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Abstract
Tropical forests provide global climate regulation ecosystem services and their clearing is a significant
source of anthropogenic greenhouse gas (GHG) emissions and resultant radiative forcing of climate
change.However, consensus on pan-tropical forest carbon dynamics is lacking.We present a new
estimate that employs recommended good practices to quantify gross tropical forest aboveground
carbon (AGC) loss from2000 to 2012 through the integration of Landsat-derived tree canopy cover,
height, intactness and forest cover loss andGLAS-lidar derived forest biomass. An unbiased estimate
of forest loss area is produced using a stratified random samplewith strata derived from awall-to-wall
30m forest cover lossmap.Our sample-based results separate the gross loss of forest AGC into losses
fromnatural forests (0.59 PgC yr−1) and losses frommanaged forests (0.43 PgC yr−1) including
plantations, agroforestry systems and subsistence agriculture. LatinAmerica accounts for 43%of gross
AGC loss and 54%of natural forest AGC loss, with Brazil experiencing the highest AGC loss for both
categories at national scales.We estimate gross tropical forest AGC loss and natural forest loss to
account for 11%and 6%of global year 2012CO2 emissions, respectively. Given recent trends, natural
forests will likely constitute an increasingly smaller proportion of tropical forest GHG emissions and
of global emissions as fossil fuel consumption increases, with implications for the valuation of co-
benefits in tropical forest conservation.

1. Introduction

Deforestation and degradation of tropical forests
constitute the second largest source of anthropogenic
emissions of carbon dioxide after fossil fuel combus-
tion (van der Werf et al 2009). Policy initiatives have
been proposed to reduce the rate of tropical forest loss,
which would have the co-benefit of preserving other
unique tropical ecosystem services such as biodiversity
richness (Jantz et al 2014). The REDD+ mechanism
under the United Nations Framework Convention on
Climate change (UNFCCC) seeks to compensate
developing countries for avoided emissions that would
have otherwise occurred under business as usual
scenarios. To do so, methodologically consistent

baseline estimates of forest carbon stocks and forest
loss area within different forest types are required as a
part of national forest monitoring systems, which is
underlined by the recent decision of the UNFCCC
Conference of the Parties 19 (COP 19) on ‘Modalities
for national forest monitoring systems’
(UNFCCC 2014). Existing estimates of gross carbon
loss derived from carbon stock and forest area loss data
vary greatly (from 0.81 to 2.9 PgC annually (Pan
et al 2011, Harris et al 2012, Achard et al 2014)) with
the greatest variance found between studies that
employ remotely sensed-derived data versus those that
use forest inventory and other tabular reference data.
Aggregate emissions from deforestation based largely
on satellite-derived products are similar (∼0.81 PgC)
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despite regional differences (Houghton 2013) in pan-
tropical carbon density reference data, forest cover
change estimates, and the carbon pools included
(Saatchi et al 2011, Houghton 2013, IPCC 2013,
Mitchard et al 2013,Ometto et al 2014).

For REDD+ purposes, countries are required to
report GHG emissions and removals by different types
of human activities (e.g. forestry, agriculture and other
land use); the extent of these activities is called ‘activity
data’ and is reported in units of area. Activity data are
combined with emissions factors to generate emis-
sions estimates. If amap is to be used to estimate activ-
ity data, its accuracymust be quantified. Good practice
guidance from the Intergovernmental Panel on Cli-
mate Change (IPCC) requires emissions estimates to
neither over- nor under-estimate as far as can be
judged, and to have uncertainties reduced as far as
practicable (IPCC 2003). Methodological guidance
from the Global Forest Observations Initiative (GFOI)
suggests that ‘to satisfy these criteria, compensation
should be made for classification errors when estimating
activity areas from maps and uncertainties should be
estimated using robust and statistically rigorous meth-
ods. The primary means of estimating accuracies, com-
pensating for classification errors, and estimating
uncertainty is via comparisons of map classifications and
reference observations for an accuracy assessment sam-
ple’ (GFOI 2014). To this end, we demonstrate a gen-
eric and cost-effective approach for estimating forest
cover loss activity data that follows good practice gui-
dance (IPCC 2006, GFOI 2014, Olofsson et al 2014).
We achieve this by using an existing forest cover loss
map (Hansen et al 2013) to allocate samples in the
quantification of activity data pan-tropically. Per good
practice guidance, the sample supersedes the map in
the estimation of forest area loss. Themap, however, is
critical in the efficient allocation of the sample popula-
tion and results of the sample-based estimate can be
used to validate the map-based estimate. Probability-
based sample is required tomeet the standard of statis-
tical rigor in estimating forest cover loss area and asso-
ciated uncertainty; the demonstrated approach
represents the most rigorous assessment of pan-tropi-
cal forest loss activity data to date.

