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Abstract
The challenge of estimating the potential impacts of climate change has led to an increasing use of
dynamical downscaling to produce fine spatial-scale climate projections for impact assessments. In
this work, we analyze if and towhat extent the bias in the simulated crop yield can be reduced by using
theWeather Research and Forecasting (WRF) regional climatemodel to downscale ERA-Interim
(EuropeanCentre forMedium-RangeWeather Forecasts (ECMWF)Re-Analysis) rainfall and
radiation data. Then, we evaluate the uncertainties resulting fromboth the choice of the physical
parameterizations of theWRFmodel and its internal variability. Impact assessments were performed
at two sites in Sub-SaharanAfrica and by using two cropmodels to simulateNiger pearlmillet and
Beninmaize yields.We find that the use of theWRFmodel to downscale ERA-Interim climate data
generally reduces the bias in the simulated crop yield, yet this reduction in bias strongly depends on
the choices in themodel setup. Among the physical parameterizations considered, we show that the
choice of the land surfacemodel (LSM) is of primary importance.When there is no couplingwith a
LSM, orwhen the LSM is too simplistic, the simulated precipitation and then the simulated yield are
null, or respectively very low; therefore, couplingwith a LSM is necessary. The convective scheme is
the secondmost influential scheme for yield simulation, followed by the shortwave radiation scheme.
The uncertainties related to the internal variability of theWRFmodel are also significant and reach up
to 30%of the simulated yields. These results suggest that regionalmodels need to be usedmore
carefully in order to improve the reliability of impact assessments.

1. Introduction

The assessment of climate change impact on crop
production is crucial to support adaptation strategies
that ensure food security in a warmer climate. To
evaluate these impacts, three modeling approaches are
adopted: process-based models (e.g. EPIC (Wil-
liams 1990), SARRA-H (Dingkuhn et al 2003), DSSAT
models (Jones et al 2003), APSIM (Keating et al 2003)),
agro-ecosystem models (e.g. LPJmL (Bondeau
et al 2007), ORCHIDEE (Krinner et al 2005), PEGA-
SUS (Deryng et al 2011)), and statistical analyzes of

historical data (e.g. Lobell and Burke 2010, Shi
et al 2013). The goal of all these modeling approaches
is to estimate crop productivity as a response to climate
variability. Process-based models represent the phy-
siological processes of crop development as a response
to climate forcing. This approach is often preferred
since it can be used to capture the complex effects of
the climate, CO2 concentration and management on
crop productivity (Roudier et al 2011). However, the
use of projected climate data from global climate
models (GCM) to force crop models is challenging.
The scale of the GCM grid points is much larger than
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the processes governing the yields at the plot scale
(Baron et al 2005) and many agricultural models
require input data that describes the environmental
conditions at high spatial and temporal resolution.
Thus, integrated climate–crop modeling systems need
to appropriately handle the loss of variability caused by
differences between the scales (Oettli et al 2011, Glot-
ter et al 2014). This can potentially be achieved by
downscaling GCM outputs. Dynamical downscaling
offers a self-consistent approach that captures fine-
scale topographic features and coastal boundaries by
using regional climate models (RCMs) with a fine
resolution (approximately 10–50 km) nested in the
GCM (Paeth et al 2011, Glotter et al 2014). Although it
can improve weather and climate variability (Feser
et al 2011, Gutmann et al 2012) as well as crop yield
projections (e.g. Mearns et al 1999, Mearns et al 2001,
Adams et al 2003, Tsvetsinskaya et al 2003), dynamical
downscaling is also an additional source of errors and
uncertainties to crop yield projections. For example,
when different RCMs were used to downscale atmo-
spheric re-analyses to force the SARRA-H crop model
in Senegal, Oettli et al (2011), large differences were
found in the simulated sorghum yields depending on
the RCM used. Moreover, these authors showed that a
change in the physical parameterizations of a single
RCM can lead to major changes in the derived crop
yields. More recently, using two RCMs and the
DSSAT-CERES-maize crop model over the United
States, Glotter et al (2014) showed that although the
RCMs correct some GCM biases related to fine-scale
geographic features, the use of a RCM cannot com-
pensate for broad-scale systematic errors that dom-
inate the errors for simulatedmaize yields.

Projected yields rely on the accuracy of climate
input data and are thus sensitive to the downscaling
method. It is therefore crucial to quantify the errors
inevitably propagated by such downscaling techniques
through combined climate–crop modeling. However,
to our knowledge, very few studies have investigated
the sensitivity of local climate and the resulting simu-
lated crop yields to choices in the experimental setup
of a single RCM even though they can considerably
affect the RCM output. For instance, RCMs are highly
sensitive to the size and location of the domain (e.g.
Seth andGiorgi 1998, Leduc and Laprise 2009), the lat-
eral boundary conditions (e.g. Diaconescu et al 2007,
Sylla et al 2009), the model’s horizontal and vertical
resolutions (e.g. Iorio et al 2004) and its physical para-
meterizations (e.g. Jankov et al 2005, Flaounas
et al 2010, Crétat et al 2011b). Moreover, atmosphere
and surface-atmosphere feedback processes are chao-
tic and result in an internal variability of the RCMs
that is not reproducible (e.g. by a multimember
ensemble simulation) (Crétat et al 2011a).

Here, we investigate the effect of using a RCM on
simulated yields in Sub-Saharan Africa, one of the
most vulnerable areas to climate change. We docu-
ment and rank the errors and uncertainties arising

from the physical parameterization and internal varia-
bility of the RCM. The chosen physical parameteriza-
tions of the regional Weather Research and
Forecasting (WRF) model (Skamarock et al 2008) are
systematically sampled to produce a set of downscaled
ERA-Interim rainfall and incoming solar radiation
time series at two sites in Benin and Niger. These cli-
mate variables are used to simulate Niger pearl millet
and Benin maize yields with both the EPIC and
SARRA-H crop models in order to evaluate (i) the
effect of using theWRF on the simulated yield bias and
(ii) the uncertainties arising from the choice of the
physical parameterization. Sampling from among the
different parameterizations also allows the selection of
a satisfactory set of parameterizations for the WRF
model for impact studies in Soudano–Sahelian Africa.
This retained configuration is later used in this study
to perform a 10-member ensemble simulation to
assess the uncertainties linked to the internal varia-
bility of theWRFmodel.

The next section introduces the climate data,
crop model, RCM and simulation protocols. Simu-
lated crop yields using both raw ERA-Interim and
WRF downscaled climate data are first compared.
After highlighting the influence of the climate vari-
ables taken into account in the simulated yields, the
impact of each physical parameterization on the
simulated climate variables and yields is investigated.
Finally, the uncertainties in the simulated crop yields
induced by the internal variability of WRF are
quantified.

2.Materials andmethods

2.1. Location of the sites
Two sites of approximately one squared-degree
(figure 1) are retained for this study; they are
characterized by a rain-fed agriculture with low input
on poor soils. The Niger site (orange box) is typical of
Central Sahel conditions. There, the rainy season
lasts approximately from June to September and
provides roughly 450–600 mm of rainfall. The Benin
site (yellow box) is in the Sudanian zone. There, the
rainy season lasts up to six months from May to
October providing 1200–1300 mm of rainfall
per year.

2.2. Climate data
For each site, the observed meteorological data are
taken from the AMMA-CATCH observation system
(African Monsoon Multidisciplinary Analysis—Cou-
pling the Tropical Atmosphere and the Hydrological
Cycle; www.amma-catch.org). The precipitation is
interpolated by kriging over each site using more than
50 rain-gauge measurements for the 2003–2009 per-
iod (for a detailed description of the method used, see
Kirstetter et al 2013) while the other variables (radia-
tion, temperature, relative humidity and wind) are
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taken from synoptic stations. These data are consid-
ered as reference climate data and they are used to
simulate the reference yields.

The ERA-Interim dataset (ERA-I; Simmons
et al 2007, Dee et al 2011) consists of a set of global
gridded analyses describing the state of the atmo-
sphere, land and ocean wave conditions from 1979 to
date. Climate variables from this dataset are used at a

resolution of 1.5° to force the (i) WRF and (ii) crop
models.

2.3. Climate downscaling experimental setup
All of the climate downscaling experiments are
performed using the non-hydrostatic Advanced
Research WRF ARW/WRF model, version 3.3.1
(WRF; Skamarock et al 2008). This model has been

Figure 1.Map ofWest Africa and location of the sites.Mean annual rainfall (mm) averaged over the 2003–2009 period from (a)
Climatic ResearchUnit (CRU)data, (b)ERA-Interim data and (c) a single physical configuration of theWRFmodel. The site inNiger
in shown in orange and the site in Benin in yellow. The reference rainfall, fromAMMA-CATCHOS and only available on these two
sites,match theCRUdata inNiger with an annual rainfall of 522 mmand theCS1b data in Beninwith an annual rainfall of 1289 mm
(table 2).
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used in a large number of studies, some of which focus
on West Africa (e.g. Vigaud et al 2009, Flaounas
et al 2010, Klein et al 2015), and includes a large choice
of physical schemes. Simulations are carried out for a
domain extending from 10° S to 30°N and 45°W to
45° E, covering the large West African region, at a
resolution of 80 km. Lateral forcings are provided by
six hourly ERA-I re-analyses and the integrations were
carried out between 1 January 1989 and 31 December
2010 (including one year of spin-up). Only runs from
2003 to 2009 have been retained to be compared with
the observedmeteorological data and to drive the crop
models.

Although our goal is to assess both the influence of
the physical parameterizations on the simulated yield
bias and the uncertainties linked to the choice of one
scheme over another. For computational cost reasons,
it was not possible to test all of the combinations.
Three sets of experiments were thus designed to
address the sensitivity to the model settings and inter-
nal variability. As the agriculture of the Sudano–Sahe-
lian zone is highly dependent on rainfall, we focus on
parameters that have been previously identified to
exert the largest influence on rainfall in Africa (Pohl
et al 2011): convective and shortwave (SW) radiation
schemes (Set #1), the land surface model (LSM) and
land use (LU) categories (Set #2), forced versus sto-
chastic components of the regional climate variability
(Set#3, through one ensemble simulation). All of the
other parameters are fixed: the Yonsei University pla-
netary boundary layer (Hong et al 2006), WRF Single-
Moment 6-Class cloud microphysics (Hong and
Lim 2006), the rapid radiative transfer model long-
wave radiation scheme (Mlawer et al 1997) and the
Monin–Obukhov surface layer. More information
about the model settings described below is given in
table 1 and in the supplementarymaterial.

Set#1. SW radiation and atmospheric convection
SW radiation schemes can be used to estimate the
amount of energy available at different altitudes, e.g.
the energy of an air parcel at the surface, while
convective parameterization schemes (CPSs) are of
primary importance for rainfall, especially in regions
receiving predominantly convective rainfall, as is the
case in West Africa. Set#1 addresses the sensitivity to
these two types of settings. Three SWschemes and four
CPSs are tested in this paper; theirmain characteristics
are detailed in table 1 (and the supplementary
material). For this set of experiments, the LSM is set to
the Noah LSM and LU is set to the USGS (United
States Geological Survey) LUmap.

