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Abstract

High-latitude reefs support unique ecological communities occurring at the

biogeographic boundaries between tropical and temperate marine ecosystems.

Due to their lower ambient temperatures, they are regarded as potential refugia for

tropical species shifting poleward due to rising sea temperatures. However, acute

warming events can cause rapid shifts in the composition of high-latitude reef

communities, including range contractions of temperate macroalgae and bleaching-

induced mortality in corals. While bleaching has been reported on numerous high-

latitude reefs, post-bleaching trajectories of benthic communities are poorly

described. Consequently, the longer-term effects of thermal anomalies on high-

latitude reefs are difficult to predict. Here, we use an autonomous underwater

vehicle to conduct repeated surveys of three 625 m2 plots on a coral-dominated

high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-

year period spanning a large-magnitude thermal anomaly. Quantification of benthic

communities revealed high coral cover (.70%, comprising three main

morphospecies) prior to the bleaching event. Plating Montipora was most

susceptible to bleaching, but in the plot where it was most abundant, coral cover did

not change significantly because of post-bleaching increases in branching
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Acropora. In the other two plots, coral cover decreased while macroalgal cover

increased markedly. Overall, coral cover declined from 73% to 59% over the course

of the study, while macroalgal cover increased from 11% to 24%. The significant

differences in impacts and post-bleaching trajectories among plots underline the

importance of understanding the underlying causes of such variation to improve

predictions of how climate change will affect reefs, especially at high-latitudes.

Introduction

Increases in the frequency and intensity of acute and chronic disturbances are

altering the structure and function of coral reef ecosystems globally [1–3]. Acute

disturbances affecting reefs include warm-water thermal anomalies, which can

cause abrupt shifts in the composition of coral reef assemblages [4–6].

Temperature-mediated bleaching occurs when the thermal tolerance of corals and

their photosynthetic symbionts (zooxanthellae) is exceeded and can lead to

widespread mortality [1, 2, 7]. In addition, surviving corals often exhibit sub-

lethal effects following exposure to thermal stress, including increased suscept-

ibility to disease and reductions in growth and fecundity that can inhibit coral

recovery [7–9]. Reduced coral abundance, particularly in taxa with structurally

complex morphologies, results in concomitant declines in other taxa dependent

on coral-dominated reef ecosystems [10–14].

High-latitude, subtropical reefs provide a range of ecosystem goods and

services, and have also been proposed as potential refugia for coral reef

biodiversity from rising sea temperatures as tropical biota shift their distributions

polewards [15–19]. Present-day high-latitude coral-assemblages are typically

dominated by subtropical species with antitropical distributions, while species

common on low-latitude tropical reefs are generally absent or rare [18, 20]. Corals

on subtropical reefs generally exhibit lower bleaching thresholds than those at

lower latitudes [21] because bleaching susceptibility is strongly correlated to

thermal history [22, 23]. Although bleaching has been reported from numerous

high-latitude reefs in recent years [24–26], the longer-term consequences of ocean

warming on high latitude reefs are poorly understood.

Spatial variability in bleaching incidence is common due to a variety of factors

including local-scale environmental conditions [27, 28], historical exposure to

higher or more variable temperatures [29, 30], and differing susceptibilities among

coral taxa [4, 31, 32]. