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Abstract
Bulk chemicals production frombiomassmay competewith biofuels for low-cost and sustainable
biomass sources. Understanding how alternative uses of biomass compare in terms offinancial and
environmental parameters is therefore necessary to help ensure that efficient uses of resources are
encouraged by policy and undertaken by industry. In this paper, we compare the environmental and
financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel
in theUS life cycle-basedmodels are developed to isolate the relative impacts of these two ethanol uses
and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a
feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG)
emissions and fossil energy consumption reductions relative to their counterparts produced from
fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six timesmore
effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately
avoids consumption of natural gas. Considering 2013US ethanol and ethylenemarket prices, our
analysis shows that bioethylene isfinancially viable only if significant price premiums are realized over
conventional ethylene, from35% to 65%depending on the scale of bioethylene production
considered (80 000 t yr−1 to 240 000 t yr−1). Ethanol use as a transportation fuel is therefore the
preferred pathway considering financial, GHG emissions, and petroleum energy usemetrics, although
bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel
markets are reached.

1. Introduction

Chemicals derived from biomass are gaining increasing
interest as pathways to meet sustainability objectives
while expanding upon the supply of high market value
products or displacing their production from non-
renewable resources (Bozell and Petersen 2010). Studies
have investigated low-volume and high-value biomass-
derived chemicals as biorefinery co-products, where
biofuels such as ethanol remain the primary output (e.g.,
Cherubini and Jungmeier 2010, Song et al 2014). Bulk
biomass chemicals, in contrast, target large existing
markets and their production may therefore compete
with biofuels for low-cost and sustainable biomass

sources. Biomass-derived ethylene (‘bioethylene’) pro-
duction processes via ethanol dehydration have been
developed by companies including Braskem, Chematur
and Petron. Bioethylene can directly substitute for
conventional fossil fuel-derived ethylene, the produc-
tion of which exceeded 140Mt yr−1 in 2013 (True 2013)
for a wide range of uses including plastics (polyethylene,
polystyrene) and chemicals. Use of ethanol as bioethy-
lene feedstock, however, competes with its use as a
transport fuel. Understanding how alternative uses of
ethanol compare in terms of financial and environmen-
tal parameters is necessary to promote the efficient use
of resources, encouraged by policy and undertaken by
industry.
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Life cycle assessment (LCA) is commonly
employed to evaluate environmental implications of
biomass-derived fuels and chemicals, and in parti-
cular, greenhouse gas (GHG) emissions and fossil
energy use have been the focus of the majority of prior
studies. A number of LCA studies have evaluated bioe-
thylene production from ethanol, considering a range
of ethanol production routes. Liptow and Tillman
(2009) found that bioethylene production from sugar-
cane ethanol and polymerization to low-density poly-
ethylene reduced GHG emissions relative to the
conventional fossil fuel-derived plastic by 30% to
80%, depending on assumed land use change impact.
Van Uytvanck et al (2014) evaluated polyethylene ter-
ephthalate production, utilizing ethylene glycol
derived from sugarcane and willow-based bioethy-
lene, and foundGHG emissions to be reduced by up to
28% when displacing fossil fuel-derived ethylene gly-
col. Most recently, Posen et al (2015) compared US
and Brazilian production of bioethylene from corn
grain, switchgrass and sugarcane with natural gas-
derived ethylene. They found that bioethylene pro-
duced from switchgrass and sugarcane can sig-
nificantly reduce GHG emissions relative to fossil
ethylene. However, greater emissions reductions
could be realized by using US-produced ethanol as a
transport fuel, whereas Brazilian bioethylene produc-
tion was found to achieve greater GHG reductions
than using ethanol as a fuel.

Few studies have included an analysis of the finan-
cial performance of bioethylene. Both Van Uytvanck
et al (2014) and Posen et al (2015) discussed the poten-
tially high cost of ethanol-derived bioethylene as a bar-
rier to deployment but did not complete a financial
analysis of bioethylene production. IRENA (Interna-
tional Renewable Energy Agency) (2013) estimated
costs of bioethylene production, but the self-published
report did not include key data assumptions or the
analysis methodology. Intratec studied the financial
performance of a hypothetical 270 000 tonne yr−1

bioethylene production facility (Intratec 2013). Bioe-
thylene was found to be cost-competitive with fossil
fuel-derived ethylene under the assumption that bioe-
thylene could attract a 30% price premium due to its
renewable nature. To our knowledge, no study has
undertaken a rigorous comparison of the environ-
mental and financial performance of bioethylene pro-
duction from ethanol.

