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Abstract
Enclosed railway stations hosting diesel trains are at risk of reduced air quality as a result of exhaust
emissions thatmay endanger passengers andworkers. Air qualitymeasurements were conducted
inside London Paddington Station, a semi-enclosed railway stationwhere 70%of trains are powered
by diesel engines. Particulatematter (PM2.5)masswasmeasured atfive station locations. PM size, PM
number, oxides of nitrogen (NOx), and sulphur dioxide (SO2)weremeasured at two station locations.
Paddington Station’s hourlymean PM2.5mass concentrations averaged 16 μgm−3 [min 2,max 68].
Paddington Station’s hourlymeanNO2 concentrations averaged 73 ppb [49, 120] and SO2

concentrations averaged 25 ppb [15, 37].WhileUK train stations are not required to complywith air
quality standards, there werefive instances where the hourlymeanNO2 concentrations exceeded the
EUhourlymean limits (106 ppb) for outdoor air quality. PM2.5, SO2, andNO2 concentrations were
compared againstMarylebone, a busy London roadside 1.2 km from the station. The comparisons
indicated that train station air quality wasmore polluted than the nearby roadside. PM2.5 for at least
onemeasurement locationwithin Paddington Stationwas shown to be statistically higher (P-value
<0.05) thanMarylebone on 3 out of 4 days.MeasuredNO2within Paddington Stationwas statistically
higher thanMarylebone on 3 out of 5 days, whilemeasured SO2within Paddington Stationwas
statistically higher thanMarylebone on all 3 days.

1. Introduction

UK train stations are major transport hubs servicing
eight million travellers daily [1]. Train journeys within
the UK are predominantly electrically powered (62%
by passenger kilometres) [2], although only 41% of
train tracks are electrified (0% in Wales and 3% in
Western England) [3]. European standards regulating
emissions of carbon monoxide (CO), unburned
hydrocarbons, oxides of nitrogen (NOx), and particu-
late matter (PM) for new off-road heavy duty diesel
vehicles initially exempted railway engines between
1999 and 2006 at the Stage I to Stage II level of the non-
road mobile machinery (NRMM) regulations [4].
From 2006, railway diesel engines were subject to the
NRMM regulations (Stage III) [5]. Despite these
standards, the mean age of British rail rolling stock in

2013 was 18 years [6], implying that most trains were
initially deployed 11 years before EU emissions regula-
tions took effect. As a result, diesel trains that operate
in enclosed stations have the potential to emit large
quantities of pollutants, leading to poor air quality and
threatening the wellbeing of frequent travellers and
workers. Train station air quality is also poorly
documented. While researchers have studied air
quality within indoor environments (railway coaches
[7], residential homes [8], commercial offices [9, 10],
and electrified train stations) [11–16], none have
evaluated indoor stations that serve diesel trains. Air
quality in parking garages that host gasoline and diesel
vehicles have also previously been evaluated [17–19],
but differ from train studies due to the different
emissions composition of on-road vehicles. Stricter
on-road vehicle emissions regulations have resulted in
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the adoption of advanced exhaust aftertreatment
technologies that are not present onUK trains (such as
catalyzed particle filters that alter the NO2-PM com-
position of unfiltered diesel exhaust). The UK Parlia-
ment has identified the potential dangers of poor air
quality in indoor settings, but also noted that indoor
public health standards are neither well understood
nor controlled by a specific government agency [20].
To better understand the air quality inside stations
serving diesel-powered trains, a measurement cam-
paign was conducted in London Paddington Station, a
semi-enclosed building that hosts a disproportionate
share of the Greater London diesel train fleet. In
Paddington Station, 70% of trains are powered by
diesel engines (compared to 30% in Greater London).
Paddington Station serves 38 million passengers
annually (the seventh busiest station in Great Britain)
[1] and is the terminus of the Great Western Main
Line, which is the longest non-electrified line in the
UK [21]. More broadly, about half of the train lines in
Europe remain non-electrified with 97% of Irish, 71%
of Danish, 47% of French, 41% of German, and 29%
of Italian train lines running without electric power
[22]. While the cumulative number of passengers
exposed to diesel emissions within train stations
throughout Europe is unknown, there is significant
potential risk if train station air quality is poor, given
the large number of stations required to serve non-
electrified lines, high rail use (∼6.5% of all European
travel is via train compared to 0.5% US) [23], and
passenger time spent within the station (>7 min per
journey) [24].

Air quality inside Paddington Station has never
been directly measured and publicly reported. Neville
(2005) [25] measured SO2 on a train platform imme-
diately outside of the Paddington Station building.
The study found no evidence that the area surround-
ing Paddington Station was in breach of national air
quality standards, but suggested that concentrations
inside the building could be higher than those stan-
dards even though they do not apply to indoor settings
[25]. Other reports from the City ofWestminster indi-
cated that more work needs to be done quantifying the
air quality inside Paddington Station given the high
proportion of diesel trains that are hosted in the sta-
tion [26]. There is an ongoing £6 billion effort tomod-
ernise the Great Western Main Line, which includes
electrification [27]. While electrification will eliminate
diesel trains and ultimately improve Paddington’s air
quality, the project is not expected to be completed
until 2018 and could possibly be delayed even further
[28]. As a result of the prevalence of diesel trains, lack
of indoor regulations, and absence of study, Padding-
ton Station is a meaningful site in which to evaluate
potential air quality hazards for UK stations serving
diesel trains. Study of train station air quality would
provide context for challenges reported at other UK
stations such as London Marylebone [29], Edinburgh
Waverley [30, 31], and BirminghamNewStreet [32].

Air quality in Paddington Station is influenced by
diesel train operation, food cooking, and indoor/out-
door air exchange. The purpose of this study is to (i)
quantify indoor air quality inside Paddington Station,
(ii) compare indoor Paddington Station air quality to
regulated outdoor sites, and (iii) inform indoor air
quality regulations and diesel train technology adop-
tion decisions inGreater London.

2.Methodology

2.1. Equipment andmeasured pollutants
Pollutants that were measured included PM (mass,
number, and size), sulphur dioxide (SO2), and NOx.
The experimental equipment and operational para-
meters are described below with more details included
in section 1 of the supporting information (SI, available
at stacks.iop.org/ERL/10/094012/mmedia). The con-
centration ofmetals (As, Ba, Be, Cd,Cr, Cu, Fe,Hg,Mo,
Ni, Pb, Sb, Se, V, and Zn) and elemental to organic
carbon fraction (EC/OC) of PM were also measured.
These results are presented in sections 2 and3of the SI.

PMmass concentration wasmeasured with a pho-
tometer (TSI Inc. SIDEPAK Personal AerosolMonitor
AM510). The AM510 was operated in series with a
10 mm Dorr Oliver nylon cyclone at 1.7 L min−1,
which induces centrifugal airflow to remove larger
particles such as tire and road dust from outdoor traf-
fic (50–75 μm [33]) and abrasion and wear from rail-
way train brakes (3–25 μm [34]). The AM510
measurements were corrected using gravimetric mea-
surements that collected in parallel to the AM510 [35].
Gravimetric measurements were sampled with a
pump and a polytetrafluoroethylene (PTFE) filter
(SKC Ltd). The 37 mm PTFE filter was housed in a
plastic cassette with a padded spacer and connected to
the pump using conductive tubing [36]. Gravimetric
filters were neutralized and weighed five times each
using a 10 μg mass balance before and after the sam-
ples were collected. Pumps were operated at
3.0 L min−1. At this flowrate, the penetration of
2.5 μm particles (PM2.5) through the Dorr Oliver
cyclonewas 54% [37–39].

Particle number concentrations (PNCs) were
measured using a condensation particle counter (CPC,
TSI 3022A). Particle mobility distributions were mea-
sured using a TSI scanning mobility particle spectro-
meter (SMPS) consisting of a long column classifier
and 3025 CPC. Particle size distributions were also
measured with and without a catalytic stripper (CS).
The CS removes the semi-volatile fraction of the aero-
sol, which results in measurement of only solid parti-
cles [40]. The CS used in this study contained two
geometrically dissimilar catalyzed ceramic substrates:
an oxidizing catalyst and a sulphur trap, both heated to
350 °C. The purpose of the oxidation catalyst is to
remove the semi-volatile hydrocarbon particles and
vapour by oxidation. Typically, most combustion-
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generated particles evaporate at relatively low tem-
peratures (∼100 °C) [41], but the CS is operated at a
much higher temperature to enable catalyst function-
ality. The sulphur trap removes sulphur species by
adsorption to prevent oxidation of species to SO3 and
subsequent sulphuric acid nucleation. Laboratory
results show at the operating flowrate (1.5 L min−1)
and temperature, the CS removes>99% of 30 nm tet-
racontane particles. Results were corrected for losses
in the CS, as described in section 4 of the SI [40]. SO2

and NOx were measured using ultraviolet (UV) fluor-
escence and chemiluminescence analyzers (Teledyne
100A and Teledyne 200A, respectively) that were zer-
oed and spanned according to manufacturer
recommendations.

2.2.Measurement locations and schedule
One scoping (12 January 2012), one test (7 May 2012
to 11May 2012), and onemeasurement campaign ( 17
September 2012 to 21 September 2012) were con-
ducted. The scoping and test campaigns were used to
establish the study methodology (location with time
intervals) and equipment operational requirements.
The results from the September campaign are pre-
sented. It was not possible to conduct a longer
campaign because of security constraints and logistical
conflicts with daily station operations. This study
provides the first measurement of such a location and
justifies further in-depth regulatory-style measure-
ments, similar to the EU Ambient Air Quality Stan-
dards. Subsequent studies would not only require
longer measurements, but also an evaluation of the
exposure frequencies for passengers and workers. This
study’s duration is not unusual compared to other
measurement campaigns in indoor environments,

which have lasted 2–8 days [12, 14, 42–45]. Figure 1
shows a diagram of the methodology used in the main
campaign and the measurement locations selected.
There were five locations where measurements were
taken using both remote and continually attended
equipment. Location A is next to Platform 1, which
serves locomotives that travel to west England and
Wales. Location B is next to Platform 8, which serves
smaller dieselmultiple unit (DMU) trains that travel to
regions in the immediate vicinity of Greater London
such as Oxford and Reading. Location C is in the
centre of the station and is close to idling train
emissions as well as gas food cooking. Location D is in
the entry archway of Praed Ramp at the boundary of
the building. Location E is at the top of the PraedRamp
completely outside of the station and next to Praed
Road. All measurements were taken above ground
away from Paddington’s underground subway station
that serves electric trains.

A schedule andmethodology was developed based
on scoping and pre-measurement evaluations. The
remote devices (AM510 and pump) were installed
∼3 m above ground on structural columns using
ratchet straps. Station security policies limited mea-
surement times, allowing a start time of ∼04:00 and
operation for the full battery life (∼8 h), resulting in
morning mean measurements (~04:00 to 12:00).
Exact measurement intervals are provided with the
statistical summary of results in section 5 of the SI but
are discussed as ‘morning mean’ in text. The con-
tinually attended equipment (gas analyzers, SMPS,
CPC, and CS) were connected to external power near
the locations indicated. A measurement schedule is
summarized in section 6 of the SI.

Figure 1.Methodology diagramdescribing the list ofmeasurement locations (top left), equipment usedwith corresponding pollutants
measured (bottom left), andmap ofmeasurement locations (right).
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2.3. Statistical testing
Measurement results were compared to time-equiva-
lent (same hours and dates) concentrations at Maryle-
bone Road (a busy London roadside) and North
Kensington (a London urban background reference
site). London data were taken from the London Air
Quality Network (LAQN) database [46]. Comparisons
were interpreted to a 95% confidence interval thresh-
old (P-value <0.05) using the Mann–Whitney–Wil-
coxon (MWW) two sample test, a nonparametric
statistical metric to determine the significance of the
difference between independent samples. A left tailed
condition was imposed to determine if published
concentrations at Marylebone and North Kensington
were statistically smaller thanmeasured concentration
at Locations A–D.

3. Results and discussion

3.1. PM2.5mass concentrations
Morning mean PM2.5 mass concentrations for each
location are shown in figure 2, as determined by
gravimetrically-corrected AM510 photometer mea-
surements (correction factormethods are presented in
section 1 of the SI). Daily-averaged concentrations at
Locations A and B ranged from 4.0 to 16.3 μg m−3,
respectively. Concentrations at Locations C and D
ranged from 16.2 and 37.5 μg m−3, respectively. The
higher PM2.5 mass concentrations near the terminus
of the rail line and retail station area (Locations C and
D) are likely the result of more emissions sources,
higher train emissions, and decreased outdoor air
mixing when compared to the platform locations.
Locations C and D are closer to the end of the
platforms inside the station and hence they are closer
in proximity than other measurement sites to the
idling locomotives, which makes up the vast majority

of train activity (by time). Trains are allowed to idle for
a maximum of 10 min in Paddington Station. Based
on this policy and station control room schedules,
idling activity makes up 37.8 train-hr daily while
acceleration activity was calculated to make up 1.6
train-hr daily. Using Paddington Station train specific
emissions factors (g kWh−1) from Silver (2007) [47]
and general locomotive/DMU energy consumption
factors (kWh km−1 and kWh h−1) from Lindgreen
and Sorenson (2005) [48], idling emissions were
estimated to be 4 to 6 times greater than acceleration
emissions in Paddington Station. The hourly profile of
idling and acceleration activity is provided in section 7
of the SI.

Figure 3 shows the hourly mean PM2.5 concentra-
tions averaged across all measurement days for Pad-
dington Station and other London sites. There were
peaks inmorning PM2.5 concentrations between 07:00
and 10:00, which correspond to idling train activity
that also peak at the same time (see section 7 of the SI).
The peaks were more pronounced in Locations C and
D, which had a maximum hourly mean of 41.3 and
68.4 μg m−3, respectively, on Thursday at
08:00–09:00. This corresponds to the peak idling
activity (2.5 train-hr per hour), which occurred
between 08:00 and 10:00 (section 7 of the SI).

Hourly mean PM2.5 concentrations in Paddington
Station exceeded hourly mean PM2.5 at Marylebone
andNorth Kensington. At Location C, 24 out of the 36
hourly mean PM2.5 measurements were greater than
the corresponding hourly mean PM2.5 measurements
at Marylebone. At Location D, 23 out of the 34 hourly
mean PM2.5 measurements were greater than the cor-
responding hourlymean PM2.5measurements atMar-
ylebone. All hourly mean PM2.5 measurements at
Locations C and Dwere higher than their correspond-
ing hourly mean PM2.5 measurements at North

Figure 2.PM2.5mass concentrations disaggregated by location and day. Error bars represent the propagated uncertainty due to
gravimetric corrections.
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Kensington. Overall, Paddington Station’s hourly
mean PM2.5 mass concentrations was 16 μg m−3 [min
2,max 68] across allmeasurement sites.

PM2.5 concentrations at North Kensington (Lon-
don background) were statistically lower than Loca-
tions A, C, and D for all days (P-value <0.05) and
lower than Location B from Monday to Tuesday.
Similarly, PM2.5 concentrations at Marylebone road-
side were lower than Location D from Tuesday to
Thursday and lower than Location C from Tuesday to
Wednesday. The results of theMWWtest are provided
in table S2 in section 5 of the SI.

3.2. Particle number and size distributions
Figure 4 presents PNC measurements at Location A
and C, which were averaged over the days that they
were taken. On average, Location C had a similar PNC
(1.24×105 cm−3) to Location A (1.10×105 cm−3).
At Marylebone, Jones et al [49] reported the mean
PNCs decreased by 41% from 8.4×104 cm−3 (from
October 2005 to September 2007) to 3.4×104 cm−3

(from February 2008 to January 2009) after ‘sulphur-
free’ diesel (<10 ppm) was implemented in 2007 [49].
These Marylebone values were lower than the Pad-
dington Station concentrations in figure 4. However,
while Paddington Station results included only mea-
surements during peak periods in the daytime, the
Marylebone results included measurements across
peak and non-peak periods (days and nights).

Particle size distributions measured with and
without the CS at Location A and C are shown in
figure 5. All particle size distributions were unimodal
with a mean diameter 61 nm [50, 68]. Figure 6 shows
the hourly mean total particle concentration, mode
diameter, and geometric mean diameter (GMD) at
Location A and C with and without the CS averaged
over the days that the measurements were taken. The

Station Centre (Location C) is influenced by a greater
number and variety of emissions sources, which resul-
ted in a larger GMD, mode diameter, and concentra-
tion. When compared across the same time range
without a CS, the hourly mean total particle con-
centration at Location C was 59.7% [−36.5, 146.6]
higher than at Location A. The use of theCS resulted in
lower particle concentrations due to the removal of the
semi-volatile particles. With a CS, total particle con-
centration was lower at Location A (2.3×104–
1.0×104 cm−3) and Location C (3.5×104–
2.0×104 cm−3). At Location A and C, 51% and 33%
of particles smaller than 100 nm were removed,
respectively. The reduction in total PNCwithout a sig-
nificant size-shift suggests the presence of externally
mixed aerosol. The removal of semi-volatile particles
only slightly increased the GMD and mode to 6.9%
[−4.2, 27.9] at Location C and to 12.4% [−19.4, 91.0]
at Location A, respectively. Surprisingly, particle size
distributions were not appreciably different in shape
to those observed at Location A, even though there are
potentially more sources of semi-volatile material and
differences in concentration. The use of a thermal
denuder operated at a range of temperatures [50, 51]
or aerosol mass spectrometer would help enable
source apportionment because diesel emissions have
significantly different organic aerosol profiles than
meat cooking emissions [52].

Size distribution measurements in both locations
showed unimodal particle size distributions. These
results differ from diesel engine tailpipe measure-
ments of semi-modern engines without emission con-
trol that typically show distinct bimodal particle
distributions with a nucleation mode at ∼20 nm and
accumulation mode at ∼80 nm [53]. The nucleation
mode is nearly always semi-volatile although idling
engines are known to emit some solid nucleation

Figure 3.Hourlymean PM2.5mass concentrations averaged across 5 days (Monday–Friday) compared to LAQNmeasurements [46]
inMarylebone (London roadside) andNorthKensington (London background). Error bars represent the standard deviation of the
hourlymeans across allmeasurement days.
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Figure 4.Total particle number concentrations per hour at both Platform1 and StationCentre averaged over the days that theywere
measured. Error bars represent the standard deviation of the hourly averages across allmeasurement days.

Figure 5.Particle size distribution results with andwithout a catalytic stripper at (a) LocationA (Platform 1) and (b) LocationC
(StationCentre).
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mode particles resulting from high lube-oil consump-
tion at idle [54]. Without similar train tailpipe mea-
surements, it is difficult to determine whether the
measured unimodal distributions have evolved from
initially bimodal distributions due to atmospheric
coagulation and adsorption processes [55] or are emit-
ted in a single mode. A possible explanation of the lat-
ter is that these train engines do not have diesel
particulate filters so it is reasonable to assume that rea-
sonably high concentrations of carbonaceous agglom-
erates are emitted while entering (low load condition)
and exiting (high load condition) the station. These
high-surface area particles tend to adsorb semi-vola-
tile nucleation mode precursors and prevent the for-
mation of a nucleation mode [56], even when high
concentrations of semi-volatile material exist. This
effect has been observed in measurements with and
without a CS in laboratory evaluations of off-road
engines operated at high load [57].

3.3. NO2 and SO2 concentrations
Figure 7(a) shows the location-averaged NO2 concen-
trations compared to other London sites. North
Kensington NO2 concentrations were lowest and
Location C concentrations were highest. At Location
C, the hourly mean NO2 concentrations ranged from

72 to 120 ppb. At Location A, the hourly mean NO2

concentration values ranged from 52 to 80 ppb.
Marylebone Road andNorth Kensington hourlymean
NO2 concentration ranges were 54–92 and 10–27 ppb,
respectively. The total weeklong NO2mass concentra-
tions within Paddington Station averaged 73 ppb [49,
120]. The results of the MWW analysis (table S4 of
section 5 in the SI) show that on Tuesday, Wednesday
and Friday, Paddington Station NO2 concentrations
were higher than Marylebone Road (P-value <0.05).
NO2 concentrations at North Kensington were lower
than Paddington Station on all measurement days. In
the context of the EU hourly mean limit (106 ppb),
which can only be exceeded 18 times per year, the NO2

concentrations at Location C were not in compliance
with this regulation five times in 59 h ofmeasurements
(shown in section 8 of the SI). Although EU limits do
not apply within Paddington Station, it provides a
point of comparison demonstrating a trend that is in
line with other studies that have reported high NO2

concentrations in other locations around London
[58, 59]. ThemeanNO2 fraction ofNOxwas calculated
to be 0.19. This is in betweenNO2/NOxmass fractions
for heavy duty diesel engines with (0.24–0.54) and
without (0.03–0.08) catalytic oxidation [60–62].

Figure 6.Hourly-averaged particle number concentrations (a)–(b), mode diameter (c)–(d), and geometricmean diameter (e)–(f) at
Location A (Platform1) and LocationC (StationCentre).Mean results were calculated over the days that themeasurements were
taken.
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Figure 7(b) presents the location-averaged SO2

results. At Location A on Wednesday, SO2 hourly
mean concentrations ranged from 17 to 20 ppb. At
Location C, the hourly mean concentration ranges for
Thursday and Friday were 15–30 ppb and 20–37 ppb,
respectively. Marylebone Road and North Kensington
SO2 concentration ranges were 2–9 ppb and 0–2 ppb,
respectively. The total weeklong SO2 mass concentra-
tions within Paddington Station averaged 25 ppb
[15, 37]. The results of the MWW analysis are pro-
vided in table S5 in section 5 of the SI. On all measured
days, Paddington Station SO2 concentrations were sta-
tistically higher than Marylebone roadside and North
Kensington concentrations (P-value<0.05).

