete
et al 2006, Morton et al 2014). It consists of a short dry
season, June to October, and a long wet season there-
after (supplementary data and methods section 1).
The following analysis of satellite borne sensor data
addresses the question at the center of current debate
—did previous studies (Xiao et al 2005, Huete
et al 2006, Myneni et al 2007, Brando et al 2010,
Samanta et al 2012) misinterpret changes in near-
infrared (NIR) reflectance caused by seasonal changes
in sun-satellite sensor geometry (figures S2 and S3) as
seasonal variations in rainforest canopy structure and
greenness (Galvao etal 2011, Morton etal 2014)?

2.Data and methods

A detailed description of methods and data used is
given in the supplementary information available at
stacks.iop.org/ERL/10/064014/mmedia. A brief sum-
mary is provided here. The study region and the
various data analysed in this study are detailed in the
supplementary data and methods section 1-2. The
sun-sensor geometry relevant to the discussion in this
article is presented in the supplementary data and
methods section 3. The theory of remote measure-
ments and evaluation of NIR reflectance angular
signatures (figure 3) and their interpretation is
described in the supplementary data and methods
section 4. A critical look at Morton et al 2014 analyses
of MODIS and GLAS data is presented in the
supplementary discussion. Abbreviations and symbols
are listed in supplementary table S5.

3. Results and discussioin

3.1. Leaf area index seasonality

The seasonal cycle of green leaf area inferred from
satellite data (figure 1(a)) exhibits rising values during
the dry season (June to October), high values during
the early part of the wet season (November to
February) and decreasing values thereafter (March to
May). This seasonal variation of about 20% is imposed
on a base value of Leaf Area Index (LAI, one-sided
green leaf area per unit ground area) of about 5.75, is
greater than the uncertainty of the LAI product (0.66
LAIL Yang et al 2006) and is observed in nearly 70% of
the rainforests in the study domain (figure S4(a)); the
rest lacked valid data. Is this seasonal variation real or a
misinterpretation of changes in satellite-sensor mea-
surements caused by seasonal changes in sun position
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Figure 1. Seasonal variations in green leaf area of central Amazonian rainforests. (a) Seasonal cycles of Terra MODIS leaf area index
(LAI), at-surface photosynthetically active radiation (PAR) from CERES, and TRMM precipitation. The PAR polynomial regression
curve excludes the circled data point. The seasonal profiles represent average values over pixels that exhibited dry season greening in at
least 4 out of 7 seasonal cycles analyzed (63% of all forest pixels). (b)—-(d) Seasonal cycle of LA as in panel (a), contrasted against
seasonal variations in (b) solar zenith angle, (c) sensor view relative azimuth angle and (d) view zenith angle.

in the sky and the manner in which the sensor
measures reflected radiation (‘sun-sensor geometry’)?
The answer requires an understanding of how this
geometry changes during the seasonal cycle, which is
described in the supplementary data and methods
section 3.

The seasonal cycle of leaf area in figure 1(a) cannot
be an artefact of seasonal changes in sun-sensor geo-
metry because the algorithm with which leaf area is
derived explicitly accounts for geometry changes, i.e.
the algorithm is capable of differentiating between
changes in measurements caused by leaf area changes
and those caused by geometry changes (Knyazikhin
et al 1999, Knyazikhin et al 1998). This is also evident
from the fact that the seasonal cycle of leaf area does
not track the seasonal course of either the Sun position
in the sky (figure 1(b)) or the MODIS sensor sampling
(figures 1(c) and (d)). Instead, it tracks independently
obtained observations of seasonal variation in sunlight
(figure 1(a)). This behavior is consistent with the idea
that sunlight acts as a proximate cue for leaf produc-
tion in moist tropical forests if water limitation is
absent (Wright and Van Schaik 1994, Borchert
et al 2015, Guan et al 2015). Thus, relatively high sun-
light levels from absence of clouds during the dry sea-
son cause leaf area to increase, which in turn generates
higher rates of photosynthesis (Saleska et al 2003, Da
Rocha et al 2004, Restrepo-Coupe et al 2013, Gatti
et al 2014). But, photosynthesis becomes decoupled
from sunlight during the early to middle part of the