Gross carbon loss due to removal of aboveground
forest biomass in 2000–2012 is quantified in a ‘stratify
and multiply’ (stock-difference) approach (Goetz
et al 2009) in which area of forest loss is first estimated
and then the aboveground carbon (AGC) density
associated with loss areas quantified. In this study, the
strata of the ‘stratify and multiply’ approach were for-
est carbon stock strata based on canopy structure as
defined by percent cover (Hansen et al 2013) and
height, and intactness (Potapov et al 2008). Within
each forest carbon stock stratum, forest cover loss and
no loss sub-strata were defined using a pan-tropical
subset of mapped global forest cover loss from 2000 to
2012 (Hansen et al 2013). The area of forest loss was
estimated from a probability sample for which forest

loss was determined using visual interpretation of
Landsat time series and high resolution imagery from
Google EarthTM at each sample location. The AGC
density estimates were obtained based on field-cali-
brated LIDAR estimates of aboveground biomass
(Baccini et al 2012) and associated with the carbon
stock strata. This approach was prototyped earlier at
the national scale for the Democratic Republic of the
Congo (Tyukavina et al 2013), and can be imple-
mented at various geographic scales given the appro-
priate data on forest type, forest loss and carbon
density, which makes it potentially useful for national
forest monitoring systems. The data used in the analy-
sis are freely available, obviating the need for commer-
cial data sets that are often too costly and consequently
impractical to incorporate into operational national-
scale forestmonitoring programs.

This study defines forest as any vegetation taller
than 5 m with canopy cover ⩾25% (both natural for-
ests and plantations); this corresponds to the forest
definition agreed under the UNFCCC
(UNFCCC 2006) except for the minimum area and
potential for growth criteria: ‘Forest’ is aminimumarea
of land of 0.05–1.0 hectare with tree crown cover (or
equivalent stocking level) of more than 10–30 per cent
with trees with the potential to reach a minimum height
of 2–5m at maturity in situ.’ Forest cover loss is
defined as any stand-replacement disturbance (Han-
sen et al 2013), both semi-permanent conversion of
forest cover into other land cover and land use types
(‘deforestation’ as defined by FAO (FAO 2012) and
under the UNFCCC (UNFCCC 2006)) and temporary
forest disturbances followed by tree regeneration.

An advantage of sample-based estimation is the
possibility of attributing additional contextual infor-
mation to each sample, for example land use. Con-
siderable forest cover loss in the tropics is due to
established land use practices, included forestry and
shifting cultivation. Given the importance of natural
forests to carbon stocks, biodiversity, and other eco-
system services, we further disaggregate sample-based
gross forest cover and AGC loss into occurring in nat-
ural (primary and mature secondary forests, and nat-
ural woodlands) and managed (tree plantations,
agroforestry systems, areas of subsistence agriculture
with rapid tree cover rotation) forests (see section 2
and figure 4). Natural forest cover loss represents for-
ests cleared for the first time in recent history and is the
primary target of initiatives such as REDD+. This cate-
gory of AGC loss can be applied to cases where natural
forests are replaced by non-forestry land uses (defor-
estation), such as the conversion of Amazonian rain-
forests to pastures, where natural forests are replaced
by forestry land uses, such as the conversion of Suma-
tran rainforests to forest plantations, and where nat-
ural forests are cleared and incorporated into shifting
cultivation landscapes to be replaced by secondary
regrowth, such as in the Congo Basin. Natural forests,
as defined in this study, represent the comparatively
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intact remaining tropical forest ecosystems. It is pos-
ited here that natural forests are a limited, non-renew-
able resource and that quantifying their contribution
to the overall emissions dynamic is valuable in inform-
ing policy initiatives such as REDD+.

We estimate gross AGC loss due to stand-replace-
ment disturbance mapped at a 30 m resolution and
add a modeled belowground carbon loss (BGC) esti-
mate in order to compare results with other con-
temporary remote-sensing based studies. Forest
disturbances often associated with forest degradation
include burning, selective logging, forest fuelwood
removal, and charcoal production (Cochrane and
Schulze 1999). Our study quantifies these dynamics
where observable, including forest loss due to fire and
the building of roads and other infrastructure asso-
ciated with selective logging, but does not account for
the finer scale disturbances that cannot be directly
mapped using Landsat data, largely selective removals
due to logging. Pearson et al (2014) recently found that
in countries with high rates of deforestation such as
Indonesia and Brazil, carbon emissions from selective
logging account for ∼12% of emissions from defor-
estation, including losses due to infrastructure.

2.Data andmethods

2.1. Study region
Our study region includes biomes within tropical,
subtropical and portions of the temperate climate
domains in Latin America between 30°N and 60°S, in
Sub-Saharan Africa between 30°N and 40°S and in
South and Southeast Asia between 40°N and 20°S. Our
forest cover stratification was produced within this
area. For the final forest cover loss area and AGC loss
estimation, we limited our study area to the following
countries and country groups (figure 1):

(1)Africa: Democratic Republic of the Congo, humid
tropical Africa, the rest of Sub-SaharanAfrica.

