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Abstract
The sensitivity of regional climate to global average radiative forcing and temperature change is
important for setting global climate policy targets and designing scenarios. Setting effective policy
targets requires an understanding of the consequences exceeding them, even by small amounts, and
the effective design of sets of scenarios requires the knowledge of howdifferent emissions,
concentrations, or forcing need to be in order to produce substantial differences in climate outcomes.
Using an extensive database of climatemodel simulations, we quantify howdifferences in global
average quantities relate to differences in both the spatial extent andmagnitude of climate outcomes at
regional (250–1250 km) scales.We show that differences of about 0.3 °C in global average temperature
are required to generate statistically significant changes in regional annual average temperature over
more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional
warming over half the land surface that is not only significant but reaches at least 1 °C. Asmuch as 2.5
to 3 °C is required for a statistically significant change in regional annual average precipitation that is
equally pervasive. Global average temperature change provides a bettermetric than radiative forcing
for indicating differences in regional climate outcomes due to the path dependency of the effects of
radiative forcing. For example, a difference in radiative forcing of 0.5Wm−2 can produce statistically
significant differences in regional temperature over an area that ranges between 30%and 85%of the
land surface, depending on the forcing pathway.

Introduction

Future pathways or targets expressed in terms of global
quantities such as global average surface temperature
change (GAT), radiative forcing (RF) or atmospheric
concentrations are used to define future scenarios and
play an important role in climate policy and science.
Most prominently, the only internationally agreed upon
policy goal is to limit the increase of GAT to 2 °C above
pre-industrial levels (UNFCCC 2009). Other global
quantity goalshave served to structurepolicydiscussions,
and scientific analysis and assessment have elucidated
conditions associated with particular goals, including
mitigation costs, impacts and adaptation options (Mein-
shausen et al 2009, Huntingford et al 2012, Schaeffer
et al 2012, Frieler et al 2013, Manoj et al 2011, Rogelj
et al 2011, 2014, Sedlacek and Knutti 2014, Oppemhei-
mer et al2014,Clarke et al2014,NRC2011).

These global metrics of future changes are asso-
ciatedwith regional changes in climate that are directly
responsible for impacts, and analyses have focused on
the consequences of different global targets, such as
450 versus 550 ppm CO2 equivalent concentrations
(Clarke et al 2007, Waldhoff et al 2014) or 2 °C versus
4 °C (New et al 2011). However, little analysis has been
devoted to understanding the sensitivity of regional
climate outcomes to marginal variations in global tar-
gets (e.g., exceeding 2 °C by a few tenths of a degree C).
Marginal differences are important for understanding
what the impact consequencesmight be of exceeding a
given global target, including by temporarily (and pos-
sibly intentionally) overshooting it and returning to it
later, whether through mitigation or geoengineering
(Lowe et al 2009,Wigley 2006).

Anticipated marginal differences in regional cli-
mate outcomes also play a central role in the choice of
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future scenarios to run in large, resource-intensive cli-
mate model comparison exercises. In a previous exer-
cise (Coupled Model Intercomparison Project Phase
5, CMIP5; Taylor et al 2012), four scenarios were cho-
sen in part based on the undocumented assumption
that a separation in global radiative forcing levels in
2100 of approximately 2Wm−2 was required for sig-
nificant differences in outcomes (Moss et al 2010). A
new set of scenarios is currently being chosen for a new
comparison exercise (CMIP6; Meehl et al 2014, van
Vuuren et al 2014), and a better-grounded criterion
for forcing separation is essential to this process.

In this study we quantify the sensitivity of regional
climate outcomes to global quantities by drawing on
results of both idealized experiments and realistic for-
cing scenarios from up to 29 climate models from the
CMIP5 database. For a given change in a global metric
like GAT or RF we measure the differences in average
annual temperature and precipitation for individual
grid cells (∼2.5 degrees, or ∼250 km at the equator),
assess their statistical significance (at the 5% level
using a null distribution derived from pre-industrial
control runs), and summarize the pervasiveness of
these changes as the fraction of the Earth’s surface (or
land surface only) significantly affected. Repeating this
for small increments in the global metrics, we derive
an empirical relation between the size of the global sce-
nario differences and the size and significance of the
regional (impact-relevant) differences associated with
them. By using the CMIP5 framework we account for
model uncertainty; in additionwe test the sensitivity of
our results to the use of coarser spatial scales and sea-
sonal rather than annual averages.

Recent studies have explored related questions, in
particular characterizing the ratios of forced signal to
internal variability and the times of emergence of the
forced response under future forcings (Hawkins and
Sutton 2009, 2012, Baettig et al 2007, Deser et al 2012,
Giorgi and Bi 2009, Tebaldi and Friedlingstein 2013,
Mahlstein et al 2012), within a regional perspective.
However these studies have not focused on the ques-
tion of differences between scenarios, nor system-
atically quantified these differences as a function of
global quantities as we do in this study.

In the next section, we present themethodology in
more detail. We then discuss results and their robust-
ness to a number of methodological choices. The last
section concludes, discussing implications as well as
possible extensions and future work.

Methods

We draw on climate model simulations for 5 different
scenarios: an idealized 1% CO2 increase per year
experiment, a 1% CO2 increase per year followed by
stabilization at 1 or 2Wm−2, historical (1850–2005)
emissions of multiple gases and aerosols and land use

change, and the RCP4.5 scenario of future emissions
and land use change that stabilizes at 4.5Wm−2.

We use 29 models from the CMIP5 archive for the
results in the main text from the 1% CO2 increase per
year experiments, and a subset of 19 when comparing
to historical and RCP4.5 results. These 19 models are
the ones that ran RCP4.5 (27 of them are available)
and also reached 2 °C ofΔGATwithin that experiment
(which eliminates 8 of these), a necessary condition in
order to perform the sensitivity analysis to different
baselinewarming levels (see results section). The list of
models is available as supplementary material (avail-
able at stacks.iop.org/ERL/10/074001/mmedia). The
results described for the stabilization experiments at 1
or 2Wm−2 are based on the CESM1model, since sta-
bilized experiments of this type are not available as
part of theCMIP5 experimental design.

We use one ensemble member for each model.
The analysis is developed for each model separately
(i.e. based on a model’s trajectory of global average
temperature change or associated trajectory of RF
levels and corresponding fields of temperature or pre-
cipitation changes at the grid-point scale). We first re-
grid allmodels to a commonT42Gaussian grid (with a
grid spacing of∼2.5 degrees, i.e.,∼250 km at the equa-
tor). We then compute the individual model results in
terms of significance and magnitude of the regional
differences, then aggregate the results through multi-
model summaries (medians and boxplots).

Significance of the changes is computed separately
for the results from each model, with reference to a
null distribution of changes derived from the pre-
industrial control runs available for the individual
model. The null distribution is derived at each grid
point for both annual and seasonal average surface
temperature (TAS) and precipitation (PR) by comput-
ing a large set of twenty-year averages from non-over-
lapping segments of the control run. We calculate
differences between all possible pairs of averages, thus
deriving a distribution of differences that we consider
the reference distribution against which to evaluate the
significance of the twenty-year differences that we
compute from the scenario runs of the same model
(1% CO2 increase per year, transient and stabilized,
historical andRCP4.5).

To compute the differences in the scenario runs,
we consider either the annual time series of GAT for
each individual model integration, or a common time
series of RF levels that can be associated with all mod-
els’ integrations in the case of 1% CO2 increase per
year experiments, or the time series of RF levels asso-
ciated with the CESM1 stabilization experiments. We
choose as a baseline the average of the first 20 years of
the 1% CO2 increase per year integrations for both
GAT and RF or the first 20 years of the other scenario
experiments. When we test the robustness of results to
higher temperature baselines we use the twenty-year
average temperature values at the time when GAT is 1
or 2 °C above those same initial averages.
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For each experiment, the corresponding time ser-
ies of annual GAT or RF is first smoothed with a
twenty-year running average, and then used to deter-
mine the point in time when a given change in those
global quantities is reached.

For the same time, the corresponding twenty-year
average change in surface temperature or precipitation
from the baseline is computed at the grid-cell scale and
its significance tested with respect to the reference dis-
tribution from the control run. For TAS, we consider a
difference to be significant if its value falls in the tail of
the null distribution to the right of the 95th quantile
(akin to a one-sided t-test at the 5% level). For PR, we
consider a difference significant if its value falls in the
tails of the null distribution to the left of the 2.5th
quantile or to the right of the 97.5th quantile (akin to a
two-sided t-test at the 5% level).

Results are aggregated for each model run by mea-
suring the fraction of the Earth’s surface (or land sur-
face only) over which a significant change takes place,
weighing each grid point by its relative area (the cosine
of its latitude). When multi-model results are shown
as maps or through distributions of the magnitude of
regional differences (e.g. figure 4), we first determine
at which locations at least half of the models available
show a significant change, then show themedian value
of surface temperature change or precipitation change
from thosemodels producing a significant change.