Set#2. LSMand LU
Atmospheric models are coupled to LSMs to resolve
the fluxes at the interface between the continents and
the atmosphere. They are forced by atmospheric fields
and use global-scale soil and surface LU datasets. LU
maps consist of typologies (e.g. 20 or 24 categories

such as agriculture, deciduous forests, grasslands,
etc.), where each typology is characterized by specific
albedo, soil moisture, surface roughness and emissiv-
ity values. In this set of simulations, four distinct LSMs
and two LUs are tested. Due to the results inherited
from Set#1, the SW scheme is set to Dudhia and the
CPS is set to Kain–Fritsch with the modified trigger
function (KF-t, table 1). This is necessary in order to
isolate the specific effects of the LSM and the LU data,
when all other settings are constant.

Set#3. Ensemble simulation
In this Set #3, we quantify the amplitude of the
uncertainties associated with the chaotic component
of the regional atmosphere in our West African
domain (hereafter referred to as the ‘internal varia-
bility’ of our model, IV). We then compare it to the
changes induced by the settingsmodified in Sets#1-2.
A 10-member ensemble simulation is therefore per-
formed by initializing the integrations on January 1st
at 0 h UTC, and then every 6 h, thus providing 10
different initial conditions. This simulation was per-
formed using a unique physical configuration: the
Dudhia SW scheme, the KF-t CPS, the Noah LSM and
theMODIS LUdata.

2.4. Cropmodel simulations
In order to span some of the uncertainties in crop
modeling, which have been shown to be an important
contributor to the overall uncertainty in climate
impacts (e.g. Asseng et al 2013), we use two different
crop models, SARRA-H and EPIC, to simulate Benin
maize yields andNiger pearlmillet yields.

2.4.1. The SARRA-H cropmodel
The SARRA-H v32 (Système d’Analyse Régionale des
Risques Agroclimatiques-Habillée; http://sarra-h.
teledetection.fr/SARRAH_Home.html) crop model
(Dingkuhn et al 2003) was developed by CIRAD
(Centre International de Recherche Agronomique).
Based on a water balance model, it calculates the
attainable yield under water-limited conditions by
simulating the soil water balance, potential and actual
evapotranspiration, phenology, potential and water-
limited assimilation, and biomass partitioning (e.g.
Kouressy et al 2008, the supplementary material in
Sultan et al 2013). Soil nitrogen balance processes are
not simulated. The SARRA-H model is particularly
suited for the analysis of climate impacts on cereal
growth and yield in dry tropical environments (e.g.
Sultan et al 2013, Baron et al 2005, Sultan et al 2005).
Trial and on-farm data were used to calibrate and
validate the model for local varieties of Niger millet
(Traoré et al 2011, Sultan et al 2013) and Benin maize
(Allé et al 2014). Both varieties have a growth-cycle
length of approximately 90 days.
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2.4.2. The EPIC cropmodel
The EPIC crop model (Williams et al 1984, Wil-
liams 1990, Williams and Singh 1995) includes a fine
description of soil processes and takes carbon–nitro-
gen dynamics into account. The calibration was
performed with a multi-location approach in the sub-
humid savanna zone of West Africa using data from
station and farm fertilizer experiments (Gaiser
et al 2010, Srivastava and Gaiser 2010). The EPIC
model is used to simulate 90-day cultivars of Benin
maize (Ramarohetra et al 2013) andNiger pearlmillet.

Both crop models, forced by in situ climate data,
were evaluated against Food and Agriculture Organi-
zation (FAO) crop yield data for the two sites (figure
S1). Correlations between the observed and simulated
yields were significant for both models at the two sites
(close to 0.6 for millet in Niger and 0.78 for maize in
Benin for bothmodels) and the EPICmodel accurately
reproduces the mean yield of Benin maize and Niger
millet. However the SARRA-H model overestimates

the mean yield of both Niger millet and Benin maize.
This overestimation is a common shortfall in many
crop modeling studies (e.g. Challinor et al 2004, Bon-
deau et al 2007, Ramarohetra et al 2013) and is likely
due to a lack of nitrogen stress in the model. More
details on this evaluation are provided in the supple-
mentarymaterial.

2.5. Evaluation protocol
In this paper, we adopt the three-tier hierarchical
approach described by Morse et al (2005; figure 2). A
comparison of the ERA-I and WRF simulations with
the corresponding observed variables is carried out in
a tier-1 evaluation. Since Oettli et al (2011) showed
that, among the climate variables derived from the
RCM, precipitation and radiation are the most likely
to induce errors in the simulated crop yields, this paper
only concentrates on the effects of these two variables;
the other climate variables (temperature, relative

Table 1.Parameterization scheme characteristics and references.

Shortwave schemes Characteristics Interactions Reference

Dudhia Simple downward

calculation.

Water vapor absorption. Cloud albedo and

absorption.No ozone effect.

Dudhia (1989)

RRTMG (Rapid Radiative Transfer
Model)

Spectralmethod

(14 bands).
Cloud fractions.Ozone andCO2 profile.

Trace gases. Aerosols. Top of atmosphere

and surface diagnostics for climate.

Iacono et al (2008)

Goddard Spectralmethod

(11 bands).
Clouds. Ozone profile. CO2fixed. Aerosols. Chou and Suarez (1994)

Convective schemes Characteristics Reference

Kain–Fritsch Entraining-detrainingmass flux scheme. Triggered byCAPE, Cloud

depth, CIN and sub-cloudmass convection. Closure assump-

tion: CAPE.

Kain (2004)

Kain–Fritsch trigger (KF-t) Kain–Fritschwith amodified trigger function includingmoisture

advection here.

Kain (2004),Ma and

Tan (2009)
Betts–Miller–Janjic (BMJ) Convective adjustment scheme. Triggered byCAPE, cloud depth and

cloud-layermoisture. Closure assumptions: CAPE and cloud-layer

moisture.