This work evaluates the environmental and finan-
cial performance of bioethylene production from
ethanol and compares performance with the use of
ethanol as a transport fuel. We quantify life cycle
environmental (GHG emissions and fossil energy use)
and financial performance (minimum bioethylene
selling prices) to quantify trade-offs between ethanol
uses. A modelling framework is created to isolate the
relative impacts of these two ethanol uses and generate
results that are applicable for any ethanol production
pathway.

2.Material andmethods

LCA and financial models are developed to assess the
feasibility of bioethylene production from biomass-
derived ethanol. Results are comparedwith the utiliza-
tion of ethanol as a transport fuel to determine the
preferred use of ethanol from financial and environ-
mental perspectives.

2.1. Life cycle assessment
Life cycle inventory analysis spreadsheet-basedmodels
are developed to quantify GHG emissions and fossil
energy use associated with two alternative uses of
ethanol: as a feedstock for bioethylene production;
and as a light-duty vehicle fuel (figure 1). The starting
point of the models is the ethanol plant exit gate. This
truncated system boundary is specifically designed to
provide a clear assessment of the relative impacts of
different ethanol uses by excluding activities common
to both systems. Full life cycle impacts, accounting for

Figure 1. Life cycle systemboundaries for comparing use of ethanol as a feedstock for bioethylene production and as a transport fuel.
Inclusion of upstream ethanol production activities allows assessment of life cycle impacts.
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all activities from the production of biomass feed-
stocks and conversion to ethanol through to the
ethanol uses considered in this study, are subsequently
assessed by appending to this model the ‘well-to-gate’
modelling results of ethanol production routes to
understand the impacts of different biomass sources
and ethanol production methods on results. Examin-
ing market impacts of producing bioethylene and
ethanol (e.g., changes in demand for ethylene, gaso-
line) is beyond the scope of this study.

Bioethylene production from ethanol is modelled
on a gate-to-gate basis (from ethanol plant exit gate to
bioethylene plant exit gate) and is assumed to displace
conventional ethylene production from a mix of nat-
ural gas liquids and petroleum feedstock representing
average US production (NREL 2014). We do not con-
sider the final manufacture of products from bioethy-
lene (e.g., polymerization to polyethylene), use phase
of these products, nor end-of-life treatment (recy-
cling; incineration with/without energy recovery).
These downstream activities are assumed to be iden-
tical to those of fossil ethylene, given that bioethylene
and fossil fuel-derived ethylene are chemically and
functionally identical, and therefore have no influence
on the relative impacts of bioethylene and fossil fuel-
derived ethylene. When used as a transport fuel, etha-
nol is assumed to be blended with gasoline and com-
busted in a flexible fuel light-duty vehicle, displacing
US gasoline from the 2015 projected crude oil mix on
an energy-equivalent basis (ANL (Argonne National
Laboratory) 2014). Consistent with typical practice,
we assume that ethanol displaces gasoline on an
energy-equivalent basis (ANL (Argonne National
Laboratory) 2014) and do not consider a specific etha-
nol fuel blend. Cradle-to-gate modules for energy and
material inputs into the life cycle stages are obtained
from existing databases, including NREL (2014) (ethy-
lene production) and ANL (ArgonneNational Labora-
tory) (2014) (ethanol transport/distribution/use;
bioethylene process material inputs; gasoline refer-
ence pathway) and are included within the system
boundaries (e.g., recovery and processing of petro-
leum; production of process chemicals; generation of
electricity).

GHG emissions (CO2, CH4, N2O) are quantified
for each life cycle stage and reported as CO2equivalent
(CO2eq) emissions based on 100-year global warming
potentials (IPCC (Intergovernmental Panel on Cli-
mate Change) 2013). We do not directly account for
CO2 uptake by growing biomass and instead credit the
bioethylene and ethanol products at plant gate or
point of use. Bioethylene is considered to sequester
biogenic carbon, which is accounted for as a CO2 sink
(negative emission). CO2 emissions arising from etha-
nol combustion are assumed to not impact atmo-
spheric GHGs. Fossil energy use (petroleum, natural
gas, coal) is also quantified. The functional unit is 1 kg
ethanol produced and used as a feedstock in

bioethylene production or as a transport fuel in a light-
duty vehicle.

2.2. Bioethylene production
The bioethylene production process is modelled in a
published consulting report (Intratec 2013), based on
publicly-available process and financial data. To the
best of our knowledge, this is the only detailed cost
estimate of bioethylene production that is publicly
available. The process includes threemain sections: (1)
three stage reaction of ethanol to ethylene; (2) quench,
compression, washing and drying; and (3) purification
(figure 1). Bioethylene produced by this process is
polymer grade (99.9%wt purity) and is chemically
identical to conventional fossil fuel-derived ethylene.
Employing technology described by Intratec yields 1.0
tonne of bioethylene per 1.85 tonnes of ethanol. The
electricity requirement of the process is assumed to be
provided by the US average grid mix (ANL (Argonne
National Laboratory) 2014) while thermal energy
demands (fuel, steam) are assumed to be provided by
natural gas, including a steam generation efficiency
of 85%.

2.3. Financial analysis
The capital and operating costs associated with
bioethylene production are estimated for a bioethylene
production facility that is integrated with an ethanol
production facility. We do not assess costs of ethanol
production; instead, we use relevant market prices
(AgMRC (Agricultural Marketing Resource Cen-
ter) 2015) to allocate a cost to the ethanol inputs used
for bioethylene manufacture. The financial viability of
bioethylene production is assessed by determining the
bioethylene minimum selling price (MSP), which is
compared with historic market prices for both ethanol
and ethylene. To account for the impacts of scale, we
consider bioethylene production capacities based
upon integration with ‘medium’ and ‘large’ ethanol
production facilities of 150 000 tethanol yr

−1 and
450 000 tethanol yr

−1, corresponding to 50 and 150
million US gallons (USG) per year (NEO 2015). The
large bioethylene production scales considered in this
study correspond to the large potential market for this
product, with ethylene demand exceeding 140Mt yr−1

in 2013 (True 2013).

2.3.1. Capital and operating expenses
The installed cost of a bioethylene production facility
is calculated considering data in Intratec (2013) for a
facility with a production capacity of 270 000 t
bioethylene/yr. We use an exponential relationship
(equation (1)) to estimate the equipment costs for
bioethylene capacities of 80 000 t yr−1 and 240 000
t yr−1, corresponding to the 150 000t yr−1 and 450 000
t yr−1 ethanol production facilities mentioned pre-
viously. It is assumed that the plant salvage value is
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zero, and the economic life of the plant is 15 years.

C C A A1 2 1 2 , 10.6( ) ( )=/ /

where C1 and C2 are equipment costs at capacities of
A1 andA2, respectively.

According to Intratec (2013), the cost associated
with ethylene storage contributes 70% of the total
installed cost in an independent ethanol-to-bioethy-
lene plant. Integration with a downstream ethylene
consumer (e.g., polyethylene plant) reduces storage
capital costs by 90%, and the cost of storage is thus
20% of the total equipment cost. While downstream
processing of bioethylene is not considered in the pre-
sent study, we include a lower capital cost scenario that
accounts for potential cost savings due to integration
with polyethylene production. Two bioethylene pro-
duction scenarios are thus considered in the financial
analysis: an ‘independent’ bioethylene production sce-
nario (with full cost of bioethylene storage); and an
‘integrated’ bioethylene production scenario (with
reduced bioethylene storage costs).

The annual operating cost of the bioethylene pro-
cess is calculated as the sum of operating costs (labour,
utility and chemical costs, and ethanol cost), plant
insurance and maintenance cost. The maintenance
and insurance costs are considered to be 2 and 1% of
capital investment, respectively. Labour, utility and
chemical costs are taken from Intratec (2013). Ethanol
prices from 250 to 1000 USD/t are examined, taking
into account recent market prices (AgMRC (Agri-
cultural Marketing Resource Center) 2015). Existing
policies, such as the US Renewable Fuel Standard (US
EPA 2015), are assumed to not influence ethanol mar-
ket prices and thus to not impact our assessment of
bioethylene production costs. In particular, we note
recent corn ethanol production has exceeded quan-
tities mandated by the Renewable Fuel Standard and
US-produced ethanol is currently exported tomarkets
that lack similar ethanol mandates (RFA 2015) as indi-
cators that ethanol markets are not significantly dis-
torted by this policy. This issue is discussed further in
section 3.2.