For the main results in this paper, as explained,
regional climate outcomes are defined as differences in
average annual temperature and precipitation for
individual grid cells (∼2.5 degrees, or ∼250 km at the
equator), but we also test the sensitivity of results to
the use of seasonal means and to coarser spatial scales.
We assess both the statistical significance and the abso-
lute magnitude of these differences as a function of
incremental changes in global radiative forcing (ΔRF)
and global average temperature increase (ΔGAT).

Results

Sensitivity of regional climate
Summary maps of multi-model ensemble outcomes
for regional annual temperature change above the
baseline period (the first 20 years of the simulations)
derived from the 1% CO2 increase per year experi-
ments show that, as expected, the warming signal is
larger andmore widespread for larger values ofΔGAT,
that it emerges first in the tropics where natural
variability is smallest (Mahlstein et al 2011), and that it
is most pronounced at high latitudes (figure 1). Maps
of outcomes for regional annual precipitation change
show different patterns (figure 2): the signal emerges
first at high latitudes, and eventually emerges in the
equatorial pacific and in the regions of the mid-to-low
latitudes already identified as prone to drying, all of
which is consistent with the already well-documented
response of the hydrological cycle to warming (Held

and Soden 2006). For both variables the regional signal
is larger for larger values of ΔGAT, but regional
outcomes for temperature are much more sensitive to
global temperature or forcing than are outcomes for
precipitation. Strikingly, a ΔGAT of 1 °C creates
pervasive significant changes inmean annual tempera-
tures but produces significant changes in annual
precipitation over only a small fraction of the surface.

Summary distributions of individual models’
behavior (figure 3) show that the spatial extent of the
effect on regional climate increases nonlinearly with
changes in global quantities. We focus on outcomes
for the land surface, which we take to bemore relevant
to a range of environmental impacts than results for
the entire surface (see figure S1 in the supplementary
material for results for the entire Earth’s surface, for
which all our conclusions remain valid). For example,
in order for a majority of models to show a significant
change over at least half of the land surface, ΔGAT
must increase by about 0.3 °C (top left panel), and
ΔRF by about 0.75Wm−2 (bottom left panel). How-
ever, significant change for the entire land surface in
most models has not occurred completely even at 1 °C
ofΔGAT and 2Wm−2ΔRF.

Note that the separation rule of 2Wm−2 de facto
applied to the choice of RCPs for CMIP5 produces sig-
nificant temperature changes over at least 90% of the
land surface. Arguably, many impact analyses could
detect important consequences at much lower
thresholds.

A comparison of the results based on ΔGAT and
ΔRF highlights an important, if perhaps expected,
point: conditioning the analysis on ΔGAT reduces the
uncertainty in the results, since it controls for inter-
model differences in climate sensitivity. Any given
value of ΔRF is associated with different levels of
warming across models due to their different climate
sensitivities, producing larger differences in sig-
nificance levels. As we will discuss below, results based
on ΔRF also turn out to be more sensitive to the shape
of the scenario used in the analysis.

Figure S2 shows similar boxplots for seasonal
changes in temperature for December–January–Feb-
ruary and June–July–August means, and both land-
only and the entire surface. As expected, seasonal
results are slightly different than annual results as a
consequence of the different variability affecting the
seasonalmean quantities, but a difference in GAT of at
most 0.4 °C is sufficient to produce significant differ-
ences in seasonal mean temperature over at least half
the land surface (as opposed to 0.3 °C for annual
means).

Results show that regional precipitation change is
also related nonlinearly to global average temperature
change (figure 3), but that the statistically significant
spatial extent of the effect is much smaller than in the
case of regional temperature outcomes. Pervasive, sta-
tistically significant precipitation changes are not
achieved within the individual models even for ΔGAT
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of 4 °C or ΔRF of 4Wm−2. For ΔGAT of about 2.5 °C,
however, the majority of models show significant pre-
cipitation changes over at least 50% of the land
surface.

Figure S3 shows results for seasonal changes. Here
the criterion to achieve the same significance across the
Earth’s surface as for annual averages is shown to change
by about 1 °C (or more in the case of June–July–August
(JJA) results for land-only), as could be anticipated by
the more volatile nature of precipitation means: warm-
ing of GAT substantially larger than 3 °C is required for
the majority of models to show significant precipitation
changes over at least 50%of the surface.