Betts (1986), Betts and
Miller (1986),
Janjic (1994)

Tiedtke Entraining-detrainingmass flux scheme of a cloud ensemble. Trig-

gered byCAPE, cloud depth andmoisture convection. Closure

assumption: CAPE.

Tiedtke (1989), Zhang
et al (2011)

Land surfacemodels Characteristics Reference

NoLSM No land surfacemodel, i.e. no temperature or soilmoisture prediction.

Thermal diffusion 5-layer soil temperaturemodel. Soilmoisture fixedwith a land-use and

season-dependent constant value.No explicit vegetation effect.

Dudhia (1996)

Noah 4-layer soil temperature andmoisture (and ice)model with canopy

moisture prediction.

Chen andDudhia (2001)

Rapid update cycle (RUC) >6-layer soilmodel. Includes temperature,moisture (and ice) and
vegetation processes.

Smirnova et al (2000),
Benjamin et al (2004)

Pleim–Xiu 2-layer force-restore soil temperature andmoisturemodel. Includes

vegetation.

Xiu and Pleim (2001)

Land use Characteristics Reference

US geological survey (USGS) 24 land use categories, derived fromNOAA’s AdvancedVery high

resolution radiometer sensors.

Anderson (1976),
Hitt (1994)

Moderate resolution imaging spec-

troradiometer (MODIS)
20 land use categories. Friedl et al (2002)
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humidity and wind) are taken from in situ observa-
tions. In a tier-2 evaluation, the essential reference data
are precipitation and radiation (as in tier-1), but the
data are integrated into the two crop models to
produce an estimate of the crop yields. However, the
tier-2 evaluation does not validate the crop model per
se since the objective of the tier-2 evaluation is not to
produce an accurate yield prediction, as is the case for
the tier-3 evaluation. By using a tier-2 evaluation, we
will be validating the ERA-I and WRF output against
the observed meteorological in situ data, but in a
situation where the precipitation and radiation fields
have been integrated and synthesized to produce crop
yields. For both crop models, in situ climate data (our
reference climate) are first used to simulate the
reference yields for Niger millet and Benin maize over
the 2003–2009 period. Then, the crop models are
forced using ERA-I and climate variables simulated by
the WRF model (three sets of experiments, see
paragraph 2.3). The deviation of these alternative
simulated yields from the reference yields gives an
estimate of the errors that result from forcing the
climate variables.

In this paper, we consider the climate inputs from
the WRF or ERA-I models as the most suitable for
crop yield simulations as they minimize the distance
between the simulated yields and the reference yields
obtained with in situ meteorological data. We were
also able to validate the resulting simulated yields
against the observed yield data (tier-3 evaluation);
however, since the objective of this paper is to assess
the sensitivity of the simulated crop yield to the RCMs
biases rather than predict accurate yields in the two
sites, the results reported in this paper aremainly dedi-
cated to the tier-1 and tier-2 evaluations.

We used the same metric for the tier-1 and tier-2
evaluations to measure the distance to the observed
in situ data. We calculated the mean bias error (%
MBE) of the climate inputs and simulated yields rela-
tive to the observed seasonal climate variables (tier-1
evaluation) and simulated yields using the observed
in situ climate variables (tier-2 evaluation). The %
MBE is defined as

N

x x

x
%MBE

1
100 ,

i

N i i

i1

0

0

( )
⁎ ⁎å=

-

=

where x0i is the value of the baseline and xi, is the value
to be tested.

The uncertainties are estimated by calculating the
coefficient of variation (CV) of the variables derived
from the different runs (climate variables or yields cal-
culated using the different WRF configurations or the
different members of the ensemble simulation). The
CV is defined as follows:

CV 100 ,⁎s
m

=

where σ is the standard deviation of the values of the
considered variable and μ is the averaged value of the
considered variable.

3. Results

3.1.Overview of the simulated yield biases and
uncertainties
Simulated yields using ERA-I data directly show biases
with an amplitude higher than 20%, reaching up to
−77.82% for the SARRA-H Niger millet yields
(figure 3: gray dots, and table 2). The use of the WRF
model to downscale the ERA-I climate data can reduce
the bias in the simulated yields at both sites and for
both crop models; for example, the amplitude of the
mean bias error (%MBE) for the ensemble mean (in
dark green) is lower than 15%. Yet, the use of theWRF
model can also introduce large uncertainties due to the
choice of parameterization schemes (in red): the %
MBE for the simulated yield using different physical
configurations ranges from −100% (crop failure) to
+84.48% (table 2) and the CV for its %MBE is higher
than 39% (table 2). The effect of the choice of each
parameterization will be detailed later in this paper.
The internal variability of the WRF model, even for a
moderately sized domain (see figure 1), notably
compared to the much larger CORDEX-Africa
domain (Giorgi et al 2009), also induces non-negligible
uncertainties in the simulated crop yields (green dots).

Figure 2. Schematic representation of the three-tier evaluation approach. Rectangular boxes represent sources of data, while oval
boxes indicate the different types of evaluation. Adapted fromMorse et al (2005).
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The largest difference of yield %MBE between two
members of the ensemble simulation ranges between
roughly 14% (18.08%–4.36%) for the EPIC Benin
maize yields and 34% (25.63%+8.32%) for the
SARRA-H Niger millet yields (table 2). However, the
uncertainties in the crop yield induced by the internal
variability of the WRFmodel remain lower than those
induced by themodel parameterizations with an inter-
member yield%MBECV lower than 10% (table 2).

3.2. Influence of climate variables on the simulated
crop yields
Depending on the cropmodel and the considered crop
and site, the simulated yields are not sensitive to the
same climate variable characteristics and the yield %
MBEdiffers (figure 3). In this section, themain climate
characteristics leading the simulated crop yields are
identified.