2.3.2.Minimumbioethylene selling price
After calculation of capital investment and operating
costs, a discounted cash flow analysis is employed to
determine the bioethylene production cost assuming a
15% internal rate of return pre-tax, in line with
previously published biorefinery analyses (e.g., Hum-
bird et al 2011). The bioethylene production cost is
then calculated as the bioethylene MSP at the plant
gate to achieve a net present value of zero.We compare
bioethylene MSPs with recent US market prices for
ethylene (Lippe 2014) to assess the financial viability of
manufacturing this product from ethanol.

3. Results and discussion

3.1. Life cycle GHGemissions and fossil energy use
Figure 2 illustrates GHG emissions and fossil energy
consumption for ethanol use as a bioethylene feed-
stock and as a transport fuel, exclusive of activities
associated with ethanol production. Ethanol use as a
fuel and as a feedstock for bioethylene production
leads to comparable GHG emissions reductions rela-
tive to their counterparts produced from fossil
sources. The production of bioethylene from ethanol
results in the emission of 0.7 kgCO2eq. kg

−1
bioethylene,

primarily due to consumption of natural gas (88% of
emissions), while electricity and caustic soda inputs
represent smaller shares of production emissions (8%
and 4%, respectively). Bioethylene sequesters biogenic
carbon, equivalent to 3.1 kg CO2eq. kg

−1
bioethylene, and

displaces conventional ethylene production, which is
associated with GHG emissions of 1.8 kg CO2eq./kg
ethylene. These factors result in net GHG emissions
for bioethylene of −4.3 kg CO2eq. kg

−1
bioethylene or

−2.3 kg CO2eq. kg
−1
ethanol input to bioethylene manu-

facture. Bioethylene production represents only a
small fraction of GHG emissions associated with
bioethylene—sequestered CO2 and avoided fossil
ethylene emissions are far more significant—and
therefore, these results are robust when considering
uncertainty in bioethylene production parameters.
Inclusion of activities downstream of bioethylene
production (further processing, product use, end of
life) would not impact the relative performance
compared to fossil fuel-derived ethylene, assuming
that these activities would be identical for both
bioethylene and fossil ethylene. Use of ethanol as a
transport fuel is found to result in similar GHG
emissions per unit of ethanol input
(−2.5 kgCO2eq. kg

−1
ethanol)when displacing gasoline on

an energy-equivalent basis. Under the assumptions of
this study, the relative performance of using ethanol as
a bioethylene feedstock or a transport fuel is indepen-
dent of the ethanol source: for all ethanol production
routes, use as a transport fuel or for bioethylene
productionwill achieve similar GHG emissions reduc-
tions. These results do not consider possible impacts
on ethylene and transport fuel markets arising from
bioethylene and ethanol production, respectively. If
introduction of biomass-based alternatives drives
increasing consumption (e.g., Hochman et al 2010),
the performance of ethanol and bioethylene in avoid-
ingGHGemissionsmay be affected.

To estimate full life cycle GHG emissions of bioe-
thylene, we append previously published well-to-gate
estimates of GHG emissions associated with ethanol
production from the GREET 2014 model (ANL
(Argonne National Laboratory) 2014). Ethanol
derived from corn grain and corn stover are associated
with GHG emissions of 1.2 kg CO2eq. kg

−1 and 0.4 kg
CO2eq. kg

−1 , respectively, when employing default
assumptions (process inputs; land use change
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impacts) and system expansion allocation to account
for biorefinery co-products (ANL (Argonne National
Laboratory) 2014). Inclusion of ethanol well-to-gate
activities results in bioethylene life cycle GHG emis-
sions of −0.3 kg CO2eq. kg

−1 and −1.8 kg
CO2eq. kg

−1 for corn grain and corn stover ethanol,
respectively. Relative to fossil fuel-derived ethylene
(1.8 kg CO2eq. kg

−1), bioethylene production from
both ethanol sources is able to significantly reduce life
cycle GHG emissions, by 114% (corn grain) and 200%
(corn stover). On the basis of one kg ethanol input to
bioethylene production, GHG emissions for the corn
grain and corn stover pathways are 1.2 kg
CO2eq. kg

−1
ethanol and 2.0 kg CO2eq. kg

−1
ethanol. As indi-

cated above, using ethanol as a transport fuel would
achieve similar GHG emissions reductions. On a full
life cycle (well-to-wheel) basis, displacing gasoline
with ethanol derived from corn grain and corn stover
would reduce GHG emissions by 28% and 80%,
respectively, equivalent to absolute GHG emissions
reductions of 1.2 kg CO2eq. kg

−1
ethanol and 2.1 kg

CO2eq. kg
−1
ethanol, respectively. Uncertainty regarding

GHG impacts of ethanol production routes (e.g., Mul-
lins et al 2010) would impact the absolute results pre-
sented here, but would not impact the primary
outcome of this analysis: that the use of ethanol as a
transport fuel or bioethylene feedstock results in simi-
larGHGemissions.

