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Abstract

Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types
of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years
(2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical
techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to
identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic
input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-
induced surface runoff, and natural weathering process were identified as the potential important factors to drive the
seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators
except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed
characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4

+-N,
SRP, K+, CODMn, and Cl2 were generally highest in urban watersheds. NO3

–N Concentration was generally highest in
agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural
watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-
watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant
variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls
played critical roles in variations of water quality in the JRW. Management implications were further discussed for water
resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved
in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal
watershed with high spatial variability and intensive anthropogenic activities.

Citation: Huang J, Huang Y, Zhang Z (2014) Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality
during Baseflow in a Coastal Watershed of Southeast China. PLoS ONE 9(3): e91528. doi:10.1371/journal.pone.0091528

Editor: Maura (Gee) Geraldine Chapman, University of Sydney, Australia

Received August 28, 2013; Accepted February 12, 2014; Published March 11, 2014

Copyright: � 2014 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Natural National Science Foundation of China (Grant No. 40810069004, Grant No. 40901100), and the Science
Foundation of Fujian Province (2010Y0064). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jlhuang@xmu.edu.cn

Introduction

River water quality has become one of important concern

worldwide. On the one hand, rivers constitute the main water

resource for drinking, irrigation, and industrial purposes in inlands

[1–2]. On the other hand, as receiving water bodies, rivers

assimilate or carry industrial and domestic wastewater, and runoff

from agricultural fields, roadways and streets, thereafter discharg-

ing them into downstream estuarine and coastal water [3–4]. It is

reported that nearly 80% (4.8 billion) of the world’s population (for

2000) lives in areas where either incident human water security or

biodiversity threats exceed 75th percentile [5]. In addition, water

quality all over the world presents a trend of increasingly severe

deterioration [6]. As such, it is important to have reliable

information on river water quality for water resource management

from the local to global scale. This necessity is even more

pronounced in coastal watersheds due to escalating environmental

pressure and their special role in regional ecosystem services.

Water quality is affected by a combination of natural factors

(e.g. precipitation, temperature, bedrock, soil, terrain) and

anthropogenic factors (e.g. agricultural practices, domestic waste-

water/industrial influent) [7–9]. Understanding how anthropo-

genic and natural factors control water quality and how the

relationships changes over time and space will help water resource

managers to target appropriate scales and factors for the

improvement of their water quality management efforts.

The factors and processes involved in natural and anthropo-

genic controls govern the seasonal and spatial variability in stream

water quality in watersheds. It is important to determine the

watershed processes that regulate stream water quality under

increasing pressure from natural and anthropogenic disturbance

[5], [10–13]. Hydrological and biogeochemical processes are two
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important mechanisms to explain the seasonal variations of water

quality in the watersheds [3], [14–15]. The nutrients are

temporarily stored in the ground surface, vadose zone or in the

groundwater and then transported into stream via subsurface

water or precipitation-induced surface runoff [15–16]. The

biogeochemical processes including in-stream immobilization,

denitrification, mineralization, and bedrock weathering, associated

with the hydro-meteorological regime, also determine the tempo-

ral variability of stream water quality [15], [17–18].

On the other hand, anthropogenic activities and watershed

characteristics drive spatial variability in stream water quality in

the watersheds. Watershed land use impacts water quality through

nonpoint sources, which are major contributors of pollution to the

catchment-coast continuum [19–20]. Linkage of land use pattern

and water quality has been well documented for developing

watershed management practices [7], [21–23]. In addition, the

point sources of nutrients, which are usually synonymous with

domestic wastewaters and industrial effluents [24–26], contribute

greatly to stream water quality degradation in developing

countries with relatively low wastewater treatment capacity [27].

The watershed characteristics including topography and bedrock

geology constitutes the important natural factors that drives the

spatial variation in stream water quality [21], [28]. The higher

slope variability leads to higher rates of erosion, which

subsequently increase the rates of particulate matter entering the

watershed [29]. The chemical composition of streams is influenced

by distinct bedrock type and the distribution of Ca2+ and Mg2+

concentrations in rivers depends strongly upon weathering of soil

and bedrock geology [30–31].

The coupled effects of natural and anthropogenic controls,

together with underlying hydrologic and biogeochemical process-

es, contribute to the seasonal and spatial variation of stream water

quality. Magnitude of in-stream N immobilization is controlled by

stream order and headwater streams are important sites for N

processing and retention [32–33]. Martin et al. (2004) reported

that high subsurface flow with high nitrate concentration during

high water periods and active denitrification during low water

period explained the higher streamwater nitrate concentration in

winter than in summer in a watershed in France [15]. Duan and

Kaushal (2013) found that Peak inorganic N concentrations occur

throughout the winter and decline considerably during the

growing season due to the effect of N immobilization in the

Chesapeake Bay watershed [18]. Meantime, they pointed out that

there is potential to increase winter N delivery to streams because

of human activity, e.g. periodic agricultural activities. Bowes et al.

(2005) found that streams receiving wastewater effluent typically

show a characteristic pattern of high P concentration during

summer low flow and more diluted concentration during winter

storm events in an English catchment [34]. Rothwell et al. (2010)

found that the elevated Mg2+ concentrations in the lowlands are

due to underlying geology, rather than urban or arable land use

[12].

The relative influences of the natural and anthropogenic factors

change over the range of temporal and spatial scales investigated,

and this results in a pressing challenge for studies on the

mechanism determining the variability in river water quality,

especially in the situation that water quality in most Chinese rivers

and groundwater sources is poor and declining under pressures

from industrial and municipal wastewater discharges and NPS

pollution from agricultural and aquacultural runoffs of fertilizers,

pesticides and manure and freshwater quality is a prime concern in

China, especially in the relatively developed regions such as the

eastern coastal areas of China [27], [35].

Analyzing the spatiotemporal variations in stream water quality

generally relies on multivariate statistical techniques combined

with GIS and remote sensing. Multivariate statistical techniques

including principal component analysis (PCA) and redundancy

analysis are useful for data reduction and interpretation of

apportionment of the pollution sources [3], [36]. The increasing

availability of remotely-sensed data enables landscape-water

quality studies to be more easily performed on both local and

regional scales [22], [37]. The conventional ordinary least square

(OLS) method combined with GIS is the main method for

estimating the empirical relationships between ambient water

quality parameters and watershed characteristics [2], [38].

Recently, a powerful spatially statistical method, the geographi-

cally weighted regression technique, was developed and applied to

examine the spatially varying relationships between land use and

water quality [23]. [39–41]. However, few studies consider the

spatial dependence of water quality explicitly. Moreover, many

previous studies do not examine both spatial and temporal change

simultaneously [42–43], which make it hard to fully uncover the

spatiotemporal variation of river water quality.

The Jiulong River watershed (JRW), a typical medium-sized

subtropical coastal watershed, has experienced continuing degra-

dation in water quality over the last 20 years. This plays an

important role in the region’s economic and ecological health. A

better understanding of the spatiotemporal variations in water

quality and the underlying mechanisms are critical for regional

water quality management. The primary objective of the present

study is to examine the coupled effects of anthropogenic and

natural controls on the seasonal and spatial variations in water

quality in 20 headwater watersheds of the JRW. We test two

hypotheses: (1) anthropogenic activities, combined with the

hydrological and biogeochemical processes, contribute to the

seasonal variability in stream water quality; (2) coupled effects of

anthropogenic activities and watershed characteristic, result in the

spatial variability in stream water quality.

Materials and Methods

2.1. Ethics Statement
No specific permits were required for the described field studies

and our field studies did not involve endangered or protected

species.

2.2. Study Area
The JRW covers about 14,700 km2 in the eastern coastal area of

China (Fig. 1). The watershed includes the North and West Rivers,

which meet in Zhangzhou, and produce an annual flow of twelve

billion cubic meters into the Jiulong River estuary and the

Xiamen-Kinmen coastal waters. It is situated in a subtropical zone

with a monsoon climate: the annual average temperature is 19–

21uC, and annual precipitation averages 1400–1800 mm, of

which 70% occurs between April and September. Red earth

and lateritic red earth are the main soil types in the JRW, with pH

values ranging from 4.0 to 4.8 and a mean value of 4.5. The

upstream region is mountainous and 68% of the watershed has a

topographic slope in excess of 18% [44]. The major geology type

of the JRW is granite, volcanic tuff, and sandstone [45]. The

North River is dominated by granite and sandstone while the West

River is mainly comprised of granite and volcanic tuff.

Zhangzhou plain, located at the downstream end of the JRW,

constitutes one of China’s most developed regions in terms of

agricultural production due to its subtropical monsoon climate and

agricultural policies, which are influenced by the closeness to

Taiwan [2]. The plain is intensively agricultural with orchards of

Seasonal and Spatial Variations of Water Quality
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banana, longan, litchi, pomelo, citrus, and flowers. The N budget

for the JRW indicates that fertilizer and animal feedstuff

contribute 83.6% of the total N input [46]. For most crop land,

surface application of fertilizers is used with high rates in spring

(over 200 kg N/hm2) and the predominant N fertilizers used in the

JRW including urea, ammonium hydrocarbonate and NPK

compound fertilizers [45].

The JRW consists mainly of eight counties/districts: Zhangz-

hou, Xinlou, Zhangping, Hua’an, Changtai, Pinghe, Longhai and

Nangjing. More than ten million residents use the Jiulong River as

their source of water for residential, industrial and agricultural

activities. The watershed’s gross domestic product (GDP) accounts

for a quarter of Fujian Province’s economic output while it is

approximately one tenth of Fujian Province. Population and

economic growth while relatively low municipal wastewater

treatment rate make the point source pollution from industrial

wastewater and sewage discharged into the river be an innegligible

pollution source in the JRW [47]. Additionally, Longyan

municipality, including Xinluo and Zhangping, located at the

upstream JRW, has the major mining areas of Fujian province.

More than 64 kinds of mineral resources can be found there.

2.3. Sampling and Experimental Design
Based on the typical land use patterns in the JRW, 20

headwater sub-watersheds classified into three types of groups,

namely, natural, urban and agricultural were chosen for sampling.

Urban watersheds (U1–U3), agricultural watersheds (A1–A12) and

natural watersheds (N1–N5) are the sub-watersheds where the

proportion of developed land, cropland and forest land is over 6%,

10% and 80%, respectively. The surface water was sampled

during baseflow (i.e. 7-day minimum streamflow) period with nine

sampling campaigns from 20 headwater sub-watersheds in three

sampling seasons during three consecutive years (Fig. 1). Three

investigations were carried out in each of the flood seasons (on

August 28th, 2010, August 15th, 2011, and August 16th, 2012), dry

seasons (on November 28th, 2010, November 29th, 2011, and

Figure 1. Sampling sites in the watershed studied.
doi:10.1371/journal.pone.0091528.g001
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November 20th), and transition seasons (on February 28th, 2010,

March 1st, 2011, and March 25th, 2012). Note that the 25th and

75th percentile values of the monthly streamflow are usually

calculated to define these three seasons, namely, dry season (P,

25%), transition season (P= 25%–75%) and flood season (P.

75%).

Water quality was characterized using the mean values of these

nine-time sampling data sets. To minimum the influence of the

sediment and to reduce the influence of hydrologic regime on

organic and polyphosphate molecules dissolved in the sample, we

sampled the surface water of stream and filtered the water

immediately. The samples were kept at 4uC and transported to the

laboratory for advanced analysis. Eight chemical parameters were

analyzed following standard methods [48] and completed within

24 h after sampling. These parameters were ammonium N (NH4
+-

N), the potassium permanganate index (CODMn), soluble reactive

phosphate (SRP), nitrate N (NO3
–N), chloride (Cl2), sodium (Na+),

magnesium (Mg2+ ) and potassium (K+). These parameters were

chosen because they can reflect the influence on water quality in

terms of natural control (including bedrock geology) and

anthropogenic controls (including domestic wastewater/industrial

effluents, agricultural activities).

2.4. Data Sources
Landscape patterns play an important role in water quality

variation at the watershed scale. Land use/land cover (LULC) and

Figure 2. Comparison between concentrations of water quality parameters among the three sampling seasons.
doi:10.1371/journal.pone.0091528.g002
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landscape pattern metrics (LPMs) were used in this study to

delineate the spatial patterns. The spatial pattern of land use and

landscape can reflect the underlying human activities [49].

Landsat Thematic Mapper satellite imagery of 2010 with 25 m

resolution was used to create LULC data. The land categories

were generated using a combination of unsupervised classification

and spatial reclassification based on manual on-screen digitizing

(for details, see [50]). Land cover was aggregated for six major

categories: forest (natural forest, without fertilizing), cropland

(including economic forests, with fertilizing), developed land,

orchard, water and bare land, and the four most predominant

categories (forest, cropland, developed land, and orchard) were

retained for analysis in this study. Three LPMs: Patch Density

(PD), Largest Patch Index (LPI), and Shannon’s Diversity Index

(SHDI), were chosen in this study, to explore the linkage between

landscape pattern and water quality.

The natural factors considered in this study were topography

and geology. Standard deviation of slope was derived from 25 m-

resolution Digital Elevation Model in the JRW. A geologic map in

the JRW was generated based on the geology map in Fujian

province (scale 1:1600000), thus two main types of bedrock

geology were extracted, namely, sandstones and siltstones (Geol-

ogy 1), and granites, lavas, and volcanic tuff (Geology 2).

Anthropogenic factors also includes socioeconomic development

indices represented by population density (Pop_density), GDP,

primary industry output value (GDP1), secondary industry output

value (GDP2), and tertiary industry output value (GDP3) were

collected from the Statistical Yearbook.

2.5. Conventional Statistical Analysis
The K independent samples nonparametric test was used to

determine the significance of variations of water quality during

different sampling seasons. Kruskal-Waillis test was used to

calculate mean rank values of each water quality indicator with

the following equation:

K~(N{1)

Pg
i~1 ni(�rri{�rr)2Pg

i~1

Pn1
j~1 (rij{�rr)2

ð1Þ

Where ni is the number of observations in group; rij is the rank of

observation j from group i; N is the total number of observations

across all groups.

The Post Hoc multiple comparisons were used to determine the

significance of variations in water quality among headwater

watersheds with different dominant land use types. Least Square

Difference (LSD) method was used in this study to identify

significance of variation in difference sample seasons. The test

statistic is calculated as follows:

tLSD~
�xxi{�xxjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2w
1
ni
z 1

nj

� �r ð2Þ

where s2w represents the ‘‘variance within groups’’ and is equal to

the mean square within in the ANOVA table. This test statistic has

N-k degrees of freedom.

Pearson analysis was used in this study to examine the strength

and significance of the relationships between selected influencing

factors and water quality parameters. Based on a sample of paired

data (xi, yi), the sample Pearson correlation coefficient r is defined

as the following formula:
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r~

Pn
i~1 (xi{�xx)(yi{�yy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 (xi{�xx)2(yi{�yy

q
)2

ð3Þ

PCA was used to identify important components that explained

most of the variance of water quality in different sampling seasons.

This is designed to reduce the number of variables to a small

number of indices while attempting to preserve the relationships

present in the original data [3]. Kaiser-Meyer-Olkin (KMO) and

Bartlett’s test was often used to examine the sensitivity of the data

for PCA [9] [51], KMO is a measure of sampling adequacy and a

Figure 3. Rotated Component Matrix for water quality parameters among different sampling seasons.
doi:10.1371/journal.pone.0091528.g003
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high KMO value (close to 1) generally indicates that PCA may be

useful.

Zij~Pi1x1jzPi2x2jzPi3x3jz � � �Pimxmj ð4Þ

where Z is the PC value, P is the PC loading, x is the measured

value of variable, i is the PC number, j the sample number, and m

is the total number of measured variables.