(2)Latin America: Brazil, Pan-Amazon, the rest of
Latin America.

(3)South and Southeast Asia: Indonesia, mainland
South and Southeast Asia, insular Southeast Asia.

2.2. Approach to estimating gross AGC loss
The ‘stratify andmultiply’ approach (Goetz et al 2009)
to estimating gross AGC loss was implemented using
the basic IPCC (2006) equation:

Emissions AD*EF,=

where AD denotes activity data, the extent of human
activity, and EF denotes emissions factors, the emis-
sions or removals per unit activity.

Modifying this basic equation for the estimation of
AGC loss we obtain:

AGC loss AD EF ,i i∑=

where i denotes a forest cover type (forest stratum),
ADi is forest cover loss within forest type i, EFi is mean
AGC density for forest type i, and the summation is
over all forest types.

We used the following data to estimate 2000–2012
AGC loss using this approach:

(1)Forest cover type stratification for year 2000 (prior
to disturbance).

(2)Forest cover loss map (AD) and validation sam-
ple data.

(3)Mean carbon density estimate for each forest
stratum (EF).

We estimated uncertainties from both AD and EF
and incorporated them into the final AGC loss esti-
mates using the recommended Approach 1 (Propaga-
tion of Error) from the IPCCGuidelines (IPCC2006).

Figure 1.Boundaries of reporting units. (A)Democratic Republic of theCongo; (B) humid tropical Africa; (C) the rest of Sub-
SaharanAfrica; (D) Brazil; (E) Pan-Amazon; (F) the rest of Latin America; (G) Indonesia; (H)mainland South and Southeast Asia
(includes southernChina up to 40°N); (I) insular Southeast Asia.
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2.3. Pan-tropical forest cover stratification
(year 2000)
The purpose for stratifying forest cover was to
delineate regions (strata) associated with different
carbon stock (EF) reference values. However, consis-
tently characterized pan-tropical forest type maps are
not available at the 30 m spatial resolution corre-
sponding to the Hansen et al (2013) forest loss data.
Characterizing forest cover based on complex multi-
parameter definitions (e.g. ‘primary forests’, ‘second-
ary forests’, ‘woodlands’) as we have performed at a
national scale (Potapov et al 2012, Tyukavina
et al 2013) is not easily achieved at a biome scale.
Instead, we defined tropical forest strata using remo-
tely sensed-derived structural characteristics of tree
canopy (year 2000 percent tree canopy cover (Hansen
et al 2013)), tree height (current study) and forest
intactness (Potapov et al 2008).

Stratification thresholds were developed to mini-
mize within-strata AGC variance using a statistical
regression tree approach with point-based GLAS car-
bon estimates (Baccini et al 2012) for the period
2003–2008 as the dependent variable. When building
a tree, the highest priority was assigned to tree canopy
cover, with height and intactness as auxiliary variables
having lower weights in the model. Figure 2 shows the
resulting regression tree. Only areas where tree canopy
cover was ⩾25% were considered forest cover and
included in the final stratification (figure 3). Original
30 m forest strata are available for download from
http://glad.geog.umd.edu/pantropical.

2.4.Heightmodel
Our tree height map was generated using a regression
tree model which related GLAS-derived tree height
estimates (Baccini et al 2012) to Landsat time-series
metrics. Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) growing season images were processed to
create a per-pixel set of cloud-free land observations
which in turn were used to assemble the time-series

metrics (Potapov et al 2012). Circa year 2000 tree
height was derived by taking the maximum of five
annual height models (2000–2004). A random subset
of 90% of the available GLAS data was used to train
models with the remaining 10% of the data set aside
for cross-validation. For the study region the resulting
five year maximum height model has root mean
square error (RMSE) of 8.1 m andmean absolute error
(MAE) of 5.9 m; within forests (crown cover >25%)
RMSE= 6.5 m andMAE= 4.7 m.

2.5. Forest cover loss data
Per good practice guidance (Olofsson et al 2014), a
sample-based approach (Cochran 1977) is required to
estimate area of gross forest cover loss (Stehman2013).
Commission and omission errors inherent in the
Hansen et al (2013) map likely introduce bias to the
map-based forest loss area estimates. Consequently,
we base the area estimates on the reference condition
of each pixel selected in a sample; the reference sample
condition is considered the most accurate available
assessment of forest loss (the protocol for determining
the reference sample condition is described later in this
subsection). The global 2000–2012 forest cover loss
map (Hansen et al 2013) was used to target reference
samples in estimating area of forest cover loss. The use
of a stratified estimator (Cochran 1977) substantially
reduces standard errors relative to what would have
resulted without stratification (Hansen et al 2008,
Broich et al 2009). The global forest cover loss data are
defined as all stand-replacement disturbances of
vegetation taller than 5 m observable at a 30 m
resolution. For the current analysis we considered only
forest cover losswithin the target forest strata (figure 3)
with crown cover ⩾25%. The 30 m forest cover loss
data were used to create two sub-strata within each of
the forest carbon stock strata of figure 3: one-pixel
buffered forest cover loss (i.e., all map forest loss pixels
and any pixels adjacent to a mapped loss pixel) and no
loss (table 1). We created a one-pixel buffer around

Figure 2. Forest cover stratification thresholds. Terminal node values aremean strata AGCdensity values (MgC ha−1).
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mapped loss to target forest loss omission error pixels
that commonly occur at the boundary of map loss
pixels (Tyukavina et al 2013).

