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Abstract
Freshly emitted soot particles are fractal-like aggregates, but atmospheric processes often transform
theirmorphology.Morphology of soot particles plays an important role in determining their optical
properties, life cycle and hence their effect on Earth’s radiative balance.However, little is known about
themorphology of soot particles that participated in cold cloud processes. Here we report results from
laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to
form supercooled droplets and ice crystals at−20 and−40 °C, respectively. Electronmicroscopy
revealed that soot residuals from ice crystals weremore compact (roundness∼0.55) than those from
supercooled droplets (roundness∼0.45), while nascent soot particles were the least compact
(roundness∼0.41). Optical simulations using the discrete dipole approximation showed that the
more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing
the top-of-the-atmosphere direct radiative forcing by∼63%. These results underscore that climate
models should consider themorphological evolution of soot particles due to cold cloud processing to
improve the estimate of direct radiative forcing of soot.

1. Introduction

Soot particles consist of aggregates of many spherical

carbonaceous monomers (spherules) and are ubiqui-

tous in the atmosphere. Soot particles are directly

emitted into the atmosphere from a variety of combus-

tion sources (Streets et al 2004). While fossil fuels (e.g.,
diesel, gasoline, oil, coal) combustion and open

biomass burning at the ground level emit soot into the

boundary layer, aviation emits it directly in the upper

troposphere (Kärcher et al 1998, Wang 2011, Schu-

mann et al 2013). Soot particles can also be transported

from the boundary layer to the upper troposphere by

deep convection (Storelvmo 2012). Soot particles

affect climate directly by absorbing and scattering

sunlight and indirectly by serving as a cloud conden-

staion nuclei or ice nuclei (IN) (Bond et al 2013). Soot
deposited on snow and ice sheets can decrease the

surface albedo, thereby accelerating melting (Hansson

andAhlberg1985,RamanathanandCarmichael 2008).
Furthermore, soot particles can increase absorption of

solar radiation by decreasing cloud cover in the lower

troposphere (Lohmann and Feichter 2005). Soot

particles incorporated within ice crystals and droplets
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in clouds can also enhance light absorption and
decrease cloud albedo (Hansen and Nazarenko 2004,
Jacobson 2006, Ramanathan andCarmichael 2008).

At supercooled temperatures of the upper tropo-
sphere, soot particles can facilitate formation of ice
clouds through heterogenous ice nucleation mechan-
isms (Demott 1990, Diehl and Mitra 1998, Gorbunov
et al 2001, Kärcher et al 2007, Fornea et al 2009, Craw-
ford et al 2011). The efficiency of soot as an INdepends
on various parameters such as temperature, relative
humidity, supersaturation, soot size, surface oxidation
and ice active sites (DeMott et al 1999, Gorbunov
et al 2001, Persiantseva et al 2004, Möhler et al 2005,
DyMarska et al 2006, Hoose and Möhler 2012). Air-
craft soot emissions play amajor role in contrail foma-
tion in the upper troposphere at −40 °C or below
(Kärcher et al 1998) and induce ice formation in con-
trails (Petzold et al 1999).

Twohy and Poellot (2005) investigated ice crystal
residual particles from cirrus clouds and showed that
11%–25% of the residuals are composed of carbonac-
eousmaterial, including soot and organic carbon. Pet-
zold et al (1998) observed higher soot number
concentration (0.2 cm−3) in ice crystal residuals from
contrail compared to cirrus (0.02 cm−3). They suggs-
ted that soot in the cirrus cloud can be attributed to
scavenging of soot by ice crystals. They found that con-
trail residues are dominated (87%) by small soot parti-
cles (<200 nm)mostly composed of carbon and only a
minor fraction (1.6%) of larger soot particles
(∼1000 nm) that were coated with sulfate. Targino
et al (2006) found a small fraction of soot in individual
ice crystal residues from orographic wave clouds. Sev-
eral other studies also found a small fraction of soot in
cirrus ice crystal residues (Cziczo et al 2013, Cziczo
and Froyd 2014). Furthermore, a recent study found
compact soot particles in Antarctic ice core samples
(Ellis et al 2015).

Freshly emitted soot particles are typically lacy
fractal-like aggregates, but change their morphology
during transport via various aging process. For exam-
ple, compact soot particles are abundant in the free
troposphere of a remote marine region in the North
Atlantic (China et al 2015). The morphology of soot
particles significantly influence their optical properties
(Liu et al 2008, Scarnato et al 2013, Radney et al 2014,
China et al 2015). Modeling studies showed that the
scattering, absorption and extinction (scattering +
absorption) cross sections of soot change upon
restructuring depending on the refractive index, the
monomer diameter and the structural details (Liu
et al 2008, Kahnert and Devasthale 2011, Scarnato
et al 2013, Radney et al 2014, China et al 2015).

Warm cloud droplets containing soot particles can
experience several cycles of condensation and eva-
poration (Huang et al 1994). Such cloud processing
plays a key role in compacting (restructuring) the soot
fractal-like aggregates (Khalizov et al 2013), thereby
altering their optical properties (Colbeck et al 1990,

Mikhailov et al 2006, Lewis et al 2009, Radney
et al 2014, China et al 2015). Previous studies (Huang
et al 1994, Zhang et al 2008, Tritscher et al 2011) sug-
gested that the driving mechanisms for the soot
restructuring are capillary forces, or other processes
such as electrostatic forces, when water fills cavities
(active sites) on the soot particle during condensation.
However, other studies found that capillary forces lead
to soot restucturing during evaporation of water
instead of condensation (Ebert et al 2002, Zuberi
et al 2005, Ma et al 2013). The degree of compaction
might depend on the source of soot; for example, nas-
cent diesel soot exhibited much smaller degree of
compaction compared to soot produced from spark
discharges between two graphite electrodes (Wein-
gartner et al 1997).

In contrast, fewer studies have investigated soot
processing by cold clouds and a mechanicistic under-
standing of the soot processing through ice cloud
remains poor. The formation of porous structures
after simulated cold cloud processing was observed in
a past study for organic aerosols (Adler et al 2013).
However, soot processing through ice cloud is still
ellusive. Ice crystals can sublimate at the bottom edge
of cirrus clouds or in the outflow of high convective
clouds (Heymsfield et al 2010, Jensen et al 2011, Protat
et al 2011). After sublimation, soot residuals can facil-
itate subsequent ice nucleation events by lowering the
supersaturation threshold (preactivation effect)
(Hobbs 1974, Knopf and Koop 2006). Additionally,
soot residuals can fragment into smaller pieces or
aggregate into larger soot clusters (Kärcher et al 2007).
Petzold et al (1998) and Targino et al (2006) found soot
particles in ice crystal residuals sampled from contrails
and cirrus clouds, but did not study morphological
features of the processed soot particles and the result-
ing changes in optical properties.

Here we investigate the changes in soot’smorphol-
ogy through cold cloud processing (supercooled dro-
plet and ice crystal formation) and assess the effects of
morphological changes on the optical properties of
soot particles. We simulated the atmopheric con-
densation-drying and freeze-drying cloud cycles in a
set of labolatory experiments during the soot aerosol
aging study (SAAS) that was conducted at Pacific
Northwest National Laboratory (PNNL). We experi-
mentally determined the morphological properties of
soot residuals from supercooled droplets and ice crys-
tals, andmodeled the optical properties of nascent and
processed soot particles.

2. Experimentalmethods

2.1. Soot generation and characterization
The experiments were conducted in the environmen-
tal chamber facility at PNNL as part of SAAS in
November of 2013 and January of 2014. Supplemen-
tary figure S1 shows the schematic of the experimental
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setup. Soot particles were generated using a diesel
generator (Pramac P6000S-4810) under a 5000W load
using a load bank (Simplex, Swift-E). The soot
particles were then extracted from the generator
exhaust and diluted with pure air by a factor of 10–11
at 130 °C using a heated venturi pump before cooling
to room temperate. Co-emitted species, such as
volatile organic carbon components and NOx, were
partially removed using a charcoal denuder. Soot
particles were size selected (120 nmdiameter) (supple-
mentary figure S2) according to their electrical mobi-
lity with a differential mobility analyzer (DMA, TSI,
3081). Mobility size selected soot particles (figure S2)
were injected (8600 cm−3) into the environmental
chamber.

A single particle mass spectrometer, SPLAT II
(Zelenyuk et al 2009), was used for detailed real-time
characterization of soot particles generated by the die-
sel engine. Particle characterization included mea-
surements of mass, vacuum aerodynamic diameter
(supplementary figure S2), and composition of indivi-
dual particles sampled directly from the exhaust after
mass or mobility classification. These data were used
to determine particle effective density, material den-
sity, mass–mobility exponent, dynamic shape factors
in free molecular and transition flow regimes, average
diameter of monomers, number of monomers, and
void fraction of soot agglomerates as described in
details in a separate publication (Zelenyuk et al 2014).

2.2. Collection of residuals from supercooled
droplets and ice crystals
Ice nucleation measurements of nascent soot particles
were performed using a compact ice chamber (CIC)
(Friedman et al 2011). Briefly, the CIC consists of two
vertical independent temperature controlled parallel
plates that are coated with an ice layer∼0.5 mm thick
to produce ice-supersaturated humidity conditions
inside the ice chamber. The evaporation section of the
CIC, again coated with an ice layer ∼0.5 mm thick,
was maintained at a target temperature (−20 °C or
−40 °C). The sheath and sample flow rates were 10
and 1 LPM, respectively, which led to an aerosol
residence time of ∼12 s within the chamber. The
temperature gradient between the vertical plates was
adjusted such that using Murphy and Koop (2005)
vapor pressure formulations, the desired conditions of
relative humidity with respect to water (RHw) were
obtained at a given fixed temperature. We performed
laboratory experiments at two temperatures:−20 and
−40 °C and at each temperature the RHw in the CIC
was set to ∼108±3%. These humidity conditions
generated supercooled droplets. At−20 °Cwe did not
observe ice crystals, while ice crystals were formed at
−40 °C due to homogeneous freezing. We confirmed
the absence of ice crystals and the presence of super-
cooled droplets at −20 °C by observing the size
distribution of particles (supercooled droplets are in

the range of 2.5–4.2 μm, while ice crystals are in the
range of 6–9 μm in diameter) exiting the CIC using an
optical particle counter (OPC; CLiMET, model CI-
3100) (Kulkarni et al 2012, Kulkarni et al 2015). These
results are in agreement with previous work where
particles generated by miniCAST soot generator were
used (Friedman et al 2011). Ice crystals and super-
cooled droplets were seperated from the interstitial
particles using a pumped counterflow virtual impactor
(PCVI) (Kulkarni et al 2011) and passed through a
diffusion dryer to collect the dry residuals. The 50%
cut-off size of PCVI was set to transmit droplets and
ice particles larger than ∼4 μm. The residuals of the
transmitted cloud hydrometeors were impacted on
substrates for electron microscopy analysis using a
four-stage cascade impactor (MPS-4G1). The samples
analyzed here were collected on the fourth stage with a
50% cut-off aerodynamic diameters of 50 nm. Soot
particles were collected on 300 mesh transmission
electron microscopy (TEM) copper lacey formvar
grids (Ted Pella, Inc.). As a reference, nascent soot
particles were also collected directly from the environ-
mental chamber, before entering into the CIC. Nas-
cent soot particles were also collected on nucleopre
polycarbonate membranes using a custom built aspi-
rated sampler for scanning electron microscopy
(SEM) analysis.

2.3.Morphological characterization
Individual nascent soot particles, and residuals from
ice crystals and supercooled droplets were investigated
using a field-emission SEM (Hitachi S-4700) and a
TEM (JEOL JEM-2010). Freshly emitted soot particles
are often represented as fractal-like aggregates due to
their self-similar structures over several length scales
(Oh and Sorensen 1997) and can be described by the
following scaling law.

N k
R

d

2
, 1g

g

p

Df

( )
⎛
⎝⎜

⎞
⎠⎟=

whereN is the number of monomers per aggregate,Df

is the mass fractal dimension, Rg is the radius of
gyration, dp is the monomer diameter, kg is the fractal
proportionality constant or fractal prefactor. We used
the ensemble method to calculate the 3D fractal
dimension of nascent soot particles from 2D images
(Brasil et al 1999, Chakrabarty et al 2006, China
et al 2014). However, soot particles from supercooled
and ice crystal residuals were very compact (see
section 3.1), presumably resulting in a Df>2. In this
limit, N would be underestimated due to the signifi-
cant overlap of the monomers in the 2D image.
Therefore, instead of using equation (1), we calculated
a 2D fractal dimension (D2f such that for a sphere D2f

would be equal to 2) using the directlymeasurable area
of each aggregate (Aa) and its maximum length (Lmax)
(Lee and Kramer 2004) using the following scaling law
(China et al 2015):
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A k L 2a g
D
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For direct comparison purpose, we calculated D2f

for nascent soot particles as well (supplementary figure
S3). We also used several other 2D morphological
descriptors such as projected area equivalent diameter
(DAeq), aspect ratio, roundness and convexity to char-
acterize nascent soot, and supercooled droplet and ice
crystal residuals. TheDAeq is defined as the diameter of
a spherical particle of the same projected area. The
aspect ratio represents the level of elongation of the
particle defined as the ratio of the longest dimension
(Lmax) to the orthogonal width (Wmax). Roundness is
the ratio of the projected area of the particle (Ap) to the
area of a circle with Lmax as the diameter. Higher
roundness indicates particles that are more compact.
The convexity is defined as the ratio of Ap and the area
of the convex hull polygon (smallest convex polygon
in which the particle is inscribed). In this study, we
assessed the morphological characteristics of 200–240
individual particles for each samples. A detailed
description of the image processing and the analysis of
the morphological parameters and their limitations is
provided elsewhere (China et al 2013, China
et al 2014).

2.4. Simulation of optical properties
We investigated the effect of compaction on the optical
properties of soot particles as a function of wavelength,
using the discrete dipole approximation (DDA-
DDSCAT7.3) code (Draine and Flatau 1994, 2013). In
particular in this study, we discuss parameters relevant
to radiative forcing calculations, including the absorp-
tion (Cabs) and scattering cross-sections (Csca), the
single scattering albedo (SSA=Csca/(Cabs+Csca)),
and the asymmetry parameter (g). We used a random
walk aggregation method to generate model soot
particles for the DDA simulations (Richard et al 2011).
The detailed method for the generation of the
aggregates and for the DDA simulations are described
elsewhere (Scarnato et al 2013). We modeled soot
aggregates with 100 monomers with a diameter of
23 nm, in agreement with our observed mean values
for nascent soot from electron microscopy and the

measurements by SPLAT II, ice crystal and super-
cooled droplet residuals (see sections 3.1 and 3.2). We
report the morphological parameters of the modeled
soot aggregates representing nascent soot, supercooled
droplet residuals, and ice crystal residuals in the
supplementary table S1. We computed values of
scattering and absorption cross sections averaged over
1000 random particle orientations (see Scarnato et al
(2013) for discussion on the solution convergence due
to the average of number of orientations). We
performed the calculations at four different wave-
lengths of 450, 532, 781 and 550 nm; the first three
corresponding to wavelengths used by several laser-
based instruments for aerosol optical characterization
and the last one to allow for a direct comparison with
data available in literature that are often reported at
550 nm.We used the soot refractive index provided by
Chang and Charalampopoulos (1990) for all the
calculations (Scarnato et al 2015).

3. Results and discussions

3.1. Nascent soot characterization
The composition analysis by SPLAT II revealed that
soot particles generated by this diesel engine were
composed of 80% elemental carbon, 5% oxygenated
organics, and 15% PAHs, yielding an estimate for soot
material density of 1.9 g cm−3. Furthermore, the
measurements on the mass- and mobility-selected
particles indicate, for example, that nascent soot
particles with mobility diameter of 120 nm had mass
of 0.56 fg, volume equivalent diameter of 83 nm, void
fraction of 0.67, and were comprised on average of 67
monomerswith diameter of 22 nm.

3.2.Morphology of residuals
We begin by comparing the morphologies of soot
residuals from supercooled water droplets and ice
crystals with the morphology of nascent soot particles.
In figure 1 we show examples of TEM images of
individual nascent soot particles, and soot residuals
from supercooled droplets and ice crystals. The open
fractal-like structure of nascent soot particles

Figure 1.Examples of TEM images of nascent soot (left panel), supercooled droplet (SCD) residuals (middle panel) and ice crystal (IC)
residuals (right panel).
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exhibited a Df of 1.53±0.02 and a kg of 3.44±0.06.
For diesel soot, previous studies showed Df values
ranging between 1.20 and 1.82 depending on engine
conditions and combustion properties (e.g., Luo
et al 2005, Li et al 2011). The center and right panels in
figure 1 show the morphology of supercooled droplet
residuals and ice crystal residuals, respectively. The
residuals appear to be more compact than nas-
cent soot.

Figure 2 compares the distribution of aspect ratio
(left panel), roundness (middle panel) and convexity
(right panel) for nascent soot, soot from supercooled
droplet residuals and soot from ice crystal residuals,
respectively. Soot particles from ice crystal residuals
are the most compact (higher roundness and con-
vexity, and lower aspect ratio) followed by super-
cooled droplet residuals and nascent soot particles. On
average, soot from ice crystal residuals is more com-
pact than supercooled droplet residuals as indicated by
the respective ∼34% and ∼10% increases in round-
ness compared to nascent soot), suggesting that the
freezing process results in more extensive restructur-
ing of soot. A consistent pattern is seen also from the
2D fractal dimension (table 1); D2f is highest for soot
from ice crystal residuals, followed by soot from
supercooled droplet residuals, and finally, by nascent
soot. Higher D2f also represents more compact
structures.

These observarions of morphological changes of
soot particles are in accord with the measurements
conducted by SPLAT II on soot particles coated with
secondary organic aerosol (SOA). In a separate set of

the SAAS experiments it was shown that fractal-like
nascent soot particles become compacted after coating
and subsequent thermal removal of SOA coating. As a
result, the effective density of soot particles increases
from 0.58 g cm−3 for uncoated fractal nascent soot
particles to 0.96 g cm−3 for the compact soot.

Table 1 summarizes the mean and standard devia-
tion values for selected morphological descriptors
(aspect ratio, roundness and convexity) including 2D
fractal dimension and prefactor. Mean values of DAeq

in table 1 show that soot particles from the ice crystal
residuals (201 nm) exhibited the largest sizes followed
by soot from supercooled residuals (179 nm) and nas-
cent soot particles (153 nm). This is also consistent
with their size distribution (supplementary figure S4).
Coagulation of soot before entering the CIC can be
responsible for the overall larger size of soot from
supercooled droplet and ice crystal residuals. In addi-
tion, we suspect that some interstitial particles along
with the desired size supercooled water droplets and
ice crystals may have been transmitted through the
PCVI (Pekour andCziczo 2011).

3.3. Compaction of soot particles
Some degree of compaction (roundness∼0.45) of soot
residuals from the supercooled droplets can occur
either during droplet condensation on soot particles
due to surface tension (Kutz and Schmidt-Ott 1992)
and capillary forces (Tritscher et al 2011) or during
evaporation (Ma et al 2013). We observed that ice
crystal residuals were more compact (roundness
∼0.55) than supercooled droplet residuals, suggesting

Figure 2.Distributions of aspect ratio (left panel), roundness (middle panel) and convexity (right panel) for nascent soot (black), soot
from supercooled droplet (SCD) residuals (light blue) and ice crystal (IC) residuals (red). Number of particles analyzed for nascent
soot, supercooled and ice crystal residuals were 226, 208 and 241, respectively.

Table 1.Mean values of severalmorphological descriptors for: (a)nascent soot, (b) soot from supercooled droplet residuals, and (c) soot
from ice crystal residuals.

Samples n dp (nm) DAeq (nm) AR RN CV D2f k2g

Nascent soot 226 23(3) 153(45) 1.75(0.48) 0.41(0.12) 0.71(0.10) 1.42(0.05) 0.13(0.03)
SCD residuals 208 23(5) 179(75) 1.65(0.37) 0.45(0.12) 0.75(0.10) 1.61(0.03) 0.20(0.02)
IC residuals 241 24(4) 201(61) 1.46(0.27) 0.55(0.11) 0.83(0.08) 1.71(0.04) 0.28(0.02)

Note: n—number of individual particles analyzed; dp—monomer diameter; DAeq—projected area equivalent diameter; AR—aspect ratio;

RN—roundness; CV—convexity; D2f—2D fractal dimension; k2g—2D prefactor. In parenthesis—standard error for D2f and k2g
(calculated from the uncertainty in themean-square fit), and standard deviation for the other parameters.