wet season. This results in increasing rates of photo-
synthesis, which are possibly sustained by still suffi-
ciently high levels of light and increasing leaf
production (Restrepo-Coupe et al 2013). All three
decrease rapidly thereafter. A bimodal seasonal cycle
of LAI reported in one instance could be site-specific
(figure 2 in Doughty and Goulden (2008)) as alternate
in situ evidence does not exist (Restrepo-Coupe
et al 2013, Xiao et al 2005, Asner et al 2000, Carswell
et al 2002, Chave et al 2010, Malhado et al 2009,
Negrén Juarez et al 2009).

3.2. Evidence for seasonality after sun-sensor
geometry correction

The Enhanced Vegetation Index (EVI) is a proven
proxy for the potential photosynthetic carbon fixation
by vegetation (Xiao et al 2005, Huete et al 2006, Brando
et al 2010). It is calculated from satellite-sensor
measurements of reflected solar radiation at three
different wavelength bands. These measurements
depend on sun-sensor geometry, but this dependency
can be eliminated by expressing the measurements in a
fixed geometry (Morton et al 2014, Lyapustin
et al 2012). The EVI calculated from MODIS sensor
measurements in a fixed geometry, i.e. nadir viewing
direction and 45° solar zenith angle, shows a distinct
wet season decrease (figure 2(a)) and dry season
increase (figure 2(b)). These changes are greater than a
highly conservative estimate of the precision in 43% of
the pixels during the wet season and 31% of the pixels

3
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Figure 2. Wet and dry season changes in sun-sensor geometry corrected estimates of leaf area and greenness. Per-pixel changes in
MODIS leaf area index (LAI) and MODIS MAIAC enhanced vegetation index (EVI) from (a) October to March and (b) June to
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in the dry season. Here, the precision is estimated as
the spatial standard deviation of the EVI data in the
study domain. Analogous to EVI, pixel level estimates
of green leaf area show a strong decrease in the wet
season and increase during the dry season. The wet
season decrease (figure 2(a)) suggests net leaf abscis-
sion, i.e. more older leaves dropped than those newly
flushed, and the dry season increase indicates net leaf
flushing (figure 2(b)), resulting in a sunlight mediated
phenological behavior (Myneni et al 2007). The fact
that both EVI and LAI show congruent changes during
the seasonal cycle even though the Sun-sensor geome-
try effect is removed from measurements in different
ways (Knyazikhin et al 1999, Knyazikhin et al 1998,
Lyapustin et al 2012, Hilker et al 2014, Maeda
etal 2014) is particularly noteworthy.

3.3. Evidence for seasonality from multiple sensors
and geometries

Now we turn to satellite-sensor measurements of
reflected solar radiation at the NIR wavelength band,
which are at the heart of the controversy. These
measurements are usually expressed as normalized
quantities called reflectances (supplementary data and
methods section 4.1-4.2). The geometric structure
and radiation scattering properties of the rainforest
canopy determine the magnitude and angular distri-
bution of reflected radiation. The angular signatures of
reflectance are therefore unique and rich sources of
diagnostic information about rainforest canopies
(Diner et al 1999). We first examine NIR angular
signatures from the late dry season (October 15 to 30)
and the middle part of the wet season (March 5 to 20).
The Solar Zenith Angle (SZA) at the time when Terra
(10:30 am) and Aqua (1:30 pm) satellites view the
central Amazonian forests in March and October is
between 20° and 30°. This variation minimally impacts
the shape of angular signatures (supplementary data

and methods section 4.4). MODIS and MISR sensors
sample the rainforests very differently (figures S2(c)-
(f); also see figure S1(c)). However, all the sensors
record a distinct decrease in reflected NIR radiation in
all view directions between October and March with
no change in the overall shape of the angular signatures
(figures 3(a) and (b)). Such a simple change in
magnitude can only result from a change in canopy
properties—this conclusion is based on the physics of
how solar radiation interacts with foliage in vegetation
canopies (supplementary data and methods section
4.3, figures S5(a) and (b)). The EVI, although evalu-
ated from reflectances at NIR, red and blue wavelength
bands, is tightly linked to NIR reflectance (Samanta
etal 2012). Thus, the decrease in sun-sensor geometry
corrected EVI (figure 2(a)) is in agreement with
directly observed decreases in NIR angular signatures
from October to March (figures 3(a) and (b)).