In our previous validation effort (Hansen
et al 2013), a sample of 300 120 m×120 m sample
units was allocated to the tropical biome to assess the
accuracy of the forest cover map. However, this sam-
ple was deemed inadequate for the current analysis
because several smaller forest carbon stock strata
would have insufficient sample sizes and consequently
large standard errors for the forest cover loss area
estimates.

The current sample consisted of 3000 30 m pixels
selected from the three tropical forest regions (table 1),
with the sample size allocated to each region roughly
proportional to their respective areas of forest cover
loss, with 1200 sample pixels allocated to Latin Amer-
ica, and 900 sample pixels each to Africa and Asia.
Separate per-continent sample allocations reduced
continent-level standard errors for estimates of area of
forest cover loss and overall accuracy (Stehman 2009).
Forest carbon stock strata covering relatively small
areas were combined into larger strata (table 1) for
selecting the sample. Estimates of forest cover loss area
were still obtained for every forest type displayed in
figure 3. Forest cover loss area estimates were also

made for select countries and country groups (see
figure 1). These estimates were based on 2936 of the
sample pixels; 64 sample pixels (15 in America and 49
in Asia) were excluded as they were outside of the
countries of interest. Table 2 shows the sample size for
each country and country group.

The reference 2000–2012 forest cover loss condi-
tion (i.e., loss or no loss) was assigned to each sample
pixel based on the visual interpretation of Landsat
multitemporal composites for years circa 2000, 2003,
2006, 2009, 2012 and 2000–2012 maximal reflectance
value composite, and high resolution imagery avail-
able through Google EarthTM. Of the 3000 sampled
pixels, 1042 had at least one high resolution image
available for the study period, 438 sample pixels had at
least two images, and 219 sample pixels had three or
more images. The validation process is illustrated
schematically in figure 4. The full error matrix is pre-
sented in table S1.

The sample data were used to estimate area of for-
est loss by the seven forest cover types per continent
(table S2), country and country group (table 3), and to
calculate standard errors and the corresponding 95%
confidence intervals of the estimates (Cochran 1977).
The sample data were also used to estimate the pro-
portion of loss occurring within natural forests

Figure 3. Forest cover stratification. (a) Africa; (b) South and Southeast Asia; (c) Latin America; numbers in the legend refer to forest
strata: 1—low cover; 2—medium cover short; 3—medium cover tall; 4—dense cover short; 5—dense cover short intact; 6—dense
cover tall; 7—dense cover tall intact.
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(table 3, table S2). To obtain the latter estimates, each
sample pixel that was identified as 2000−2012 loss was
characterized as having occurred within ‘natural’ or
‘managed’ forest based on interpretation of Landsat
time-series, high resolution data, and ancillary land
cover information (figure 4, table S1). The ‘natural’
forest category included all primary and mature sec-
ondary forests and natural woodlands without evi-
dence of prior disturbances. The ‘managed’ forest
category included forest plantations, agroforestry sys-
tems and areas of subsistence farming due to shifting
cultivation practices. In Landsat imagery, dense nat-
ural tropical forests with large crowns have coarser
texture, while the texture of dense plantations com-
posed of more uniform stands is comparatively
smoother (figure 4). In the dry tropics, plantations

often have denser canopy cover than natural vegeta-
tion and look brighter and more uniform in satellite
imagery.

2.6. Carbon density data
Baccini et al (2012) employed field data and co-located
GLAS lidar data to convert GLAS waveform metrics
into biomass estimates. The field-calibrated statistical
relationships were then applied to approximately 9
million tropical GLAS shots between 23°N and 23°S in
a semi-regular grid of ICESat tracks (figure 6). We
employed the field-calibrated GLAS-derived biomass
data to calculate continent-specific mean strata AGC
densities (figure 5, figures 7(a)–(c) and table S2). In
effect, we treated the GLAS biomass data in this study
as a substitute for field inventory data. Regression
model errors from Baccini et al (of 22.6 MgC ha−1;
5.5%) were not incorporated into calculations; the
uncertainty of mean strata AGC estimates was char-
acterized by their standard errors calculated from
GLAS samples. The biomass data used in this study are
not from the map product of Baccini et al (2012), but
from the population of GLAS shots converted to
biomass used in generating the carbon stock map of
Baccini et al (figure 6). Mean AGC densities for each
stratum were averaged from a very large number of
GLAS observations (hundreds of thousands observa-
tions each), which yielded small standard errors
(figure 5) and offset the impact of the outliers in the
GLAS-derived biomass data (see the scale bar of
figure 6).

Our main result is AGC loss, for which we employ
a source of AGC stock in the form of biomass-cali-
brated lidar data; these data serve as a surrogate for
forest inventory measurements with mean and var-
iance calculated per our mapped carbon stock strata.
Though we have no analogous observational data for
BGC, we further estimated per-stratum BGC densities
and BGC loss in order to make our results comparable
to those of Harris et al and Achard et al Stratum-spe-
cific BGC densities were estimated from AGC den-
sities using equation 1 from Mokany et al (2006), and
uncertainty of BGC using equation S7 from Saatchi
et al (2011).

3. Results

We estimate gross AGC loss in the entire pan-tropical
region to be 1022 ± 64 TgC yr−1 (table 3, figure 7(d)–
(f)). AGC loss within natural forests accounted for
58% of the estimated total pan-tropical AGC loss and
differed among the study regions (table 3, figure 8)
with the highest losses in the Amazon basin and the
lowest in Central Africa. Latin America experienced
the highest AGC loss of the three regions of study,
accounting for 43% of gross and 54% of natural forest
pan-tropical AGC loss. Brazil alone accounted for
26% of pan-tropical gross forest AGC loss and 34% of

Table 1. Sample size allocation per stratum for the stratified random
sample. Forest strata codes are fromfigure 3: 1—low cover; 2—
medium cover short; 3—medium cover tall; 4—dense cover short; 5
—dense cover short intact; 6—dense cover tall; 7—dense cover tall
intact.

Sub-strata

Forest type strata No loss 1-pixel buffered loss (2000–2012)

Africa

1, 2 130 60

3 130 60

4 130 60

5, 7 90 50

6 130 60

Total sample size 900

Latin America

1, 2, 3 245 105

4, 6 350 150

5, 7 245 105

Total sample size 1200

South and Southeast Asia

1, 2 65 25

3 135 45

4 185 90

5, 7 105 50

6 135 65

Total sample size 900

Table 2. Sample size allocation per countries and
country groups (figure 1) for thefinal reporting.

Reporting units N of samples

Democratic Republic of the Congo 328

Humid tropical Africa 298

The rest of Sub-SaharanAfrica 274

Brazil 603

Pan-Amazon 337

The rest of Latin America 245

Indonesia 248

Mainland South and Southeast Asia 430

Insular Southeast Asia 173

6

Environ. Res. Lett. 10 (2015) 074002 ATyukavina et al



natural forest AGC loss. Africa experienced the least
AGC loss among continents, totaling one-half of Latin
America’s gross and one-third of its natural AGC loss.
AGC loss within intact forests (strata 5 and 7, see table
S2) accounted for 11% of the pan-tropical total, 70%
ofwhich occurred in Latin America.

AGC loss is dominant in dense forests (strata 4–7,
see table S2), which accounted for 82% of gross forest
AGC loss and 86% of natural forest AGC loss in Latin
America, and 86% of gross and 95% of natural forest
AGC loss in South and Southeast Asia. Dense forests in
Africa accounted for 41% of gross and 62% of African
natural forest AGC loss, meaning AGC loss in savanna
woodlands is comparable to that of humid tropical
forests in Africa. Proportional AGC loss per unit area
of forest is higher in natural forests for all humid tropi-
cal-dominated regions. Sub-regions with significant
dry tropical forest and woodland cover (regions C and
F; table 3) have proportionately less AGC loss within
natural forests compared to managed systems, likely
reflecting the presence of plantations with higher car-
bon stock than native tree cover. Our AGC+BGC loss
results are displayed in table 4 and show a 27%
increase over AGC loss alone.

Total forest cover loss estimated from the refer-
ence classification of loss or no loss for the validation
sample was higher compared to the estimated loss area
obtained from the Hansen et al (2013) forest loss map
for each of the three study regions (table 3 and table
S2). The largest increase was observed in Africa (78%).
Tyukavina et al (2013) reported a similar finding for
the Democratic Republic of Congo, largely due to the
scale of disturbance in smallholder landscapes and a
resulting omission of forest loss. Landsat’s 30 m spatial

resolution was more appropriate for accurately quan-
tifying the industrial-scale clearings of South America
and Southeast Asia. The analysis of spatial distribution
of forest loss confirms this interpretation: the ratio of
the area of one-pixel boundaries around forest loss to
the area of loss is 2.2 in Africa, 1.3 in South and South-
east Asia and 1.0 in Latin America. The ratio differs
even more when comparing individual countries: 2.2
in the DRC, 0.88 in Indonesia and 0.79 in Brazil. For
small-scale change dominated regions such as Africa,
Landsat resolution assessments of forest change may
lead to significant underestimation of forest carbon
loss (Tyukavina et al 2013). Forest cover loss in the
initial map was underestimated predominantly in for-
ests with low canopy cover (strata 1 and 2, table S2),
where the forest change signal is more ambiguous
from the remote sensing perspective. Dry tropical for-
ests are less well-studied than humid tropical forests
and improved forest cover change mapping approa-
ches are required to monitor the extent and change of
open canopiedwoodlands and savannas.