2.7. Spatial Statistics
Moran’s I, a global measure of spatial autocorrelation, was used

to identify the degree of spatial dependence on water quality

parameters over time. Moran’s I is defined as the following

formula:

I~
nPn

i~1 xi{�xxð Þ2

Pn
i~1

Pn
j~1 wij xi{�xxð Þ xj{�xx

� �
Pn

i~1

Pn
j~1 wij

ð5Þ

where, xi and xj refer to water quality in station i and station j,

respectively �xx is the overall mean water quality, and wij is the

weight matrix. Because not all-sub watersheds are adjacent to each

other, four nearest neighbors were chosen as cutoff points when

creating the weight matrix: that is, if station i and j are within the

neighbor threshold, wij=1, otherwise wij=0 [42]. Global Moran’s

I evaluates whether the pattern expressed is clustered, dispersed, or

random. A Moran’s I value near +1.0 indicates clustering while a

value near –1.0 indicates dispersion, and a value of 0 indicates

perfect spatial randomness [52].

To identify landscape factors explaining water quality varia-

tions, we used OLS stepwise multiple linear regressions in SPSS.

OLS is a type of global statistic, which assumes the relationship

under study in constant over space, and so the parameters are

estimated to be the same for all the study area. The model can be

stated as follows:

y~b0z
Xp
i~1

biXize ð6Þ

where y is the dependent variable, b0 is the intercept, bi is the

parameter estimate (coefficient) for independent variable xi, p is the

number of independent variables, and e is the error term.

Compared to the OLS regression models, spatial regression

models incorporate spatial dependence in the form of lag or error

dependence. The spatial error regression (Eq.7) and spatial lag

regression (Eq. 8) are defined as follows:

yi~Xibize

e~lwezf

ð7Þ

yi~Xibizrwyjze ð8Þ

where yi and yj represents the dependent variable at sampling site i

and j, xi is the independent variable at i, bi is the regression

coefficient; e is the random error term, l is the spatial

autoregressive coefficient of spatial regression, we is the spatially

lagged error term, f is the homoskedastic and independent error

term. r is the spatial autoregressive coefficient, and wyj is the

spatially lagged dependent variable.
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To identify the influencing factors from the perspective of

spatial dependence on river water quality, we compared the OLS

models (stepwise multiple linear regression) and spatial regression

models by comparison of R2, AIC and Moran’s I values in order to

Figure 4. Comparison between concentrations of water quality parameters among the three types of watersheds.
doi:10.1371/journal.pone.0091528.g004

Table 3. LSD Post Hoc multiple comparisons of water quality variables among the three types of watersheds.

Water quality

Urban watersheds-
Natural watersheds

Urban watersheds-
Agricultural watersheds

Agricultural watersheds-
Natural watersheds

Mean difference Sig. Mean difference Sig. Mean difference Sig.

NH4
+-N 1.757* 0.000 1.958* 0.000 20.201 0.450

SRP 0.291 0.001 0.329* 0.000 20.037 0.510

CODMn 3.204* 0.021 2.842* 0.021 0.362 0.699

NO3
–N 1.566 0.136 0.450 0.617 1.116 0.144

Cl2 11.245* 0.001 9.593* 0.001 1.652 0.410

Na+ 5.082* 0.016 2.879 0.104 2.203 0.129

Mg2+ 0.719 0.668 3.777* 0.019 23.058* 0.021

K+ 4.827* 0.000 4.532* 0.000 0.295 0.678

*indicates significant at p,0.05.
doi:10.1371/journal.pone.0091528.t003
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select the suitable models. Higher R2 in this study meant that

influencing factors could explain more variance in the water

quality. A lower AIC value suggested that a closer approximation

of model to reality and had better model performance. Moran’s I

values were used to calculate the residuals from each regression in

order to determine whether spatial autocorrelations existed. The

dependent variables are mean values of each water quality

indicator for all sampling times. Independent variables included

the factors derived from the PCA. The same variables were used in

both the OLS and spatial regression.

The landscape metrics were calculated using Fragstat 3.3. The

calculation of Moran’s I values and GIS analyses were performed

using ArcGIS 9.3. OLS and spatial regression were performed in

the GeoDa 9.5i. Data pre-processing (including Kaiser-Meyer-

Olkin (KMO) and Bartlett’s test) and PCA were conducted using

SPSS16.0. Box-plots were produced using Statistical 7.

Results

3.1. Temporal Variation Analyses
3.1.1. Seasonal variation of stream water quality. The

concentrations of water quality parameters among the three

sampling seasons are shown in Fig. 2. All water quality parameters

except SRP had their highest values of mean concentration in the

dry and transition seasons, whereas the concentrations were the

lowest in the flood season. The highest mean concentrations of

CODMn, Mg2+, Na+ and K+ were found in the dry season. The

mean concentrations of NH4
+-N, NO3

–N, Cl2 in the transition

season were higher than those in the dry and flood seasons.

Interestingly, the highest concentration of SRP was detected in the

flood season and the mean concentrations of SRP were in the

order of flood season .transition season .dry season.

The K independent samples test to examine the significance of

seasonal variations of river water quality (Table 1) shows that the

mean rank values for most of the water quality indicators except

for SRP and Cl2 were higher in the dry season than those in the

transition and flood seasons, indicating that the water quality in

the dry season was remarkably worse. The mean rank value of Cl2

was highest in the transition season while the mean rank value of

SRP was highest in the flood season, implying that the most

seriously polluted season for Cl2 and SRP was the transition and

flood seasons, respectively.

3.1.2. Identifying potential pollution sources among three

sampling seasons. KMO and Barlett’s test was performed

before PCA analysis in this study. The KMO value is 0.699 and

the p value of Barlet’s test is less than 0.0001, which means there

are no significant relationships among water quality variables and

it is suitable for PCA analysis. The PCA examining the differences

of water pollution characteristics among the three sampling

seasons identified the principal components (PCs) with initial

Eignen-values .1 (Table 1) and the important water quality

parameters with absolute values of component loading .0.7

(Fig. 3). The two PCs identified for the three sampling seasons

exhibited distinct differences in terms of the water quality

parameters involved (Table 2 and Fig. 3).

For the transition season, two PCs could explain the majority of

total variation (81.107%). PC1, accounting for 42.158% of the

total variance, had strongly positive loadings on the organic-

related parameters (CODMn), inorganic nutrient-related water

quality parameters (NH4
+-N and SRP) and Mg2+. Thus, this group

might be interpreted as the latent factors from anthropogenic

input related to industrial effluents and domestic wastewater, and

the natural weathering process. PC2, accounting for 38.948% of

the total variance, had strongly positive loadings on NO3
–N, Cl2,
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Na+ and K+, which might reflect that the impact was associated

with agricultural activities.

In the flood season, PC1 explained 37.63% of the total variance

and had strongly positive loadings on NO3
–N, Cl2, Na+ and K+,

which might have represented the influences of agricultural

activities, associated with the precipitation-induced surface runoff.

PC2 accounted for 27.132% of the total variance and had strongly

positive loadings on NH4
+-N, SRP and CODMn. Thus, PC2

represented industrial effluents and domestic wastewater.

In the dry season, PC1 accounted for 42.832% of the total

variance, where Cl2, Na+ and K+ had the greatest loadings. This

factor might be interpreted as representing the natural weathering

process. PC2 explained 31.986% of the total variance and was

largely contributed by nutrients and metal ions related with

industrial effluents and domestic wastewater.

3.2. Spatial Variation Analyses
The water quality among agricultural, natural and urban

watersheds showed great spatial variations (Fig. 4).

The concentrations of NH4
+-N, SRP, and K+ were higher in

urban watersheds than those in natural and agricultural water-

sheds. NO3
–N concentration in agricultural watersheds especially

in sub-watershed A12 was generally higher than that in natural

and urban watersheds. The concentrations of Cl2, and CODMn

were generally higher in urban watersheds than those in natural

and agricultural watersheds. It should be noted that the

concentrations of Mg2+, NH4
+-N, NO3

–N, and CODMn in sub-

watershed N2 were the highest among the natural sub-watersheds,

which were even higher than those in some of the sub-watersheds

of the urban and agricultural watersheds.

The LSD Post Hoc multiple comparison method used to

identify how land use patterns had a clear impact on spatial

variations of water quality (Table 3). Table 3 revealed that the

urban watersheds exhibited more significance in terms of NH4
+-N,

CODMn, Cl
2, and K+ than natural and agricultural watersheds,

indicating that urbanized areas were easily exposed to water

quality pollution associated with industrial and domestic effluents.

The Mg2+ concentration in natural watersheds was significantly

higher than that in agricultural watersheds, suggesting that the

natural weathering process might have played a more important

role on Mg2+ concentration than agricultural activities. Although

most of the water quality parameters collected in agricultural

watersheds had higher concentrations than those in natural sub-

watersheds, no significant variations were detected.

3.3. Spatial and Temporal Variation in Water Quality
Moran’s I values (used to identify the degree of spatial

dependence on water quality parameters over time) for the water

quality indicators in the three different sampling seasons are shown

in Table 4.

Significant positive spatial autocorrelations were found for

NH4
+-N, Mg2+ and K+ among the three sampling seasons,

Figure 5. Rotated Component Matrix for environmental variables identified for variation in water quality. (1, 2,
3,4,5,6,7,8,9,10,11,12,13,14,15 stands for forest, cropland, developed land, orchard, PD, SHDI, LPI, Pop_density, GDP, GDP1, GDP2, GDP3, Slope_std,
Geology 1, Geology 2).
doi:10.1371/journal.pone.0091528.g005
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indicating that the water quality problem in terms of these three

water quality parameters shared regional anthropogenic or natural

factors with regards to river pollution over time. The Moran’s I

values for most of the water quality indicators (except for CODMn

and Na+) in the flood season were the lowest, indicating that

significant water quality variations were exhibited between

neighboring sub-watersheds and river water quality in the flood

season, which might have been contributed by non-point source

pollution related to heterogeneous land use patterns in watersheds.

The Moran’s I values were highest for NH4
+-N, SRP, CODMn,

Cl2 and Mg2+ in the transition season, and highest for NO3
–N and

K+ in the dry season, suggesting that most of the water quality

parameters in the transition and dry seasons had significant spatial

autocorrelations, and exhibited similar levels of water pollution

between the neighboring sub-watersheds in these two seasons.

Generally, most of the water quality parameters in the dry and

transition seasons had more significant spatial autocorrelations

than those in the flood season.

3.4. Coupled Effects of Natural and Anthropogenic
Controls on Water Quality Variations
River water quality is influenced by a combination of natural

and anthropogenic factors. In this study, natural factors involved

the standard deviation of slope and geology factors, anthropogenic

factors included LULC (i.e. four land use types), LPMs (i.e. three

landscape indicators), socioeconomic development indices (i.e.

Pop_density, GDP, GDP1, GDP2, and GDP3).

3.4.1. General correlation between water quality

parameters and environmental variables. Table 5 shows

the general correlation between selected influencing factors and

water quality parameters using Pearson analysis.

a) Relationship between water quality and land use/cover:

Developed land had positive correlations with most water

quality parameters (except for Mg2+), suggesting that

developed land was an important factor associated with

degraded water quality. Forest showed significant negative

correlation with CODMn, NO3
–N, Cl2 and Na+. Cropland

was significantly positively correlated with NO3
–N, whereas it

had significant negative correlation with Mg2+. Orchard had

significant positive correlation with CODMn, NO3
–N and

Na+.

b) Relationship between water quality and LPMs: PD was

significantly positively correlated with CODMn, NO3
–N and

Na+; And SHDI had significant positive linkages with

CODMn, NO3
–N, Cl2, Na+ and K+, whereas LPI had

negative associations with most of the water quality

parameters.

c) Relationship between water quality and social-economic

factors: Pop_density had significantly positive correlation

with most of the water quality indicators (except for Mg2+),

similar to build-up. GDP was significant positively related

with NH4
+-N, SRP, CODMn, Cl

2, Mg2+ and K+
. Signif-

icantly positive relationships between GDP1 and NH4
+-N,

SRP, CODMn, Cl
2, Mg2+ and K+ were obtained, whereas

GDP2 and GDP3 were significantly positively correlated with

NH4
+-N, SRP, CODMn, Mg2+ and K+.

d) Relationship between water quality and natural factors:

Slope_std had significant negative associations with NH4
+-N,

NO3
–N and K+, indicating that increased deviation in slope

would force the flow to carry pollutants on impermeable

surfaces and discharge into river in shorter time. Geology 1

was significantly positively correlated with NH4
+-N, SRP and
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Mg2+. Geology 2 was significantly negatively correlated with

Mg2+.

3.4.2. Significant explanatory variables identified for

variations in water quality. PCA was used to obtain

appreciable data reduction and to identify the important potential

factors explaining spatiotemporal variations in water quality.

Follow this, OLS and spatial regression were performed to

uncover the mechanism of water quality variations from the

perspective of spatial dependence of river water quality. The

results obtained from PCA are presented in Table 6 and Fig. 5.

Table 6 shows the R2, AIC and Moran’s I values for water quality

Table 7. Comparison of R2, AIC and Moran’s I values between OLS models and spatial regressions.

Water quality parameters R2 AIC Moran’s I

NH4
+-N OLS 0.739 31.813 20.29

Spatial lag 0.745 33.546 20.28

Spatial error 0.793 29.568 20.24

SRP OLS 0.716 234.402 20.31

Spatial lag 0.719 232.54 20.28

Spatial error 0.747 235.500 20.24

CODMn OLS 0.711 67.929 20.25

Spatial lag 0.713 69.856 20.25

Spatial error 0.763 65.436 20.12

NO3
–N OLS 0.767 50.399 0.06

Spatial lag 0.833 47.305 20.16

Spatial error 0.846 45.967 0.12

Cl2 OLS 0.587 113.39 20.25

Spatial lag 0.797 106.346 20.25

Spatial error 0.707 110.047 0.05

Na+ OLS 0.530 93.660 20.17

Spatial lag 0.664 91.319 20.15

Spatial error 0.647 90.483 20.08

Mg2+ OLS 0.360 96.857 20.41

Spatial lag 0.365 98.766 20.39

Spatial error 0.568 92.963 20.39

K+ OLS 0.774 65.727 0.09

Spatial lag 0.869 60.085 20.24

Spatial error 0.833 62.930 0.16

doi:10.1371/journal.pone.0091528.t007

Table 8. Spatial regression models established in the JRW.

Water quality
parameters Spatial Regression models R2 Sig.

NH4
+-Na y = 0.710+0.650*factor2+0.264*factor3–0.236*factor4 (LAMBDA=20.561) 0.793 **

SRPa y = 0.233+0.128*factor2+0.033*factor3(LAMBDA=20.395) 0.747 *

CODMn
a y = 8.194+0.654*factor1+1.504*factor2+0.597*factor3 (LAMBDA=20.452) 0.763 **

NO3
–Na y = 2.043+0.774*factor1+0.828*factor3 (LAMBDA=0.709) 0.846 **

Cl2b y = 14.456+3.878*factor2+4.058*factor3–0.799*WY 0.797 **

Na+a y = 8.195+1.229*factor1+1.182*factor2+2.155*factor3–0.567*WY 0.664 **

Mg2+a y = 2.511–0.883*factor1+1.561*factor2–0.804*factor4(LAMBDA=20.716) 0.568 *

K+b y = 7.207+2.032*factor2+1.772*factor3–0.380*factor4–0.656*WY 0.869 *

Note: Factor1, 2, 3, and 4 corresponds to the four components identified and presented in Fig. 6.
a denotes the results of spatial error models, b denotes the results of spatial lag models.
WY: weighted mean of the dependent variable for adjacent sub-basins.
*indicates significant at p,0.05.
**indicates significant at p,0.01.
doi:10.1371/journal.pone.0091528.t008
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residuals for both spatial regression (including spatial lag models

and spatial error models) and OLS models.

Four components with initial Eigen-values greater than 1 could

explain 83.757% of the total variance (Table 6). PC1, PC2, PC3

and PC4 explained 34.033, 27.489, 12.047 and 10.188% of the

total variance. As shown in Fig. 5, PC1 was positively correlated to

and largely contributed by cropland, orchard, PD and LPI and

negatively affected by forest and LPI. All these important

parameters included in PC1 were related to the LULC and LPMs

of the watershed, indicating that landscape patterns played an

important role in water quality variations in the JRW. PC2 which

was positively and largely correlated with developed land, GDP,

GDP2 and GDP3, represented the coupled effects of urbanization

and socioeconomic development. PC3, which was positively

correlated with GDP1, represented the contribution from agricul-

tural activities. PC4 was positively contributed by Geology 2, and

this component represented the influence from the natural control.