Figure 2(b) shows fossil energy use associated with
the bioethylene and transport fuel scenarios for activ-
ities downstream from the ethanol plant exit gate.
Results are presented as net fossil energy consump-
tion, which measures energy used by each pathway
(direct energy consumption and energy used to pro-
duce inputs), less energy consumption avoided by dis-
placing the production of fossil fuel-derived ethylene
or production and use of gasoline. Use of ethanol as
either a bioethylene feedstock or as a transport fuel sig-
nificantly reduces fossil energy consumption (indi-
cated in figure 2(b) by a negative net fossil energy
value). However, the composition of avoided fossil
energy varies between the two uses of ethanol. Bioe-
thylene primarily reduces natural gas consumption
(28MJ/kgethanol), due to the heavy reliance on natural
gas liquids feedstock in steam crackers in theUS petro-
chemical industry: natural gas represents over 86% of
the life cycle energy inputs to conventional ethylene
production. Ethanol use as a transport fuel reduces
fossil energy use to a slightly lesser degree, but, by dis-
placing gasoline use in vehicles, this pathway is able to
significantly reduce petroleum consumption
(26MJ kg−1

ethanol), which is a key energy security con-
cern. The capacity of natural gas and natural gas
liquids-fed steam crackers continues to expand in the
U.S. as a response to low cost feedstock available from
shale gas production (Platts 2015). As such,

Figure 2.Greenhouse gas emissions (a) and fossil energy consumption (b) of ethanol use as a bioethylene feedstock and as a transport
fuel. These results compare alternative uses of ethanol and exclude ethanol production impacts.

5

Environ. Res. Lett. 10 (2015) 124018 JMcKechnie et al



bioethylene production for US markets cannot sig-
nificantly reduce petroleum energy use. In contrast,
ethylene production in the EU is more heavily reliant
on petroleum-based feedstock (e.g., naphtha) (Plas-
ticsEurope 2012); bioethylene production/use in the
EU could therefore achieve greater reductions in pet-
roleum energy consumption than in the US, although
such an analysis is outside of the scope of the present
study.

3.2. Financial analysis
Capital costs are assessed for both ‘independent’ and
‘integrated’ bioethylene production scenarios for out-
put capacities of 80 000 tbioethylene yr

−1 and 240 000
tbioethylene yr

−1. Capital costs of the independent
bioethylene scenario are 240 million USD and 460
million USD for the two capacities, equivalent to
production capacity costs of 3000 USD/
tbioethylene yr

−1 and 1900 USD/tbioethylene yr
−1 for the

lower and higher capacities, respectively. Integration
of the bioethylene plant with a downstream user (e.g.,
polyethylene production) can substantially reduce
capital costs for the two output capacities, to 73
million USD and 140 million USD. Bioethylene
production on larger scale than those considered here
would not be expected to result in lower production
costs. Integration with ethanol production facilities
would no longer be feasible as ethanol demands would
exceed the production capacity of typical, ‘large’
ethanol biorefineries; as such, larger bioethylene plants
would incur additional costs associated with indepen-
dent facilities.We estimate that ‘independent’bioethy-
lene facilities would have to reach approximately
1000 000 tbioethylene yr

−1 capacity to achieve the same
production capacity capital costs (approximately 600
USD/tbioethylene-yr) of an integrated, 240 000
tbioethylene yr

−1 facility; this capacity is approximately

on par with large fossil ethylene facilities (e.g.,
Linde 2014).

The MSPs of bioethylene for independent and
integrated facilities at ‘medium’ scale (80 000 t/yr) and
‘large’ scale (240 000 t/yr) are shown in figure 3. Capi-
tal and operating expenses for bioethylene production
are associated with some uncertainty as these values
are not based on a producing facility. However, this
uncertainty has a very small impact on the financial
analysis results as the ethanol feedstock cost dom-
inates the bioethylene MSP. Considering an ethanol
cost of $800/t, ethanol feedstock costs represent 68%
and 75% of bioethylene production costs for ‘med-
ium’ and ‘large’ independent production facilities, and
82% to 86% of production costs for integrated facil-
ities. Similarly, variation in financial analysis para-
meters (discount rate, facility lifetime) would have a
small impact on results. Costs associated with chemi-
cals and energy inputs to the process are the second
highest contributor to ethylene production cost in the
integrated bioethylene plant, whereas capital-related
costs are the second highest cost in the independent
plant.

To be cost-competitive with the 2013 average US
ethylene market price, an independent bioethylene
plant would require ethanol costs at or below 300
USD/t or 410 USD/t (80 000 t and 240 000 t capa-
city, respectively), while an integrated plant would
require ethanol costs at or below 500 USD/t or 540
USD/t (80 000 t and 240 000 t capacity, respec-
tively). These ethanol prices are significantly below
the 2013 average US ethanol price (805 USD/t or
2.35 USD/USG) (AgMRC (Agricultural Marketing
Resource Center) 2015), indicating that it would be
more profitable to sell ethanol for use as a transport
fuel than to process it further to bioethylene. Based
on the US average ethanol price, bioethylene pro-
duction would have to achieve a price premium over

Figure 3.Minimum selling price (MSP) of bioethylene for integrated and independent bioethylene plant scenarios under a range of
ethanol feedstock prices for ‘medium’ scale bioethylene plant (80 000 t yr−1) and ‘large’ scale bioethylene plant (240 000 t yr−1).
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fossil fuel-derived ethylene ranging from 37% (inte-
grated, 240 000 t capacity bioethylene plant) to 65%
(independent, 80 000 t capacity plant) based on 2013
average market prices. Recent ethanol and ethylene
price data (December 2014) reveal significant price
declines for both commodities; however, the esti-
matedMSP of bioethylene , based onDecember 2014
ethanol prices, ranges from 1 150 to 1 500 USD/t,
and would still significantly exceed the market price
for ethylene during that period (850 USD/t)
(Argus 2015, AgMRC (Agricultural Marketing
Resource Center) 2015).

The potential exists for biofuel-related policies to
influence market prices for ethanol and thus impact
the cost of producing bioethylene. As discussed in
section 2.3.1, this analysis assumes that existing poli-
cies, such as the Renewable Fuel Standard (US
EPA 2015), do not significantly impact ethanol prices.
To test the importance of this assumption, we consider
a conservative case where the price of ethanol is set
based on gasoline market prices (adjusted for energy
content), while noting that this approach ignores
the value of ethanol as an oxygenate in blended fuels
and its role in fuel economy improvements and
reduction of certain air pollutant emissions (e.g.,
Al-Hasan 2003). Even at a discounted ethanol price of
650 USD/t based on the 2013 average gasoline price
(US EIA 2015), bioethylene remains uncompetitive
with conventional ethylene and would require a price
premium of 20% (integrated, 240 000 t capacity plant)
to more than 50% (independent, 80 000 t capacity
plant).

4. Conclusion

Ethanol-derived bioethylene is capable of significantly
reducing GHG emissions and fossil energy use relative
to conventional fossil fuel-derived ethylene. However,
results of this study show that the further processing of
ethanol to bioethylene is not financially favorable
compared to ethylene produced from natural gas
feedstocks, or to the use of ethanol as a transport fuel.
By comparison, ethanol used in place of gasoline can
achieve similar GHG emissions reductions and is far
more effective in reducing petroleum energy con-
sumption, an energy security concern. At 2013market
prices for ethanol, bioethylene is not cost-competitive
with conventional ethylene. With ethanol priced at
$2.35/USG (805 USD/t), the bioethylene price would
range between $1 700 and $2 300 USD/t, depending
upon the plant scale and choice of integrated versus
independent operation. This is well above the 2013
average ethylene price of 1250 USD/t. Conversely, at
this bioethylene price, ethanol would need to be
available at a price of 300–540 USD/t, well below
recent and current market prices. Ethanol use as a
transportation fuel is therefore the preferred pathway
considering financial, GHG, and petroleum energy use

metrics, although bioethylene production could have
strategic value if demand-side limitations of ethanol
transport fuelmarkets are reached.
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