4.Discussion and conclusions

The most directly comparable antecedent studies
(Harris et al 2012, Achard et al 2014) estimated total
above- and BGC-loss for the tropical region (table 4).
These two studies and the presented one each vary in
geographic and temporal extent, as well as observa-
tional inputs and methods for both carbon loss and
associated uncertainty (table S3). Our carbon loss
totals are higher than that of Harris et al and Achard
et al, with our pan-tropical and regional Africa and

Figure 4.Validation samples (small red squares): (a)–(g)—natural forest loss inMatoGrosso, Brazil; (h)–(n)—plantation clearing
and regrowth in Parana, Brazil; (a)–(f) and (h)–(k) are Landsatmultitemporal composites for years circa 2000, 2003, 2006, 2009, 2012
and 2000–2012maximal composite; (g),(n)—high resolution imagery fromGoogle EarthTM.
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Table 3. 2000−2012 forest cover loss and aboveground carbon (AGC) loss estimates. The ‘Sample estimate’ value is computed using an unbiased estimator of forest cover loss area applied to data obtained from a probability sampling design
(see section 2). Uncertainty is expressed as a 95% confidence interval (CI). For the boundaries of the regions seefigure 1.

Gross forest cover loss Natural forest cover loss Gross AGC loss Natural forest AGC loss

Area (Mha)

Map (Hansen

et al 2013) Sample estimate

Difference between sample and

map estimates (%) Area (Mha)

%of sample gross forest

loss estimate

Annual

(TgC yr−1)

Annual

(TgC yr−1)

%of gross

AGC loss

A DRC 5.9 9.7 ± 3.1 ↑65 4.3 ± 1.9 45 86 ± 19 46 ± 12 53

B HumidTropical Africa 5.1 9.8 ± 6.2 ↑92 1.2 ± 0.8 12 56 ± 29 12 ± 2 22

C The rest of Sub-Saharan

Africa

9.7 17.4 ± 6.2 ↑79 9.0 ± 3.4 52 92 ± 27 47 ± 15 50

Africa total 20.7 36.9 ± 9.2 ↑78 14.5 ± 4.9 39 234 ± 44 104± 21 45

D Brazil 34.4 37.6 ± 3.0 ↑9 25.1 ± 3.8 67 266 ± 18 202± 12 76

E Pan-Amazon 9.0 10.8 ± 1.8 ↑21 7.5 ± 2.1 70 76 ± 14 58 ± 2 76

F The rest of Latin America 14.9 18.8 ± 4.1 ↑27 11.6 ± 3.6 62 99 ± 25 55 ± 15 56

Latin America total 58.3 67.3 ± 6.1 ↑15 44.0 ± 5.7 65 442 ± 33 316± 21 72

H Indonesia 15.7 14.4 ± 2.0 ↓9 7.5 ± 2.2 52 151 ± 14 88 ± 21 59

I Mainland South and South-

east Asia

12.3 16.3 ± 2.8 ↑32 10.3 ± 2.2 63 136 ± 23 90 ± 17 66

G Insular Southeast Asia 6.1 5.5 ± 1.3 ↓9 2.7 ± 1.5 49 58 ± 12 32 ± 15 54

South and Southeast Asia

total

34.2 36.4 ± 3.8 ↑6 18.9 ± 4.5 52 346 ± 32 167± 39 48

Pan-tropical total 113.1 140.5 ± 11.6 ↑24 77.5 ± 8.8 55 1022 ± 64 588± 49 58
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Southeast Asia gross carbon loss estimates outside of
the range of the previous studies (table 4). Of the
various differences in the three tropical forest carbon
loss studies, possibly the most significant is the study
period. Results from Hansen et al indicated an
increasing rate of forest cover loss within the
2000–2012 period. The study of Harris et al covered
2000–2005 and Achard et al covered 2000–2010. The
inclusion of more recent years experiencing more
forest cover loss is a likely source of difference in the
respective carbon loss estimates. Additionally, our

carbon stock data are not coarse resolution maps of
biomass as in the previous studies. For example,
Baccini et al (2012), which is one of the sources of
carbon data in Achard et al., employed 65 m GLAS-
derived biomass data to subsequently calibrate 500 m
MODIS imagery. In our study, we use the 65 m GLAS
biomass data directly as our source of per stratum
biomass. As the strata themselves are derived based on
Landsat-derived cover, height and intactness data, this
allows us to relate 30 m forest cover loss with 30 m
forest carbon strata.We believe this to bemore precise

Figure 5.MeanAGCdensities (±95%CI) for forest strata 1–7within the three study regions, derived fromGLAS-modeled biomass
samples (Baccini et al 2012).