Overall, three potential factors (i.e. PC1, PC2, PC3) identified

were related to anthropogenic controls.

Figure 6. The four potential pollution sources identified to explain spatiotemporal variations in water quality for 20 headwater
watersheds in the JRW. (PC1, PC2, PC3, and PC4 represents landscape patterns, urbanization and socioeconomic development, agricultural
activity, and natural control, respectively).
doi:10.1371/journal.pone.0091528.g006
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Non-significant spatial autocorrelations were found in all

models, indicating that both OLS models and spatial regressions

could be chosen to determine the relationship between environ-

mental factors and water quality parameters (Table 7). An

improvement in R2 using the spatial regression model over the

OLS model was observed, especially for Cl2, Na+ and Mg2+

(Table 7). In addition, most of the spatial error models had higher

R2 values than spatial lag models, which suggests that the lower

error in the spatial error models. Comparing the AIC values from

spatial regressions and those from OLS models, all the spatial

error and most of the spatial lag models had lower AIC values than

the corresponding AIC values from the OLS models, indicating

that spatial regressions, especially spatial error models had better

model performance than OLS models.

Given the higher R2 values and lower AIC values from spatial

regression model, spatial regression model were chosen for further

study to identify significant explanatory variables for each

parameters. The models explain approximately up to 87% of

the variation in water quality (Table 8).

As shown in Table 8, factor2 and factor3 were the two most

important factors associated with water quality variations,

implying that anthropogenic controls played critical roles in

variations of water quality in the JRW. Factor2 was related to all

the water quality parameters except for NO3
–N while factor3 was

included in all the regression models except for Mg2+. In

particular, factor2 had significant impact on NH4
+-N, SRP,

CODMn, Mg2+ and K+, implying environmental factors related to

urbanization and socioeconomic development were the important

explanatory variables for these parameters. It is understandable

that NO3
–N was largely and positively contributed by factor3

associated with agricultural activities. Factor1 representing land-

scape pattern was also an important factor, which had significant

positive effects on CODMn, NO3
–N, and Na+. Factor4 appeared in

three of the regression models related to NH4
+-N, Mg2+ and K+,

and the relationships were significantly negative.

Generally, agricultural activities and landscape patterns had

coupled effects on variations related to NO3
–N and Na+.

Urbanization and socioeconomic development were the dominant

explanatory variables for CODMn and NH4
+-N were also the

primary predictor for SRP, Mg2+, and K+. This suggested that

urban development was the driving source of oxygen demand and

nutrient concentration. Agricultural activities and urbanization

and socioeconomic development were the two important predic-

tors for Cl2.

Fig. 6 shows the four potential factors identified to explain

spatiotemporal variations in water quality for 20 headwater

watersheds in the JRW. Compared to other two types of

watershed, PC2 (i.e. urbanization and socioeconomic develop-

ment) is the largest contributor for variations among four factors

identified in three urban watersheds. In terms of natural

watersheds, environmental factors mostly related to anthropogenic

controls had a negative influence on water quality.

Discussion

4.1. Causal Factors of Spatiotemporal Variations in Water
Quality
Water quality is affected by the combination of natural and

anthropogenic factors, the relative influences of which change with

temporal and spatial scale [1]. Our study effectively differentiated

the impacts from anthropogenic factors (including landscape

pattern, agricultural activities, urban and socioeconomic develop-

ment) and natural factors on stream water quality. Our results

showed that urban and socioeconomic development acted as the

primary predictor for CODMn and NH4
+-N, and the relationships

between developed land and water quality parameters were

consistently positive. Many previous studies had similar findings

concerning the contribution of urbanization to degraded water

quality [2], [43], [53–54]. Our findings also supported prior

observations concerning more pollutants in urbanized areas with

higher population density [54–55] and the potential occurrence of

water quality pollution under rapid economic development [56–

57]. Moreover, our study also found that the highest concentration

of Cl2 in urban watershed, which indicated the potential risk of

increasing salinity in urban areas [1], [57–58].

The percentage of cropland was significantly positively corre-

lated with NO3
–N and agricultural activities were identified in this

study as an important predictor for NO3
–N through the spatial

regression model, which verified that cropland and agricultural

activities were an important ‘‘source’’ for NO3
–N..Kannel et al.

(2007) also note that the increasing concentration of NO3
–N with

intensified use of chemical fertilizers together with urbanization

[59]. In our study, the percentage of orchard was significantly

positively correlated with CODMn, NO3
–N, and Na+. As one of

China’s most developed areas in terms of agricultural production,

orchards are intensive especially in the downstream of the JRW,

therefore, a large amount of animal waste and organic fertilizer

used in the orchards, together with the rotten fruits, would make a

contribution to the organic pollutants and NO3
–N. Other studies

in the JRW also found that large amount of nitrogen fertilizers are

applied to crop which increase the source of nitrogen to stream

[45–46]. The result from the spatial regression analysis in this

study also suggested that agricultural activities were the important

predictor for water quality variation especially Na+ and Cl2

(Table 8). In this study, the percentage of forest had negative

correlations with most of the water quality parameters, which was

consistent with the previous findings that forest possesses the

ecological function of filtering pollutants [29], [60].

In terms of natural factors, significantly positive relationships

between Slope_std and NH4
+-N, Cl2 and K+ were found in this

study. Slope represents an aggregation of rainfall, soil, geology,

vegetation and temperature [12]. Similar observations were

obtained by other researchers that slope variable act as a sink

for some water quality parameters [29], [41–42]. In this study,

significantly positive correlation was found between Geology 1

(sandstones and siltstones) and NH4
+-N, SRP, Mg2+ as the result of

weathering and dissolution of minerals from the local agricultural

soil and bedrock [61]. On the other hand, Geology 2 (granites,

lavas, and volcanic tuff) was negatively correlated with Mg2+ since

the granitic bedrock is too hard to be weathered and the negative

effect of pore solution by the volcanic tuff on Mg2+ release [62–

63]. In this study, we found that Mg2+ concentration in natural

watersheds was significantly higher than that in agricultural

watersheds. Pearson analysis also showed that the correlation

between concentration of Mg2+ and Geology 1 were stronger

(r = 0.684, p,0.01) than with other factors (Table 5). Rothewell

et al. (2010) had a similar observation that the Mg2+ concentration

is related to underlying geology rather than the effect of human

activities [12].

4.2. Spatial Dependence of Water Quality in Different
Seasons
River water quality exhibits spatial autocorrelation, since

adjacent sites are dominated by similar natural ecosystems and

experience comparable human disturbances [42–43]. Our results

showed that global Moran’s I values for most of the water quality

parameters (except for CODMn and Na+) were lowest in the flood

season, whereas most water quality parameters showed significant
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spatial autocorrelation in the dry season. In the flood season,

nonpoint source pollution constituted the primary pollution source

(suggested in subsection 4.1.2) and we inferred hydrological

process, particularly agricultural and urban stormwater runoff

containing different amounts of nutrients from different land cover

types such as cropland and street, might make different

contribution to water quality degradation in sub-watersheds with

great spatial heterogeneity. Thus, it might result in the water

quality problems becoming more localized. In contrast, river water

quality in the dry season was mostly affected by point source

pollution such as industrial and domestic effluents, suggesting that

water quality is a reflection of regional anthropogenic activities or

natural factors [42]. In addition, NH4
+-N had the highest Moran’s

I value among all the water quality indicators, which was further

verified the results from the spatial regression model, which

indicated that NH4
+-N was more associated with point source

pollution, such as industrial effluents and domestic wastewater. In

other words, watersheds with similar urbanization and socioeco-

nomic development might show a similar NH4
+-N pollution

pattern. NH4
+-N and CODMn are two important indicators which

can to some extent reflect the local wastewater treatment capacity

[2], [64], and improving the capacity for industrial and domestic

wastewater treatment is important for regional water management

in the context of accelerating urbanization. Comparatively,

NO3
–N had the lowest Moran’s I value in our study, indicating

that NO3
–N pollution was localized. NO3

–N was largely contrib-

uted by agricultural activities and natural factors including soil,

geology and slope can also affect the pollutant export through

hydrologic pathways such as runoff to a water body [29].