Precipitation and radiation errors result in errors
in the simulated yields (figure 4). When considering
similar variations of the climate variables, the climate
variable with the most marked influence on the %
MBE of the simulated crop yields depends on the loca-
tion and cropmodel considered.

Water is a limiting factor at the first order, espe-
cially for the Nigermillet yields which are highly sensi-
tive to a change in the total rainfall (figure 4, top). This
is the case even for the Niger millet cultivar simulated
with the SARRA-Hmodel, which requires less water to
reach its attainable yield. Once the water demand
(approximately 600 mm) is met, the simulated
SARRA-HNiger millet yields no longer depend on the
total water amount. The total rainfall is not a limiting
factor for Benin maize growth. When using the EPIC

model, high rainfall intensity leads to nitrogen leach-
ing, leading in turn to nitrogen stress which then
restricts crop development and grain formation
(figure 4(d)). In the SARRA-H cropmodel, the rainfall
intensity has no influence on soil fertility and radiation
is the most limiting climate variable for the Benin
maize yield (figure 4(c)).

Ranking of the climate variables relative to the
explained variance of simulated yield when included
in a multiple linear regression. The climate variables
taken into account are the annual cumulative rainfall,
mean daily rainfall and mean daily radiation. The cli-
mate variables on the left explain the largest fraction of
the variance whereas the variables on the right explain
the lowest fraction for the simulated SARRA-H Niger
millet, the EPIC Niger millet, the SARRA-H Benin
maize, the EPIC Benin maize and the simulated
SARRA-H Niger millet when the annual rainfall
amount remains below 600mm.

Large biases in the simulated Niger millet yields
(up to −77% for SARRA-H) using the ERA-I model
come from the strong biases in the ERA-I annual rain-
fall and rainfall intensity (roughly −70% and −74%,
respectively; table 2). The underestimation of the rain-
fall intensity in the ERA-I model results in an over-
estimation of the EPIC simulated Benin maize yields,
while the underestimation of radiation in the ERA-I
model results in the underestimation of the yield by
roughly−34%.

Using theWRFmodel to downscale the ERA-I cli-
mate data, the model-output climate variables and
then the simulated crop yields generally show larger
biases than the ERA-I climate variables. These biases
are strongly dependent on the chosen physical config-
uration of the WRF model (CV, table 3). Yet, these

Figure 3.%MBEof the simulated yields.%MBEof the EPIC yields versus%MBEof the SARRA-H yields for (a)Nigermillet and (b)
Beninmaize. Dots represent themean%MBE for the simulated yields withmodels forced by rawERA-I precipitation and SW
radiation outputs (gray), by the outputs of theWRFmodel under different physical parameterizations (red) and by the 10members of
the ensemble simulation (light green). Dark green dots represent themean of%MBEof the yields simulated using the ensemble
simulation.
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Table 2.Overview of the climate variables and the%MBEof the simulated yields.

Niger Benin

Millet yields Maize yields

Annual rain

Daily

rainfall Radiation SARRA-H EPIC Annual rain

Daily

rainfall Radiation SARRA-H EPIC

Reference 522.35 6.07 5353.99 1202.75 281.71 1289.81 7.3 4708.72 4302.51 1245.74

ERAI%MBE −70.47 −73.48 11.13 −77.82 −23.11 −5.12 −17.26 −5.95 −33.6 21.21

Parameterization sets

Median%MBE 106.92 45.63 12.51 7.22 27.54 72.91 65.48 9.6 −13.67 −34.11

Max.%MBE
− −100 −100 − −100 −99.28 −100 −100 −4.68 −100 −100

+ 291.06 106.86 29.95 26.5 84.48 182.36 143.18 49.22 31.88 29.93

%MBECV 72.33 50.51 5.23 47.02 46.78 53.95 37.27 10.96 39.91 42.52

Ensemble simulation

Mean%MBE 11.64 3.16 13.75 8.99 6.19 5.77 12.08 11.15 −10.18 −14.1

Max.%MBE
− 0.06 −13.34 13.14 −8.32 −13.13 −2.58 3.42 9.57 −22.11 −18.08

+ 36.22 24.71 14.29 25.63 18.87 15 19.86 12.24 −1.33 −4.36

%MBECV 9.34 11.94 0.33 9.12 9.34 5.92 5.12 0.88 7.22 4.66
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biases are strongly reduced for some configurations.
The following section investigates the influence of
each tested physical parameterization on the simu-
lated climate variables and yields.

3.3. Effect of the different physical
parameterizations tested on crop yield
The choice of the WRF physical parameterizations
strongly modulates the climate variables relevant to
crop yield simulations, thus resulting in high uncer-
tainties in the crop yields (table 2 and figure 3). Among
the different parameterizations, the choice of a LSM
that takes the moisture dynamics into account is of
primary importance for the simulation of realistic
rainfall: when there is no soil moisture prediction (‘No
LSM’ or ‘Thermal diffusion’ scheme), there is no
moisture recycling and then rainfall and the simulated

crop yields are generally dramatically underestimated,
if not null (table 2 and figure 5(a)), especially in Niger
where a larger part of the humidity comes from
recycling. Climate variables derived using the other
LSMs lead to a %MBE amplitude for the Niger millet
yields that is lower than 15% (table 3), except for the
Pleim–Xiu scheme, for which the overestimation of
the precipitation leads to an overestimation of the
EPIC Niger millet yields by roughly 29%. The Pleim–

Xiu scheme results in simulated Benin maize yields
that are significantly lower than in the other schemes;
the underestimation of the EPIC Benin maize yields is
due to the high daily rainfall overestimation in the
Pleim–Xiu scheme while the underestimation of the
SARRA-H Benin maize yield is due to an under-
estimation of the incoming radiation (table 3). The
Pleim–Xiu LSM tends to favor larger rainfall amounts
than the RUC and Noah LSMs, as already highlighted

Figure 4.Relationships between the%MBEof the simulated yields and the%MBEof the forcing climate data. The%MBEof the
simulated yield versus the%MBEof the dominant climatic variables: (a) the%MBEof the SARRA-HNigermillet yields versus the%
MBEof the annual rainfall, (b) the%MBEof the EPICNigermillet yields versus the%MBEof the annual rainfall, (c) the SARRA-H
Beninmaize yields versus the radiation%MBE, and (d) the%MBEof the EPICBeninmaize yields versus the%MBEof themean
rainfall intensity. Thisfigure is based on all of the simulated yields (using the reference, ERA-Interim andWRFprecipitation and
radiation data) used in this study.
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Table 3.%MBEof the climate and simulated yields for each of the parameterization schemes. Bold cells indicate the used parameterizations for the ensemble simulation.