5

Environ. Res. Lett. 10 (2015) 114010 SChina et al



that the atmospheric freeze-drying process perhaps
playing a role in further restructuring of the soot
particles. Expansion of water during freezing leads to
presure developement inside the droplet and stresses
in the shell of the frozen droplet, resulting in the
growth of spikes or bulges (deformation of the shell)
on the frozen droplet surface and even shattering of
the shell if sufficient elastic energy is stored (Hobbs
and Alkezweeny 1968, Johnson andHallett 1968, King
and Fletcher 1973, López and Ávila 2012). The
pressure that develops inside the droplet and can be in
the order of ∼7600 kPa for 7 mm droplets (Visa-
gie 1969) and ∼8900 kPa for 10 mm droplets (King
and Fletcher 1973). The magnitude of the pressure
depends on the parameters such as droplet size,
temperature, total freezing time and visco-elastic
properties of ice (see discussion in supplementary
material figures S5 and S6). The pressure inside the
droplet increases with freezing time and it is higher for
colder freezing temperatures (King and Fletcher 1973).
The mechanical stress during freezing can alter the
shape of the soot particle and the magnitude of the
soot–water contact angle and filling angle (Butt and
Kappl 2009), resulting in changes of the capilary force
(Rahman 2001) and finally leading to the compaction
of the soot structure. Previous studies suggested that
the developement of surface stresses and compression
forces during freezing process results in deformed
shapes of biological material (Zhang et al 2006), woo-
den fibers (Macfarlane et al 2012) and materials used
in pharmaceutical science (Zijlstra et al 2004). We
suggest that similar stresses and compression are
reponsible for the compaction of soot particles that we
observed during the atmospheric freeze-drying pro-
cess. The drying process (that occurs within the flow
line between PCVI and cascade impactor; see
section 2.2) can also contribute to the compaction of
soot particles.We believe that both freezing and drying
processes lead to higher compaction of the soot
particles.

3.4.Optical properties of residuals
The optical properties of single nascent soot particles,
as well as soot particles from supercooled droplet
residuals and ice crystal residuals were simulated using
theDDAmodel described earlier (supplementary table
S2). Figure 3 shows the spectral dependence of several
optical properties, including absorption (Cabs) and
scattering (Csca) cross-sections, SSA and asymmetry
parameter (g) of soot residuals from supercooled
droplets and ice crystals, normalized by the correspon-
dent property of nascent soot. DDA predicts higher
optical cross sections and SSA for compact aggregates.
Soot residuals from ice crystals and supercooled
droplets have a slightly higher Cabs (Cabs-IC residuals/

Cabs-nascent is 1.05 and Cabs-SCD residuals/Cabs-nascent is
1.03 at 550 nm) than nascent soot. However, soot