Figure 6.GLAS samples (2003−2009) attributedwith aboveground carbon (AGC) densities. Each circle on themap corresponds to a
∼65 mdiameter circularGLAS lidar footprint with themodeled AGCdensity (MgC ha−1) value (Baccini et al 2012).
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Figure 7. Forest strata average aboveground carbon (AGC) density and loss: (a)–(c), year 2000 aboveground carbon (AGC) density;
(d)–(f), estimated 2000–2012AGC loss. Data are aggregated to 5 km for display purposes.
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than relating forest loss to coarser biomass data that
may convolve forest/non-forest pixels along fronts of
change, particularly in spatially heterogeneous envir-
onments. Concerning activity data, our area estimates
are derived from examining individual 30 m pixels
within a probability-based sampling framework, spe-
cifically strata defined by different carbon stocks. As
Tyukavina et al (2013) study of the Democratic
Republic of Congo illustrated, map-based estimates
can be biased in the case of heterogeneous, small-
holder-dominated landscapes such as DRC; Landsat
forest cover loss map data were found to under-
estimate change compared to per pixel sample-based
estimation. In the presented study, Insular Southeast
Asia, including Malaysia and Indonesia, and Brazil
have map-based forest loss area estimates within 10%
of the sample-based estimates. These countries repre-
sent areas of extensive agro-industrial development
where 30 m Landsat-based mapping is largely accu-
rate, within ±10% of the sample-based estimate.
However, the proportion of total pan-tropical forest
loss within these regions is reduced from 50% in the
map-based estimate to 41% in the sample-based
estimate (table 3). Regions such as Africa, Southeast
Asia and Central America have finer-scale forest loss
dynamics than Brazil and Insular Southeast Asia and

correspondingly higher sample-based estimates than
mapped-based. The consequence is an overall pan-
tropical sample-based forest cover loss estimate 24%
higher than the map-based total. While discerning the
exact sources of the difference between our carbon loss
estimate and that of Harris et al and Achard et al is
difficult without a complete formal intercomparison,
the aforementioned considerations (table S3)—study
period, study area, carbon stock data, and sample-
based area estimation methodology—are likely
factors.

We did not attempt to produce net forest area or
AGC+BGC change estimates using the forest gain
data by Hansen et al (2013), as the forest gain class is
not a direct reciprocal of the forest loss class. Mapped
forest gain from Hansen et al (2013) represents lands
that have experienced a transition from a non-forest to
forest state between 2000 and 2012, a definition that
omits regrowing forests that have not reached 5 m in
height by 2012, and biomass gain in forests, already
established by the year 2000. Additionally, estimating
the 5 m end state of forest regrowth over short inter-
vals is much more challenging than estimating stand-
replacement forest loss due to the continuous and bio-
climatically varying nature of forest growth compared
to the abrupt nature of forest loss. We believe that a

Figure 8. Forest loss in natural andmanaged forests. Sample locations classified as reference loss within natural andmanaged forests
for each of the seven forest type strata (seefigure 3): 1—low cover; 2—medium cover short; 3—medium cover tall; 4—dense cover
short; 5—dense cover short intact; 6—dense cover tall; 7—dense cover tall intact.
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longer record of satellite observations (>20 years) is
needed for quantifying net dynamics. The extension of
the pan-tropical Landsat inputs pre−2000 and post-
2012 to achieve such a record of net forest change is a
current focus of our research. Such a spatially and
temporally explicit study will be an advance over cur-
rent research on net emissions (Pan et al 2011, Baccini
et al 2012) that relies on the inconsistent data of the
UNFAOForest Resource Assessment (Matthews 2001,
Grainger 2008). Forest carbon gains directly mapped
using remotely sensed data will significantly improve
upon current net assessments. For this study, forest
cover loss outside of natural forests is largely related to
land uses that lead to forest recovery, for example for-
estry practices or shifting cultivation. However, not all
natural forest loss is deforestation. Natural forests can
be cleared and added to shifting cultivation land-
scapes, or replaced by timber plantations, palm estates,
and other large-scale commercial enterprises. The
objective of this study was to quantify the pan-tropical
gross area and AGC+BGC loss dynamic, including the
portion of that dynamic occurring within natural for-
ests. In doing so, we identify the source of emissions
most relevant to policy initiatives focused on tropical
forest conservation.