The wet season reduction in greenness is incon-
sistent with the hypothesis of invariant dry season
greenness. Indeed the net loss of leaf area, without a
corresponding net gain elsewhere during the seasonal
cycle, will result in rainforests without leaves in a few
years. If wet Amazonian forests somehow maintain
consistent canopy structure and greenness during the
dry season, then they must be either aseasonal or the
entire seasonal cycle must be confined to the wet sea-
son, but this argument lacks empirical support. The
question then arises whether variations in angular sig-
natures of forest reflectance during the dry season sup-
port this inference?

Therefore, let us now consider NIR reflectances
from early (25 June to 10 July) and the late dry season
(15 October to 30 October) when both sun position in
the sky and sensor sampling vary significantly (figures
S2(a)—(d); also see figure S1(c)). MODIS and MISR
measurements are made at significantly higher SZA in
June (~35°-40°) compared to October (~20°-30°).

4



Environ. Res. Lett. 10 (2015) 064014 JBietal

(@) (b)

0.7 0.5

Terra: Mar, SZA=25.0 (std=4.2)) i\ MODIS Mar, SZA=25.0 (std=4.2") ' MISR

£ 0.6 F ~ ~ ~ Aqua: Mar, SZA=23.9 (std=3.2) ' Oct, SZA=208" (std=3.9") !
g Terra: Oct, SZA=20.8 (std=3.9") 1 E 04 :
o0 ! N4
2 05 | = :
< K !
£ 04 g 03 |
g g !
= 1
= 0.3 é
S g 02 E

0.2 :

— 0.1 . v . . v L y , y
60 e 2120 -100 -80 —60 —40 -20 0 20 40 60 80
ase Angle (Degree) Phase Angle (Degree)

() (d)

0.7 0.5 T T r r T r

Terra: Jnn,SZA=372: (std=3.3:) ' MODIS Jun, SZA=37.2" (std=33") : MISR
g 06 Aqua: Jun, SZA=36.1" (std=3.1") ' Oct, SZA=208" (std=3.9") !
F] Terra: Oct, SZA=20.8 (std=3.9") h E 04 '
2 05}~ " Aquaoc, SZA=304" (std=3.1) ' NS 1
© * '
8 o
g g 03 !
g £ !
] 1
z g o2 :
-1 I~ :
l

Phase Angle (Degree)

S1(c)).

Figure 3. Seasonal changes in angular signatures of near-infrared (NIR) reflectance from three satellite borne sensors. Angular
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The magnitude and shape of angular signatures are
impacted when both canopy properties and SZA vary.
However, a higher or equal reflectance at lower SZA
relative to reflectance at higher SZA always indicates
an increase in leaf area and foliage scattering proper-
ties according to the physics of radiation interaction in
vegetation (supplementary data and methods section
4.4—-4.5, figures S5(c)—(f)). This is observed clearly in
MISR data (figure 3(d)) because this sensor views the
Earth’s surface with nine cameras simultaneously, as
opposed to the two MODIS sensors (figure 3(c)),
which are capable of only one view each (figure S3).
Further, the juxtaposition of the two angular sig-
natures in figure 3(d) is significantly different than
that predicted by theory for the case of identical cano-
pies (supplementary data and methods section 4.6).
Thus, the NIR angular signatures in figure 3(d) indi-
cate a change in vegetation structure (LAI) and green-
ness (EVI) during the dry season.

4. Conclusions

Satellite data indicate a distinct sunlight-mediated
seasonality in leaf area and photosynthetic carbon
fixation over unstressed rainforests in central Amazo-
nia. This seasonal cycle is not an artefact of seasonal
changes in sun position in the sky or how the satellite-
sensor measures the reflected radiation field. The
spatially expansive remote sensing data agree with
available in situ data. A better understanding of how

the rainforests will respond to climate change depends
on future ground campaigns as satellite data can
complement, but not substitute, field data.
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