4.3. Seasonal Pattern and the Underlying Mechanisms
Most seasonal variations in river water chemistry are driven by

climatic and biotic factors and are therefore largely governed by

the watershed processes related to natural or human induced

disturbances [29], [65]. The water soluble nutrients such as

inorganic N may be leaching into the groundwater and transport

into stream via subsurface water [66]. However, insoluble nutrient

species such as P often as the form of particulates, thus

transporting with sediments through the surface water pathways

especially in the rainy day [67–68]. As a result, bioreactive

elements can cycle differently and undergo release or retention

from sediments in response to shifting redox conditions and

warming. Thus, the source of nutrients can be variable, for

example during flood season, high nitrate concentration in

streamwater results from higher contribution of nitrate-rich

hillslope shallow groundwater, whereas during dry season stream-

water mainly comes from denitrified bottomland groundwater

[69–70] and deep fractured aquifers [71].

In our study, the pronounced seasonal changes in NH4
+-N,

NO3
–N, Cl2, CODMn, Mg2+, Na+ and K+ concentrations in the

20 headwater streams (Fig. 2 and Fig. 4), with highest concentra-

tions in the dry and transition seasons and lowest concentrations in

the flood season, suggests that river water quality dynamics in the

JRW may be determined by the anthropogenic controls such as

domestic wastewater & industrial effluent, and agricultural N input

associated with vadose zone leaching and groundwater seepage, as

well as lowest in-stream N immobilization rate due to lowest

temperature in the dry and transition seasons. Besides, increased

streamflow in the flood season may reduce the concentration if the

source of nutrients is invariant, thus effective dilution effect

associated hydrologic regime might lead to the lowest concentra-

tions in the flood season in the JRW. Potential pollution sources

identified by PCA analysis in subsection 4.1.2 could also interpret

for the seasonal variations in river water quality. Point source

pollution associated with industrial and domestic wastewater was

identified as the important potential factor to make a great

contribution to the variations in NH4
+-N and CODMn, and

agricultural activities were the primary predictor for NO3
–N

(Table 8).

In this study, SRP concentration is highest in the flood season

(in Aug.), which might be related to more sediment-bound P input

associated with hydrological processes such as stormwater runoff

in this season. The SRP load exported from catchment non-point

sources was associated with stormwater runoff and released from

in-stream internal sources with the increasing river flow [2], [72].

As the result of that, the net effect of the amount of P entering and

leaving an ecosystem as quantified by a mass balance provides a

measure of P retention (e.g. during low stream flow) or P export

(e.g. during high stream flow) over a given spatial and temporal

scale [73]. It should be noted that other studies found SRP can be

controlled by the biogeochemical process and anthropogenic

input. Duan et al. (2012) notes the effect of temperature on

seasonal change SRP based on the observation that high SRP

concentrations exhibit in the low flow during summer as result of

biochemical reactive [13]. Bowes et al. (2005) found that streams

receiving wastewater effluent typically show a characteristic

pattern of high P concentration during summer low flow and

more diluted concentration during winter storm events in an

English catchment [34]. Hydrological process rather than

biogeochemical process drives the seasonal variations of P export

in the JRW, which might be due to greater variability of inter-

annual precipitation than of inter-annual temperature in the

watershed studied.

4.4. Spatial Variations of Water Quality among three
Types of Watershed
Land use and land cover play a central role in fate and transport

of water quality [48], [74]. Runoff from agricultural land and

effluents from urban and industrial area are major sources of

nutrients and fine sediment in river systems [26], [75–76].

Urbanization and agricultural activities are common source of

elevated water pollution, which is expected to continue increasing

in the coming decades due to growing populations, further

development and greater demand for food production [1], [13],

[77]. Our study showed that the water in urban watersheds was

more seriously polluted than in agricultural and natural water-

sheds, and the natural watersheds often had better water quality.

This was not surprising due to the fact that the selected urban sub-

watersheds had the highest urbanization level and there are many

mining lots and steel plants located at the upstream of these

watersheds. Acid mine drainage from active and abandoned

strongly influences stream water chemistry by acidifying stream

water which in turn increase the dissolution of mineral and high

concentrations of several elements [78]. In addition, livestock

farming was also intensive there. As a result, the water quality in

the urban watersheds was influenced by a combination of point

source and non-point source pollution associated with industrial,

domestic and livestock waste. Additionally, most of the water

quality parameters in agricultural watersheds had higher concen-

trations than those in natural watersheds, but no significant

variance was obtained. This could be explained by the fact that the

amount of natural watersheds is smaller than that of agricultural

watersheds and natural sub-watershed, N2 was a special sub-

watershed that had a high percentage of forest, but was seriously

polluted by mining activities.
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4.5. Implications for Water Quality Management
The findings of our study are helpful for water resource

management within the watershed. Water quality was worst in the

dry season and point source pollution associated with industrial

and domestic wastewater made a great contribution to the

variations of NH4
+-N and CODMn in this season. Cl2 was

relatively higher in urban watersheds than those in natural and

agricultural watersheds, indicating the potential increasing salini-

zation in urbanized areas. Moreover, the most significant spatial

autocorrelation for most water quality parameters found in the

transition and dry seasons, especially in the dry season. Thus,

regional water management alternatives such as improving the

capacity of wastewater treatment are more suitable than localized

measures in the dry season. Comparatively, nonpoint source

pollution associated with agricultural activities made the greatest

contribution to the spatiotemporal variations in water quality in

the flood and transition seasons. Water quality problems become

more localized in the flood season due to the fact that agricultural

nonpoint source pollution in different watersheds might make a

different contribution to water quality degradation in sub-

watersheds with great spatial heterogeneity. Thus, more attention

should be paid to agricultural non-point source pollution and more

localized water management measures should be taken in the flood

season. Considering that urbanization and socioeconomic devel-

opment and landscape pattern were the two dominant influencing

factors for water quality variation, spatial planning for urbaniza-

tion and socioeconomic development at watershed scale should be

recognized by the local government when balancing economic

growth and environmental conservation.

Conclusion

Anthropogenic input related to industrial effluents/domestic

wastewater, agricultural activities associated with the precipitation-

induced surface runoff, and natural weathering process were

identified as the potential important factors to drive the seasonal

variations in stream water quality in 20 headwater watershed of

the JRW for the transition, flood and dry seasons, respectively.

The NH4
+-N, NO3

–N, Cl2, CODMn, Mg2+, Na+ and K+ in the 20

headwater streams had the highest concentration concentrations

in the dry and transition seasons and lowest concentrations in the

flood season. SRP had the highest concentrations in the flood

season as a result of hydrological control.

Anthropogenic activities and watershed characteristic led to the

spatial variations in stream water quality in three types of

watersheds. Anthropogenic input associated with industrial

effluents/domestic wastewater led to the concentrations of

NH4
+-N, SRP, K+, CODMn, and Cl2 were generally higher in

urban watersheds than those in natural and agricultural water-

sheds. NO3
–N were generally higher in agricultural watersheds

than those in urban and natural watersheds as a result of

anthropogenic input related to agricultural activities. Mg2+

concentration in natural watersheds was significantly higher than

that in agricultural watersheds, which is largely due to the

watershed characteristic (bedrock geology). Spatial autocorrela-

tions analysis showed similar levels of water pollution between the

neighboring sub-watersheds exhibited in the dry and transition

seasons while non-point source pollution contributed to the

significant water quality variations between neighboring sub-

watersheds.

Spatial regression analysis showed anthropogenic controls

played critical roles in variations in stream water quality in the

JRW. Urbanization and socioeconomic development were the

dominant explanatory variables for NH4
+-N, SRP, CODMn,

Mg2+, Cl2 and K+, and agricultural activities and landscape

patterns had coupled effects on variations related to NO3
–N and

Na+. Management implications were further discussed for water

resource management. This research demonstrates that the

coupled effects of natural and anthropogenic controls, together

with underlying hydrologic and biogeochemical processes, con-

tribute to the seasonal and spatial variation of headwater stream

water quality in a coastal watershed with high spatial variability

and intensive anthropogenic activities.

Acknowledgments

We thank Professor John Hodgkiss of The University of Hong Kong for

assistance with English and anonymous reviewers supplied constructive

feedback that helped to improve this paper.