Brazil is the country with the largest area of natural
forest loss in the study period. The officially reported
forest loss in the Legal Amazon in Brazil is 17.6Mha in
2000–2012 (INPE, www.obt.inpe.br/prodes/
prodes_1988_2013.htm).We found 25.1 ± 3.8 Mha of
natural loss over the same period. The difference could
be due to differing methodological approaches (e.g.,
the minimal mapping unit of 6.25 ha in PRODES ver-
sus the per-pixel (30 m) mapping of Hansen et al
(2013)) as well the inclusion by our study of additional

natural forest loss outside of the Legal Amazon (e.g.,
cerrado woodland types). Recently reported primary
forest loss of 6.03 Mha in Indonesia (Margono
et al 2014) falls within the 95% confidence interval of
our natural forest loss estimate of 7.5 ± 2.2 Mha. Nat-
ural forest loss for the DRC of reported by Tyukavina
et al (2013) and consisting of terra firma and wetland
primary forests and woodlands, also falls within the
uncertainty of ourDRC sample-based estimate.

The utility of the presented approach under REDD
+ comes from the ability to adapt it to any areal extent.
Landsat is the closest existing system to an operational
land imaging capability and Landsat data are available
globally free of charge. While higher spatial resolution
imagery are increasingly available and being tested and
implemented for national-scale REDD+ monitoring
(Government of Guyana 2014), the likelihood of all
tropical countries having the budgetary resources to
systematically task, process and characterize annual
national-scale commercial data sets now and into the
future is highly uncertain. Landsat data may remain
the most viable option for national-scale REDD+
monitoring for a number of countries. Using Landsat
data, we followed recommended good practice gui-
dance on the use of map-based activity data. Landsat-
mapped carbon stock strata and forest cover loss were
used in a stratified random sampling approach that
enabled reliable estimation of pan-tropical forest
cover loss area (SE of 4% for the pan-tropical gross
forest loss area estimate) using a relatively small num-
ber of samples (3000 for the entire pan-tropical
region). Probability sampling can also be used to assess
the nature of forest loss, e.g. natural versus human-
managed forests in this study, but also drivers and land
use outcomes of forest clearing.

Table 4.Comparison of gross carbon loss estimates. AGC stands for aboveground carbon; BGC—belowground carbon. Range of uncer-
tainty represents the 95% confidence interval for the current study; 90%prediction interval derived fromMonteCarlo simulations and
including all critical sources of uncertainty forHarris et al (2012), and uncertainty range derived from a sensitivity analysis related to the bias
in carbon densitymaps for Achard et al (2014).

Annual gross loss (TgC yr−1)

AGC AGC+BGC AGC+BGC

Current study Current study Harris et al 2012 Achard et al 2014

Period

(2000s) Estimate Range Estimate Range Median Range Average Range

Africa 00–05 116 54–218 148 44–221

05–10 234 190–278 300 252–348 — —

10–12 — — — —

Latin America 00–05 440 309–674 465 323–650

05–10 442 409–475 564 518–610 — —

10–12 — — — —

South and South-

east Asia

00–05 257 208–345 267 236–367

05–10 346 314–378 439 397–481 — —

10–12 — — — —

Pan-tropical total 00–05 813 570–1220 880 602–1237

05–10 1022 958–1086 1303 1225–1381 — —

10–12 — — — —
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It is worth noting that the reference imagery for
the sample based images may consist of high spatial
resolution commercial data in place of Landsat, if
resources for data acquisition and purchasing are
available. For example, the Ministry of Environment
of Peru recently completed a study analogous to the
presented one, except that a two-stage cluster sample
based on 12 km by 12 km blocks divided into low and
high forest loss change strata was employed (Potapov
et al 2014). Eighteen low change and twelve high
change sample blocks were randomly selected within
the respective strata, and RapidEye purchased for each
block. The RapidEye data were compared with ante-
cedent Landsat images in the quantification of area of
forest cover loss, with primary and secondary forest
loss interpreted as in the study presented here. The use
of Landsat-derived products to guide the sample allo-
cation of costlier assets is easily implemented and cost-
effective.

Our Landsat-based pan-tropical estimated annual
gross forest AGC loss represents 11% of the recently
reported global annual estimate of carbon dioxide
emissions for 2012 (IPCC 2014) (13%when including
our BGC estimate). Just over one-half of our estimated
carbon loss from tropical forest cover disturbance
occurred within natural forests. While emissions from
fossil fuels continue to grow globally (1.3% annually
from 1970 to 2000 and 2.2% annually from 2000 to
2010 (IPCC 2014)), the extent of natural forests in the
tropics continues to decline. Other carbon pools, par-
ticularly soil carbon in tropical peatlands (Page
et al 2002), are a significant source of GHG emissions
and are unaccounted for here. Regardless, there will be
a continued diminishing fraction of global carbon
dioxide emissions from natural tropical forest loss as
their extent declines and fossil fuel emissions continue
to rise at a more rapid pace than emissions from forest
conversion. Rather than indicating a reduced impor-
tance of avoided deforestation, this fact points to the
increasing significance of and need for the formal
valuation of REDD+ co-benefits in the conservation of
natural tropical forests (Miles and Kapos 2008, Díaz
et al 2009, Phelps et al 2012, Potts et al 2013,
Mullan 2014).
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