Niger Benin

Millet yields Maize yields

Annual rain Daily rainfall Radiation SARRA-H EPIC Annual rain Daily rainfall Radiation SARRA-H EPIC

Dudhia 8.13 −11.45 10.58 −18.39 6.63 24.43 22.71 9.46 −1.02 −6.79

SWradiation schemes RRTMG 199.95 88.84 8.9 3.83 58.25 127.44 100.07 4.84 −8.71 −40.71

Goddard 291.06 129.2 14.22 13.83 65.49 182.36 143.18 10.2 3.59 −44.43

Kain-Fritsch 279.66 106.86 10.78 11.12 84.48 148.05 110.68 16.47 31.88 −31.6

CPS KF-trigger 176.9 89.02 13.87 9.64 36.9 60.85 55.75 9.28 −5.65 −39.17

BMJ 121.51 12.47 10.99 4.46 36.36 110.95 80.18 6.66 −6.89 −15.32

Tiedke 87.45 67.11 9.29 −26.19 16.07 125.79 107.99 0.26 −27.52 −36.48

Noah 24.42 7.58 13.69 12.47 9.15 −6.59 6.3 10.61 −10.17 −15.8

NoLSM −100 −100 29.95 −100 −99.28 −100 −100 49.22 −100 −100

LSM Thermal dif −97.93 −78.09 18.99 −100 −94.8 −13.69 −2.74 4.21 −37.17 29.93

RUC 8.52 −10.21 13.84 −1.04 0.14 −11.53 −6.16 10.66 −16.94 −4.48

Pleim–Xiu 94.52 51.73 3.35 −6.46 28.77 19.3 34.93 −4.68 −66.11 −38.23

LU
USGS 24.42 7.58 13.69 12.47 9.15 −6.59 6.3 10.61 −10.17 −15.8

MODIS 8.18 3.29 14.29 26.5 14.15 −2.58 4.93 12.19 −8.54 −10.77
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over East Africa by Pohl et al (2011), who linked it to a
larger simulated surface evapotranspiration in the
Pleim–Xiu model. These authors suggest that the
simplified vertical profiles of soil moisture in the
Pleim–Xiu LSM (two layers measuring 1 and 100 cm
deep)may accelerate evapotranspiration processes. In
turn, this might increase soil moisture recycling and
cloud cover and decrease incoming radiation.

The second most important parameterization for
the crop yield simulation is the CPS. CPSs have a
strong influence on both rainfall and radiation char-
acteristics and can result in significant uncertainties in
the simulated crop yields (figure 5(b)). The %MBE of
the SARRA-H simulated Beninmaize yields goes from
less than −50% to over +100% and it is driven by
radiation. The %MBE of the EPIC simulated Benin
maize yields has its smallest value when the BMJCPS is
used. This is explained by the rainfall distribution. In
West Africa, the BMJ scheme leads to a more realistic

distribution of the precipitation than the Kain–Fritsch
and Tiedtke schemes (figure S2 and table 3). The latter
two schemes systematically overestimate the rainfall
intensities, and the KF-t scheme results in an under-
estimation of the number of rainfall events of less than
25 mm, compensated by an overestimation of the
number of daily rainfall events higher than this thresh-
old. However, this good performance obtained with
the BMJ scheme in terms of the daily rainfall simula-
tion cannot be generalized to other tropical regions, as
shown for instance by Crétat et al (2011b) over South-
ern Africa. Using the EPICmodel, the simulated Niger
millet yields are more influenced by the CPS scheme
(with the%MBE ranging from 16% to over 84%) than
the yields simulated with the SARRA-H model
(table 2). When using the SARRA-H crop model, a
large overestimation of the rainfall does not result in
comparable overestimations of the simulated Niger
millet yields (figure 4(a)).

Figure 5. Influence ofWRFparameterization on the simulated yield%MBE.%MBEof the EPIC yields versus%MBEof the SARRA-H
yields for Beninmaize for each tested parameterization: (a) land surfacemodels, (b) convection parameterization schemes, (c)
shortwave radiation schemes and (d) land usemaps. Each small dot represents one simulation (for each of the seven years forfigures
(a) and (d), for the 7×3 SW schemes for (b) and the 7×4 convective schemes for (c)) and the larger dots represent the average of the
simulated yields for each configuration.
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Among the tested radiation schemes, the Dud-
hia SW scheme is the one that minimizes the over-
estimation of both total rainfall and rainy day
intensity (table 3); this tendency to favor drier con-
ditions is consistent with the results presented in
Pohl et al (2011). For the EPIC yields, this leads to
lower biases than the other SW schemes. The
SARRA-H yields are not very sensitive to over-
estimations of the rainfall amounts (for Niger
millet) or intensity (for Benin maize). The RRTMG
and Goddard schemes do not lead to high biases in
the SARRA-H yields (figure 5(c)); for both sites,
radiation is the main driver of the SARRA-H yields.
The simulated radiation shows relatively low uncer-
tainties (the radiation biases are of the same order
for all SW schemes), leading to low uncertainties in
the SARRA-H yields. Thus the SW schemes, mainly
influencing simulated rainfall, induce high uncer-
tainties in the EPIC yields but have a relatively lower
influence on the crop yields simulated with the
SARRA-Hmodel.

The LU maps tested in this study do not produce
large differences in the simulated yields (figure 5(d)
and table 3).

Finally, within a crop-modeling framework and
over the tested parameterizations, it is very important
to choose an appropriate LSM, given the high biases in
the rainfall induced by using a LSM that is too simplis-
tic. Then, as the CPS has a significant influence on
both rainfall and radiation, this parameterization
should be carefully set. The SW radiation scheme
mainly drives precipitation and can be important as
well. In contrast, the choice of the LU scheme seems to
only have a moderate influence on rainfall and radia-
tion and thus on the yields.

3.4. Internal variability
In this section, we run the same experiment 10 times
by modifying the initial conditions at the first model
time step. The physical package and all other settings
are constant in all of the simulations (members) of the
ensemble. This allows disentangling the forced (repro-
ducible) and stochastic (internal, or irreproducible)
fractions of the simulated climate variability. Our idea
here is to compare and rank the magnitude of the
uncertainties due to the chaotic component of the
regional climate, materialized by the internal variabil-
ity, and those related tomodifications of the physics of
the model. At the first order, rainfall is generally the
main driver of simulated crop yields; the WRF model
was then set to the configuration that minimizes the
rainfall biases. This configuration combines the Dud-
hia SW scheme, the KF-t convective scheme, the
NOAHLSMmodel andMODIS LUdata.

We previously showed that when the WRF model
is used with an appropriate configuration to down-
scale the ERA-Interim climate data, the bias in the
simulated yields is considerably reduced (figure 3).
This can be linked to the dramatic decrease in the
simulated rainfall amount and the intensity biases
(table 2, ensemble set). However, the internal varia-
bility of the WRF model also introduces non-negli-
gible uncertainties in the simulated crop yields. The
10-member simulation leads to uncertainties in rain-
fall, for which the annual rainfall %MBE ranges from
0% to 36% in Niger and from −2.58% to 15% in
Benin (table 2). These uncertainties in the simulated
yields can be linked to those in the mean states of the
radiation and rainfall characteristics as well as to intra-
seasonal variations (e.g. Ramarohetra et al 2013). Fol-
lowing Crétat et al (2011a), the reproducible fraction
of day-to-day rainfall and radiation is calculated for

Table 4.Ranking of the climate variables relative to the explained simulated yield variance.

SARRA-HNigermillet Variable Mean daily rainfall Annual radiation Annual rainfall

Cumulative explained

variance (R2)
0.12 0.18 0.18

SARRA-HNigermillet (annual
rainfall<600 mm)

Variable Annual rainfall Mean daily rainfall Annual radiation

Cumulative explained

variance (R2)
0.48 0.52 0.53

EPICNigermillet Variable Annual rainfall Annual radiation Mean daily rainfall

Cumulative explained

variance (R2)
0.59 0.63 0.59

SARRA-HBeninmaize Variable Annual radiation Annual rainfall Mean daily rainfall

Cumulative explained

variance (R2)
0.56 0.61 0.62

EPICBeninmaize Variable Mean daily rainfall Annual radiation Annual rainfall

Cumulative explained

variance (R2)
0.3 0.34 0.34
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the June–July–August–September period of each year
as the ratio between V(X), the daily variance of all
members (i.e. 122 days duplicated 10 times) and
V X ,( ¯ ) the daily variance of the ensemble mean (122
days): f V X

V X

( ¯ )
( )

= .

On average, over the seven years, the reproducible
fraction of the day-to-day rainfall is approximately
30% for both sites (29% in Niger and 31% in Benin).
The inter-annual variability of these scores remains
quite low: it ranges from 21% to 35% in Niger and
from25% to 37% inBenin. Therefore, even for amod-
erate-sized domain (figure 1), the rainfall intra-seaso-
nal variability is mainly driven by the stochastic
component of the WRF model rather than by ERA-I
forcing. Although the scores are a little higher, the day-
to-day radiation variations are also strongly led by the
model’s internal variability, with averaged reproduci-
bility values of 75% and 58% for the Niger and Benin
sites, respectively.

In order to link the intra-seasonal precipitation
descriptors to the simulated yield variability in the
ensemble experiment, the reproducibility of these
descriptors has been investigated for the year 2006
(table 5). In Niger, the least reproducible descriptors
are the mean intensity of precipitation, the length of
the rainy season and the number of dry spells with
coefficients of variation (CV) across the ensemble
members of 0.54, 0.47 and 0.40, respectively. In Benin,
the least reproducible descriptors are the number of
dry spells (CV=0.23), the mean total rainfall (0.14)
and themean intensity of precipitation (0.13).

CV statistics are preferred to standard deviations
to better compare the various descriptors considered
here, since they have different units. Large CV values
denote strong differences from one ensemble member
to another, and are thus indicative of a strong internal
variability (i.e. chaotic or local component) and aweak
to moderate large-scale forcing prescribed by the re-
analyses.

Intra-seasonal precipitation descriptors control-
ling the simulated yield variability within the ensemble
experiment were identified using amultiple regression
analysis. For the SARRA-H Niger millet and the EPIC
Benin maize, the simulated yield variability is mainly
driven by the number of dry spells with coefficients of
determination (R2) of 0.52 and 0.31, respectively (not
shown). For the EPIC Niger millet, the total rainfall
during the rainy season explains 0.47 of the yield varia-
bility while the SARRA-HBeninmaize yield variability
is mainly explained by the number of rainy
days (R2=0.4).