Author Contributions

Conceived and designed the experiments: JlH YlH ZyZ. Performed the

experiments: YlH ZyZ. Analyzed the data: JlH YlH. Contributed

reagents/materials/analysis tools: JlH YlH. Wrote the paper: JlH YlH.

References

1. Mouri M, Takizawa S, Oki T (2011) Spatial and temporal variation in nutrient

parameters in stream water in a rural-urban catchment, Shikoku, Japan: effects

of land cover and human impact. Journal of Environmental Management 92:

1837–1848.

2. Huang JL, Li QS, Pontius RG, Klemas V, Hong HS (2013) Detecting the

Dynamic Linkage between Landscape Characteristics and Water Quality in a

Subtropical Coastal Watershed, Southeast China. Environmental Management

51: 32–44.

3. Ouyang Y, Nkedi-Kizza P, Wu QT, Shinde D, Huang CH (2006) Assessment of

seasonal variations in surface water quality. Water Research 40(20): 3800–3810.

4. Somura H, Takeda I, Amold JG, Mon Y, Jeong J, et al. (2012) Impact of

suspended sediment and nutrient loading from land uses against water quality in

the Hii River basin, Japan. Journal of Hydrology 450: 25–35.

5. Vorosmarty CJ, McIntyre PB, Gessner MO, Dudgenon D, Prusevich A, et al.

(2010) Global threats to human water security and river biodiversity. Nature

467(7351): 555–561.

6. UN WWAP (World Water Assessment Programme) (2009) Water in a changing

world. The United Nations World Water Development Report 3.

7. Baker A (2003) Land use and water quality. Hydrological process 17(12): 2499–

2501.

8. Smith AJ, Thomas RL, Nolan JK, Velinsky DJ, Klein S, et al. (2013) Regional

nutrient thresholds in wadeable streams of New York State protective of aquatic

life. Ecological Indicators 29: 455–467.

9. Li SY, Xia XL, Tan X, Zhang QF (2013) Effects of catchment and riparian

landscape setting on water quality chemistry and seasonal evolution of water

quality in the upper Han River Basin, China. PLoS ONE e53163.

10. Pearl HW (2006) Assessing and managing nutrient-enhanced eutrophication in

estuarine and coastal water: interactive effects of human and climate

perturbations. Ecological Engineering 26: 40–54.

11. Kaushal SS, Groffman PM, Band LE, Shieds CA, Morgan RP, et al. (2008)

Interaction between urbanization and climate variability amplifies watershed

nitrate export in Maryland. Environmental Science and Technology 42(16):

5872–5878.

12. Rothwell JJ, Dise NB, Taylor KG, Allott TEH, Scholefield P, et al. (2010) A

spatial and seasonal assessment of river water chemistry across North West

England. Science of the Total Environment 408(4): 841–855.

13. Duan SW, Kaushal SS, Groffman PM, Band LE, Belt KT (2012) Phosphorus

export across an urban to rural gradient in the Chesapeake Bay watershed.

Journal of Geophysical Research 117: G01025.

14. Mitchell (2001) Linkages of nitrate losses in watersheds to hydrological process.

Hydrological Processes 15(17): 3305–3307.

15. Martin C, Aquilina L, Gascuel-Odoux C, Molenat J, Faucheux M, et al. (2004)

Seasonal and interannual variations of nitrate and chloride in stream waters

related to spatial and temporal patterns of groundwater concentrations in

agricultural catchment. Hydrological Process 18: 1237–1254.

Seasonal and Spatial Variations of Water Quality

PLOS ONE | www.plosone.org 17 March 2014 | Volume 9 | Issue 3 | e91528



16. Laurent J, Mazumder A (2014) Influence of seasonal and inter-annual
hydrometeorological variability under varying land-use composition. Water

Research 48: 170–178.

17. Worrall F, Burt TP (2001) Inter-annual controls on nitrate export from an
agricultural catchment-how much land-use change is safe. Journal of Hydrology

243(3–4): 228–241.

18. Duan SW, Kaushal SS (2013) Warming increases carbon and nutrient fluxes

from sediments in streams across land use. Biogeosciences 10: 1193–1207.

19. Randhir TO, Hawes AG (2009) Watershed land use and aquatic ecosystem
response: Ecohydrologic approach to conservation policy. Journal of Hydrology

364(1–2): 182–199.

20. Swaney DP, Hong BT, Ti CP, Howarth RW, Humborg C (2012) Net

anthropogenic nitrogen inputs to watersheds and riverine N export to coastal

waters: a brief overview. Current Opinion in Environmental Sustainability 4(2):
203–211.

21. Gardner KK, McGlynn BL (2009) Seasonality in spatial variability and influence
of land use/cover and watershed characteristics on stream water nitrate

concentrations in a developing watershed in the Rockey Mountain West. Water

Resource Research 45: W08411.

22. Huang JL, Klemas V (2012) Using Remote Sensing of Land Cover Changes in

Coastal Watersheds to Predict Downstream Water Quality Trend. Journal of
Coastal Research 28: 930–944.

23. Tu J (2013) Spatial variations in the relationships between land use and water

quality across an urbanization gradient in the watersheds of Northern Georgia,
USA. Environmental Management 51: 1–17.

24. Haygarth P, Turner BL, Fraser A, Jarvis S, Harrod T, et al. (2004) Temporal

variability in phosphorus transfers: classifying concentration-discharge event
dynamics. Hydrology and Earth System Sciences 8(1): 88–97.

25. Jordan P, Amscheidt A, McGrogan H, McCormick S (2007) Characterising
phosphorus transfers in rural catchments using a continuous bank-side analyser.

Hydrology and Earth System Sciences 11(1): 372–381.

26. Edwards AC, Whithers PJA (2008) Transport and delivery of suspended solid,
nitrogen and phosphorus from various sources to freshwaters in the UK. Journal

of Hydrology 350(3–4): 144–153.

27. Liu JG, Diamond (2005) China’s environment in a globalizing world. Nature

435(7046): 1179–1186.

28. Weller DE, Jordan TE, Correl DL, Liu ZJ (2003) Effects of land-use change on
nutrient discharge from the Patuxent River watershed. Estuaries 26: 244–266.

29. Sliva L, Williams DD (2001) Buffer zone versus whole catchment approaches to

studying land use impact on river water quality. Water Research 35(14): 3462–
3472.

30. Jarvie HP, Oguchi T, Neal C (2002) Exploring the linkages between river water
chemistry and watershed characteristics use GIS-based catchment and locality

analyses. Regional Environmental Change 3(1–3): 36–50.

31. Ko KS, Lee JS, Klim JG, Lee (2009) Assessments of natural and anthropogenic
controls on the spatial distribution of stream quality in Southeastern Korea.

Geosciences Journal 13(2): 191–200.

32. Alexander RB, Smith RA, Schwarz GE (2000) Effect of stream channel size on

the delivery of nitrogen to the Gulf of Mexico. Nature 403(6771): 756–761.

33. Peterson BJ, Wollheim WM, Mulbolland PJ, Webster JR, Meyer JL, et al. (2001)
Control of nitrogen export from watershed by headwater streams. Science

292(5514): 86–90.

34. Bowes MJ, Hilton J, Irons GP, Hornby DD (2005) The relative contribution of

sewage and diffuse phosphorus sources in the River Avon catchment, southern

England: implications for nutrient management. Science of the Total
Environment 344(1–3): 67–81.

35. Ministry of Environmental Protection (MEP) (2011) Report on the state of the
environment In China 2009. Available: http://english.mep.gov.cn/standards_

reports/soe/soe2009/201104/t20110411_208976.htm.

36. Vanlandeghem MM, Meyer MD, Cox SB, Sharma B, Patiño R (2012) Spatial
and temporal patterns of surface water quality and ichthyotoxicity in urban and

rural river basins in Texas. Water Research 46: 6638–6651.

37. Zhou F, Huang GH, Guo H, Zhang W, Hao Z (2007) Spatiotemporal patterns
and source apportionment of coastal water pollution in eastern Hong Kong.

Water Research 41(15): 3429–3439.

38. Yang X, Jin W (2010) GIS-based spatial regression and prediction of water

quality in river networks: A case study in Iowa. Journal of Environmental

Management 91: 1943–1951.

39. Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted

regression: The analysis of spatially varying relationships. Wiley, Chichester.

40. Tu J, Xia ZG (2008) Examining spatially varying relationships between land use

and water quality using geographically weighted regression I: Model design and

evaluation. Science of Total Environment 407(1): 358–378.

41. Pratt B, Chang H (2012) Effects of land cover, topography, and built structure

on seasonal water quality at multiple spatial scales. Journal of Hazardous
Materials 209–210: 48–58.

42. Chang H (2008) Spatial analysis of water quality trends in the Han River basin,

South Korea. Water Research 42: 3285–3304.

43. Su SL, Xiao R, Mi XY, Xu XY, Zhang ZH, et al. (2013) Spatial determinants of

hazardous chemicals in surface water of Qiantang River, China. Ecological
Indicators 24: 375–381.

44. Huang JL, Hong HS, Zhang LP (2004) Study on predicting soil erosion in

Jiulong River watershed based on GIS and USLE. Journal of Soil and Water
Conservation 18(5): 75–79. (in Chinese)

45. Cao WZ, Hong HS, Zhang YZ, Chen NW, Zeng Y, et al. (2006) Anthropogenic

nitrogen sources and export in a village-scale catchment in Southeast China.

Environmental Geochemistry and Health 28(1–2): 45–51.

46. Chen NW, Hong HS, Zhang LP, Cao WZ (2008) Nitrogen sources and exports

in an agricultural watershed in Southeast China. Biogeochemistry 87(2): 169–

179.

47. Huang JL, Lin J, Zhang YZ, Hong HS (2013) Analysis of Phosphorus

Concentration in a Subtropical River Basin in China: Implications for River

Basin Management. Ocean and Coastal Management 81: 29–37.

48. State Environmental Protection Administration of China (SEPAC) (2002)

Methods of Monitoring and Analyzing for Water and Wastewater (4th Edition).

Beijing: China Environmental Science Press. (In Chinese)

49. Redman CL (1999) Human dimensions of ecosystem studies. Ecosystems 2(4):

296–298.

50. Huang JL, Pontius RG Jr, Li QS, Zhang YJ (2012) Use of Intensity Analysis to

Link Patterns with Processes of Land Change from 1986 to 2007 in a Coastal

Watershed of Southeast China. Applied Geography 34: 371–384.

51. Sun R, Wang Z, Chen L, Wang W (2013) Assessment of surface water quality at

large watershed scale: land-use, anthropogenic, and administrative impacts.

Journal of the American Water Resources Association (JAWRA) 49(4): 741–752.

52. Ishizawa H, Stevens G (2007) Non-English language neighborhoods in Chicago,

Illinois: 2000. Social Science Research 36: 1042–1064.

53. Lee SW, Hwang SJ, Hwang HS (2009) Landscape ecological approach to the

relationships of land use patterns in watersheds to water quality characteristics.

Landscape and Urban Planning 92: 80–89.

54. Carey RO, Migliaccio KW, Li Y, Schaffer B, Kiker GA, et al. (2011) Land use

disturbance indicators and water quality variability in the Bicayne Bay

Watershed, Floria. Ecological Indicator 11(5): 1093–1104.

55. Line DE (2013) Effect of development on water quality for seven streams in

North Carolina Environmental Monitoring and Assessment 185: 6277–6289.

56. Su SL, Xiao R, Xu XY, Zhang ZH, Mi XY, et al. (2013) Multi-scale spatial

determinants of dissolved oxygen and nutrients in Qiantang River, China.

Regional Environmental Change 13(1): 77–89.

57. Brando PM, Coe MT, DeFries R, Azevedo AA (2013) Ecology, economy and

management of an agroindustrial frontier landscape in the southeast Amazan.

Philosophical Transactions of the Royal Society B-Biological Sciences DOI:

10.1098/rstb.2012.0152.

58. Porter-Goff ER, Frost PC, Xenopoulos MA (2013) Changes in riverine benthic

diatom community structure along a chloride gradient. Ecological Indicators 32:

97–106.

59. Kannel PR, Lee S, Kanel SR, Khan SP, Lee YS (2007) Spatial-temporal

variation and comparative assessment of water quality of urban river system: a

case study of the River Bagmati (Nepal). Environmental Monitoring and

Assessment 129(1–3): 433–459.

60. de Souza ALT, Fonseca DG, Liborio RA (2013) Influence of riparian vegetation

and forest structure on the water chemistry with the ecological status of Irish

rivers. Water Research 298: 12–18.

61. Kney AD, Brandes D (2007) A graphical screening method for assessing stream

water quality using specific conductive and alkalinity data. Journal of

Environmental Management 82: 519–528.

62. Jones DP, Graham RC (1993) Water-holding characteristics of weathered

granitic rock in chaparral and forest ecosystems. Soil Science Society of America

Journal 57: 256–261.

63. Dultz S, Simonyan AV, Pastrana J, Behrens H, Plotze M, et al. (2013)

Implications of pore space characteristics on diffusive transport in basalts and

granites. Environmental Earth Science 69: 969–985.

64. Ahearn DS, Sheibley RW, Dahlgren RA, Anderson M, Johnson J, et al. (2005)

Land use and land cover influence on water quality in the last free-flowing river

draining the western sierra Nevada, California. Journal of Hydrology 313(3–4):

234–247.

65. Duan S, Kaushal SS, Groffman PM, Band LE, Belt KT (2012) Phosphorus

export across an urban to rural gradient in the Chesapeake Bay watershed.

Journal of Geophysical Research: Biogeosciences 117(G01025).

66. Petry J, Malcolm IA, Youngson AF (2002) Hydrological controls on nutrient

concentrations and fluxes in agricultural catchments. Science of the Total

Environment 294(1–3): 95–110.

67. Willett VB, Reynolds BA, Stevens PA, Ormerod SJ, Jones DL (2004) Dissolved

organic nitrogen regulation in freshwaters. Journal of Environmental Quality

33(1): 201–209.

68. Chang H, Kwon WT (2007) Spatial variations of summer precipitation trends in

South Korea, 1973–2005. Environmental Research Letters 2(4): 045012.

69. Altman SJ, Parizek RR (1995) Dilution of nonpoint-source nitrate in

groundwater. Journal of Environmental Quality 24(4): 707–718.

70. Hill AR (1996) Nitrate removal in stream riparian zones. Journal of

Environmental Quality 25(4): 743–755.

71. Pauwels H, Lachassagne P, Bordenave P, Foucher JC, Martelat A (2001)

Temporal variability of nitrate concentration in a schist aquifer and transfer to

surface waters. Applied Geochemistry 16(6): 583–596.

72. May L, House WA, Bowes M, McEvoy J (2001) Seasonal export of phosphorus

from a lowland catchment: upper River Cherwell in Oxfordshire, England.

Science of the Total Environment 269(1–3): 117–130.

73. House WA (2003) Geochemical cycling of phosphorus in rivers. Applied

Geochemistry 18(5): 739–748.

Seasonal and Spatial Variations of Water Quality

PLOS ONE | www.plosone.org 18 March 2014 | Volume 9 | Issue 3 | e91528



74. Yin XM, Lu XG, Xue ZS, Liu ZM (2012) Influence of land use change on water

quality in Naoli River watershed, northeast China. Journal of Food Agriculture
and Environment 3–4: 1214–1218.

75. Jarvie HP, Neal C, Withers PJA (2006) Sewage-effluent phosphorus: A greater

risk to river eutrophication than agricultural phosphorus? Science of the Total
Environment 360(1–3): 246–253.

76. Neal EG, Hood E, Smikrud K (2010) Contribution of glacier runoff to
freshwater discharge into the Gulf of Alaska. Geophysical Research Letters 37:

L06404.

77. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, et al.

(1998) Nonpoint pollution of surface waters with phosphorus and nitrogen.

Ecological applications 8(3): 559–568.

78. Pasieczna A, Lis J (2008) Environmental geochemical mapping of the Olkusz

1:25000 scale map sheet, Silesia-Cracow region, southern Poland. Geochem-

istry-Exploration Environment Analysis 8: 323–331.

Seasonal and Spatial Variations of Water Quality

PLOS ONE | www.plosone.org 19 March 2014 | Volume 9 | Issue 3 | e91528