Inmany impact or adaptation studies it is themag-
nitude of regional climate change to which outcomes
are most sensitive. Figure 4 adds magnitude to extent
in multi-model summary distributions of results,
showing that applying a criterion in terms of magni-
tude of warming can substantially increase the
required difference in global quantities. For example,
if we impose the criterion that at least half of the land
area show a significant warming of at least 1 °C (by at
least half of the models, measured as their median
change), then aΔGATof 0.8 °C is required (left panel).
Compare this to the required 0.3 °C ΔGAT when only
statistical significance of the change is used as a criter-
ion, regardless of magnitude. Figure S4 (left panels)

shows that the same required difference in GATwould
apply to seasonal results.

The magnitude of regional precipitation changes,
in absolute values, remains between 10% and 30% of
the baseline average precipitation for the majority of
the land affected, with only 10% of the surface affected
by changes of 40% or more if warming of global tem-
perature exceeds about 3.5 °C. Figure S4 (right panels)
provides seasonal results, for which changes in regio-
nal precipitation larger than 50% can be expected for
the same large levels of global warming, especially in
December–January–February (DJF).

Figures S5 and S6 of the supplementary materials
provide annual average results for land and ocean area
combined and a breakdown of the precipitation
results into positive and negative changes.

Contrasting the results for precipitation and tem-
perature highlights that regional temperature changes
are likely easier to detect than most other climate out-
comes (which have larger internal variability). Conse-
quently the values of ΔGAT needed to achieve a given
extent of significant regional outcomes for most other
climate variables will be at least as large as those
derived for regional temperature change outcomes,
with the possible exception of some types of extremes
whose changes are expected to be larger than the chan-
ges inmean.

50

0

0

-50

-150 150-50 50-100 100

50

0

0

-50

-150 150-50 50-100 100

50

0

0

-50

-150 150-50 50-100 100

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

Median
   ∆T
  (°C)
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Robustness of results
We tested the robustness of our results in several
respects: averaging regional outcomes over a larger
surface area; the use of a realistic scenario withmultiple
forcings rather than the idealized 1% CO2 increase per
year; the use of a baseline in which some warming has
already taken place; and the use of a radiative forcing
stabilization pathway rather than a continuous increase
in forcing to test the path dependencyof changes.

Results were robust to averaging temperature and
precipitation fields over two increasingly large areas (9
and 25 grid cells, or about 750–1250 km at the equa-
tor; see figures S7 and S8 of the supplementary mate-
rial). As expected, for a given level of ΔGAT, spatially
aggregated output generates a larger spatial extent of
significant regional change, since the spatial averaging
reduces the noise from internal variability and there-
fore allows the signal to emerge more quickly. The
thresholds identified earlier however remain valid for
the two coarser scales considered: in particular, for
temperature, 0.3 °C is still required to achieve sig-
nificant changes over at least half of the land surface,
and 0.8 °C produces a warming of at least 1 °C over
that same portion.

To test the robustness of our results to the use of
realistic scenarios we used historical experiments in
which all forcings (greenhouse gases, aerosols, land
use) change over the length of the simulation, span-
ning the years 1850–2005. The relationships between

ΔGAT or ΔRF and regional outcomes were largely
similar to the results based on the 1%CO2 increase per
year simulations (see figure S9 for boxplot summa-
ries); regionally specific outcomes differed only over
some regions of the Northern Hemisphere, where
changes were less homogeneously significant (see
figure S10, top panels comparing 1%CO2 increase per
year run to historical run results). This result would
seem consistent with the cooling effects of aerosol pre-
cursor emissions in the historical run.

To investigate results with respect to a baseline in
which 1 or 2 °C of warming have already occurred, we
used the historical period combined with RCP4.5. The
relationships between ΔGAT and regional outcomes
(figure S10, bottom panels) are similar to those
derived from the 1% CO2 increase per year runs in
terms of the pattern and extent of significant changes,
with the exception of a smaller extent of statistically
significant temperature differences over Northern
Europe when the baseline is +2 °C. This outcome is
consistent with a slowdown of the Atlantic Meridional
Overturning Circulation, which models simulate at
about that level of warming (+2.5 °C with respect to
pre-industrial; Collins et al 2013).

Lastly, based on experiments conducted with the
NCAR-DOECESM1model (Hurrell et al 2013,Meehl
et al 2013), we tested the sensitivity of the relationship
between ΔRF and regional outcomes to the forcing
pathway by analyzing two scenarios in which CO2
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and 4 °C (bottom) of global average temperature change.

5

Environ. Res. Lett. 10 (2015) 074001 CTebaldi et al



increases at 1% yr−1 and then stabilizes at levels corre-
sponding to 1 or 2Wm−2 of RF for 8 decades (see
figure S11 for a depiction of GAT and RF associated
with the two stabilization experiments). We focus on
changes associated with ΔRF of 0.5Wm−2, which in
CESM1 produces statistically significant temperature
change over 30% of the land surface when measured
relative to the base period in a 1% CO2 increase per
year experiment, as in figure 3. We find that, depend-
ing on where along the two stabilization pathways this
radiative forcing difference ismeasured, the fraction of
land surface experiencing significant change can be as
high as 85%. The fraction increases as the window
within which the radiative forcing difference occurs
moves along the forcing pathway. For example, it
increases to 60% when the window spans the times at
which radiative forcing first reaches 1.5 and
2.0Wm−2. The fraction also increases as the window
widens to include longer periods of stabilization at
constant forcing. For example, it increases to 85%
when the window begins at 1.5 Wm−2 and includes
the entire stabilization period at 2Wm−2. The changes
in GAT associated with these different measures of the
sameΔRF of 0.5 Wm−2 range from 0.31–0.63 °C. This

result is explained by inertia in the climate system
which leads to a delay between reaching a given level of
RF and its climate system consequences, so that stabi-
lization of RF does not translate into an immediate sta-
bilization of GAT (Collins et al 2013). We therefore
emphasize that results based on differences in GAT are
more reliable (less path dependent), as well as more
precise, than those based on differences in RF.

Discussion and conclusions

The approach presented here could be applied to
additional variables and/or tailored to particular
regions of the world. We have used 20-year mean
values of surface temperature and precipitation
because of the common use of these measures in
summarizing forced changes, for example in the
projection chapters of IPCC reports (Collins
et al 2013), as they represent a simple and agreed upon
definition of climatological means. Other measures
and other variables would have produced different
quantitative results, but we propose our analysis of
mean temperature and precipitation as a logical first
step in characterizing regional changes implied by

Figure 3.Multi-model distributions, in the formof boxplots, of the fraction of Earth’s land area showing a statistically significant
change (at the 0.05 level) in annual average surface temperature (left panels) and precipitation (right panels) for different levels of
ΔGAT (top) orΔRF (bottom).Distributions consist of 29 values, one for each of themodels available in the CMIP5 archive running
the 1%CO2 increase per year experiment and the pre-industrial control experiment. The latter is used for determining significance of
the changes.
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different global measures. Our results suggest that
regional outcomes in terms of average surface tem-
perature start to present detectable differences—
beyond internal variability—over a majority of the
land surface, and for most models, starting at about
0.3–0.4 °C ΔGAT depending on whether annual or
seasonal averages are considered. If substantial
changes in regional temperature, rather than simple
statistical significance, are of interest, for example
warming upward of 1 °C locally, changes of at least
0.8 °C in global average temperature are required.
Differences of thesemagnitudes are however not likely
to produce significant changes in regional precipita-
tion over most of the land surface. To achieve that
type of change in annual average precipitation, a
change in GAT of about 2.5 °C is required. Seasonal
changes in precipitation require larger differences, of
about 3.5 °C.

Since other types of variables, measured over dif-
ferent regional and time scales, would likely produce
different quantitative results, we cannot establish an
absolute criterion for the separation of scenarios when
designing future climate model experiments. That
design choice will have to reconcile demands from
impact and mitigation communities with limited
computational resources and time. Our conclusions
regarding regional temperature differences, however,
suggest that for some applications, climate model
simulations based on forcing scenarios that lie
between the existing representative concentration
pathways would be worthwhile to pursue. It is also the
case that emulator techniques (pre-eminent among
which is pattern scaling; Santer et al 1990) are being
proposed in order to interpolate climate model results
between existing climate model simulations. In this
study we do not assess the efficacy of these alternatives

to climate model simulations. It is possible that future
developments of these types of empirical models will
satisfy the needs of the impact andmitigation research
community3, but our results do not speak to the accu-
racy and promise of these methods, as we consider
themoutside the scope of our study.

Results also suggest that for measuring the con-
sequences of exceeding a particular target, or antici-
pating the differences between alternative scenarios,
differences in global average temperature (rather than
radiative forcing) are the best predictor of differences
in regional outcomes. This may appear obvious to part
of the community interested in scenarios, but it is also
obvious that many arguments, choices and debates are
centered around differences in radiative forcing path-
ways and stabilization levels, as was the case in the defi-
nition of the RCPs (Moss et al 2008, 2010). Our results
suggest that a better exploration of the potential impli-
cations of scenario differences could be carried out by
first deriving the global average temperature differ-
ences implied by those different radiative forcing,
which can be easily done by using simple climatemod-
els that do not require large computational efforts.
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