The variability of the mean intra-seasonal radia-
tion and precipitation descriptors explains 0.58–0.99
of the yield variability (not shown). However, the tim-
ing of events such as dry spells or heavy rainfall
explains up to 0.42 of the yield variability.

Therefore, internal variability of the WRF climate
model has a non-negligible impact on the simulated
rainfall and radiation mean state and intra-seasonal
variability, and this translates into uncertainties in the
simulated crop yields that should be taken into
account.

4. Conclusion anddiscussion

A sensitivity analysis of the state-of-the-artWRF RCM
has been conducted to assess its performance and to
quantify uncertainties for the crop yield simulations of
Niger millet and Benin maize in two sites in West
Africa. It is challenging to account for all of the sources
of uncertainties in a RCM and to quantify their
respective effects on the simulated climate and subse-
quently simulated yields since these uncertainties may
arise from a wide number of parameters and simula-
tion choices (such as the size, location or resolution of
the domain, the model physics, the lateral boundary
conditions, etc). Over West Africa, parameterizations
of deep atmospheric convection (e.g. Flaounas
et al 2010, Sylla et al 2011, Im et al 2014), SW radiation
(e.g. Domínguez et al 2010), LSMs (e.g. Domínguez
et al 2010, Im et al 2014) and the surface albedo (e.g.
Flaounas et al 2011) have been shown to have a non-
negligible influence on the simulated climate. In this
study, we chose to assess the relative influence of these
parameterizations (convection, SW radiation, LSM
and LU) on simulated crop yields in a combined
climate-cropmodeling.

We first showed that the choice of the LSM is of
primary importance: to simulate realistic rainfalls, the
LSM must include a dynamic moisture calculation.
This is consistent with previous studies: for example,
Koster 2004 showed a strong relationship between soil
moisture and precipitation over this region and Im
et al (2014) showed that LSMs have a significant influ-
ence on the calculated rainfall. Among the LSMs that
include dynamic moisture calculations, the RUC and
Noah models lead to rather similar simulated yields

Table 5.Coefficients of variation of the simulated
yields,mean radiation and intra-seasonal precipitation
descriptors.

Coefficients of

variation

NIGER BENIN

SARRA-H yield 0.53 0.13

EPIC yield 0.32 0.11

Onset 0.22 0.02

End of rainy season 0.04 0.01

Duration 0.47 0.02

Total rainfall 0.37 0.14

Number of rainy days 0.39 0.04

Mean intensity 0.54 0.13

Number of dry spells 0.40 0.23

Mean duration of dry spells 0.14 0.07

Mean radiation 0.01 0.01
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while the Pleim–Xiu LSM, driving heavier rainfall and
especially high rainfall intensities, leads to a high
underestimation of the Benin maize yields simulated
with the EPICmodel.

Second, the convective parameterization sig-
nificantly influences both rainfall and radiation.
Among the tested schemes, the BMJ produces daily
rainfall intensities that are the closest to the observed
intensities, and therefore it is the best scheme for
Beninmaize simulations with the EPICmodel. The KF
scheme is the one that overestimates the total rainfall
the most (consistent with Crétat et al 2011b, Pohl
et al 2011 and Crétat and Pohl 2012), radiation and
then the simulated crop yield for both sites.

Third, the SW radiation scheme, mainly affecting
rainfall, has to be chosen carefully. The Dudhia
scheme produces significantly less rain than the
RRTMG and Goddard schemes, thus minimizing the
WRF overcompensation of the ERA-I dry bias and
leading to a better crop yield estimation. The RRTMG
scheme leads to slightly drier conditions than theGod-
dard scheme. This is consistent with Pohl et al (2011)
over East Africa.

Conversely, the tested LU model does not lead to
high differences in the crop yields; the uncertainties in
the simulated yields are smaller than those induced by
the internal variability of the climatemodel.

In an ensemble experiment, the internal varia-
bility of theWRFmodel has been shown to introduce
non-negligible uncertainties in crop yield simula-
tions with differences in the simulated yields reach-
ing up to 30%. Dynamical downscaling can improve
the climate forcing upon re-analyses for the simula-
tion of agricultural impacts at the local scale. How-
ever, uncertainties arising fromboth the setting of the
parameterizations and the internal variability of the
RCM need to be taken into account. Adding a relaxa-
tion term in the model’s prognostic equation could
allow for a more realistic timing of transient pertur-
bations in the regional model, and thus favor lower
uncertainties and more realistic variability at fine
temporal scales. These relaxation (or nudging) tech-
niques could be advisable for impact studies,
although it strongly weakens the coupling between
the physics and dynamics of the model (Pohl and
Crétat 2013).

Simulated yields have been shown in this study to
be strongly sensitive to the RCM physics and the
simulation setup. Errors and uncertainties arising
from such sensitivity should not be neglected. To
minimize these errors, the RCM physics must be
carefully set, and to estimate uncertainties coming
from the RCM’s internal variability, the crop model
should be forced by an ensemble simulation of the
regional climate. The use of an RCM to downscale
climate data for crop yield simulations then implies a
cumbersome methodology and high-performance
computing facilities, which calls its suitability into

question. Moreover, the choice of the best configura-
tion for re-analysis downscaling does not necessarily
enable a correction of the GCMs biases (Glotter
et al 2014).

Although it can probably be considered that the
RCM procedure is likely to reveal its added-value in
the case of a strong resolution jumpwith theGCM for-
cing or re-analyses, allowing for a more realistic reso-
lution of the sub-grid processes, this may not be
sufficient since realistic surface boundary conditions
(including topography, land-use and sub-surface
properties) are also needed. In this regard, due to the
scarcity of high-resolution, reliable datasets doc-
umenting surface and soil dynamics, climate down-
scaling over Africa remains a challenging issue.
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