residuals from ice crystals have substantially higher
Csca (Csca-IC residuals/Csca-nascent is 1.37 at 550 nm) than
nascent soot. These results are consistent with an
increase in modeled Csca for highly compact soot
collected in the free troposphere in the North Atlantic
(China et al 2015). Similarly, a previous T-matrix
simulation study showed an increase inCabs andCsca at
870 nm for compact soot compared to less compact
soot (Liu et al 2008). Less material is exposed to the
lightwhen soot particles aremore compact, decreasing
the absorption. At the same time, monomer-mono-
mer interactions increase, resulting in an overall small
enhancement (<10%) of absorption. Similarly,
increase in monomer–monomer interactions results
in higher scattering for compact soot (China
et al 2015). Overall, our results show higher SSA for
compact soot (IC residuals) than for lacey soot
(nascent) and the SSA ratios (SSAIC residuals/SSAnascent)
are 1.40, 1.30, 1.28 and 1.15 at 450, 532, 550 and
781 nm, respectively. These results are consistent with
direct measurement of optical properties using photo-
acoustic and cavity ring-down spectroscopy byRadney
et al (2014). They found that soot compaction
increases SSA by a factor of ∼1.2 at 405 nm for
relatively smaller monomer diameter (17 nm) and
smaller soot size (geometric mean mobility diameter
of soot: 116.7 nm) compared to our study. However,
future studies should focus on in situmeasurements of
the optical properties of supercoooled droplet resi-
duals and ice crystal residuals simultaneously with the
morphological characterization of the soot particles.
Our DDA simulation results are also consistent with a
previous simulation study (Kahnert and
Devasthale 2011, Liu et al 2008) that used T-matrix.
They also found an increase in SSA due to soot
compaction and the magnitude of the difference in
SSA depends on monomer diameter, number of
monomers, refractive index of soot and wavelength.
For example, Liu et al (2008) found that the SSA ratio
(SSAcompact/SSAlacey) increases from 4.25 to 5.25 as
soot size increases (from N=200 to N=400) for a
monomer diameter of 15 nm at 870 nm wavelength.
Our previous study also shows higher SSA ratio (1.98
versus 1.66) for larger soot (N=150) compared to
relatively smaller soot size (N=66) for a monomer
diameter of 34 nm at 450 nm wavelength. Compact
soot particles exhibit lower g compared to open
fractal-like nascent soot particles for visible wave-
lengths. In figure 3 we show that the normalized g
values (normalized by the g value of nascent soot) are
<1 for both ice crystal residuals and supecooled
droplet with the first being the lowest. These results
suggest an overall higher SSA and lower g for compact
soot particles with respect to nascent soot. Both SSA
and g are input parameters into radiative transfer
models. A simple estimate of the top-of-the atmo-
sphere direct radiative forcing (TOA-DRF) using the
conceptual calculation (Chylek and Wong 1995,
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Haywood and Shine 1995, Lenoble et al 1982) shows
that soot compaction due to atmospheric freeze-
drying cycle typically results in a reduction of the
positive soot TOA-DRF and the degree of reduction
depends on the wavelength and surface albedo (sup-
plementary figure S7). A maximum reduction of 63%
in TOA-DRF ([TOA-DRFIC residual-TOA-DRFNascent]/
TOA-DRFIC residual) is estimated for ice crystal resi-
duals, while a maximum 45% reduction is estimated
for supercooled droplet residuals due to compaction.
Similarly, Kahnert andDevasthale (2011) found trends
of reduction (up to 60%) of TOA-DRF for compact
soot compared to lacey soot. Future studies should
also focus on rigorous radiative forcing calculations by
incorporating residual soot concentration, size distri-
bution and other size dependent parameters.

4. Summary and conclusions

We performed a set of laboratory experiments to
simulate atmospheric cold cloud processing of soot
particles by analyzing individual dry residual soot
particles from supercooled droplets and ice crystals.
We found that soot particles from ice crystal residuals
experienced higher compaction compared to super-
cooled droplet residuals. These results suggest that the
atmospheric freeze-drying cycle is perhaps more
effective at compacting soot than the condensation-
drying cycle. We performed numerical simulations of
soot optical properties, guided by quantitative assess-
ment of themorphology of nascent soot and soot from
supercooled droplet and ice crystal residuals. Simu-
lated compact soot residuals from ice crystals

Figure 3. Images on top show themodeled soot particles used in the simulations, representing from left to right, open fractal-like
nascent soot, soot residual from supercooled droplet (SCD) and ice crystal (IC). Normalized absorption (a) and scattering cross-
sections (b), single scattering albedo (SSA) (c), and asymmetry parameter (g) (d), as functions of wavelength calculated using the
discrete dipole approximation (DDA). Themodeled soot particles were constructed by 100monomers with 23 nmdiameter each and
different degrees of compaction to represent themeasuredmorphological values. Optical cross-sections, SSA and g for SCD and IC
soot residuals were normalized by the values obtained for nascent soot.
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displayed higher SSA than soot residuals from super-
cooled droplets and nascent soot particles of the same
mass. Compaction of soot particles through cold
clouds processing can alter their lifetime, global
burden (Van Poppel et al 2005), and radiative forcing
(Van Poppel et al 2005, Kahnert and Devasthale 2011,
Mishchenko et al 2014, China et al 2015). These
results could have significant implications on our
understanding of the microphysical and optical
properties of soot in cirrus and contrails. Future
studies should focus on elucidating how cold cloud
processing of soot particles internally mixed with
organics and sulfate alter their morphology and
optical properties. Additionally, further effort should
be made to develop a microphysical-based parameter-
ization of soot compaction to be used in climate
models.
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