SO2 concentrations at all locations were sig-
nificantly lower than the outdoor EU hourly limit
(132 ppb), which can only be exceeded 24 times per
year (not enforced for train stations). SO2 at Location
A and C (15–37 ppb) were higher than Neville (2005)
[25], who reported an outdoor mean SO2 concentra-
tion of 13 ppb over 15 min averaged intervals from
May–June 2004. Neville’s (2005) [25] SO2 measure-
ments were lower because they were taken outside of
the Paddington Station building where pollutant dis-
persion would have been greater than at Location A
and C. Neville’s [25]measurements were greater than
concentrations at Marylebone (2–9 ppb) and North
Kensington (0–2 ppb), which is partially the result of

different diesel fuel sulphur concentration limits
(2000 ppm in 2004 [25] and 10 ppm in 2012 [63]).

4. Conclusions

This study has sought to determinewhether a potential
air quality risk exists within enclosed train stations that
service passengers travelling on diesel trains. The
measurement campaign revealed that particle number
and mass concentrations are in range of Marylebone
Road LAQN values. At Station Centre and Praed
Ramp, mean PM2.5 mass concentrations ranged from
16.2 to 37.5 μg m−3, while the Marylebone PM2.5

ranged from 4.0 to 36.0 μg m−3. Since measurements
were constrained by station security to ∼8 h per day
for 5 days, the regulatory implications for station
PM2.5 are limited. However, there were instances
where hourly PM2.5 averages at Station Centre and
Praed Ramp exceeded annual average EUAmbient Air
Quality Standards (25 μg m−3). These results provide
the first glimpse of PM2.5 concentrations in a train
station with enclosed diesel emissions to inform the
regulatory significance of PM2.5 concentrations. The
results of the MWW analysis showed that the majority
days of Paddington Station measured concentrations
of PM2.5, NO2, and SO2 were statistically higher than
London Marylebone roadside and North Kensington

Figure 7.Hourlymean gaseous concentrations of (a)NO2 and (b) SO2 at StationCentre and Platform1compared to London
Marylebone Road andNorthKensington (LAQN) [46]. Error bars represent the standard deviation of the hourly averages across the
measurement days.
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background values. Unlike the PM2.5 results, there is
greater regulatory relevance for the NO2 results
because the EU legislates NO2 by hourly mean
exceedances and it was possible to capture hourly
means in this study timeframe. NO2 measurements at
Station Centre exceeded outdoor EU hourly mean
standards (106 ppb) five times in 59 h of measure-
ments, even though only 18 hourly exceedances are
allowed per year. Presently, Paddington Station, a
semi-enclosed building, is not governed by any air
quality standard. These results indicate that if compar-
able standards to indoor and ambient air standards are
applied to Paddington Station, action would likely be
needed to comply with such standards. If Paddington
Station trains adopt diesel particulate filters with
catalytic regeneration to meet emissions regulations
(which is common with heavy duty on-road diesel
vehicles), PM emissions would decrease by >90%
[64]. Simultaneously, as described by Melendez et al
[60], Ayala et al [61], and Lanni et al [62], catalytic
oxidation would increase the NO2/NOx fraction from
0.03–0.08 to 0.24–0.54. Such an increase would likely
exacerbate the already high local NO2 concentrations
shown in figure 7(a). In addition to stricter emissions
standards, public exposure to diesel train emissions
could beminimized by physically isolating the passen-
ger waiting area with platform screen doors. This
solution already exists in underground railway stations
[65].

Themeasured particle size distributions within the
station may be relevant to future NRMM emissions
regulations. When a CS was applied to particle size
measurements, total PNCs decreased by 57% and 42%
at Platform 1 and Station Centre, respectively. The EU
is considering the adoption of solid particle number
(SPN) limits at Stage V of the NRMM standards that
are in line with the particle number regulations for on-
road heavy duty diesel engines at the EURO VI level
[66, 67]. If SPN standards are introduced for NRMM,
particle number measurement methods used in this
Paddington Station measurement campaign
(SMPS+CS) can be implemented to evaluate the air
quality impacts of such standards.
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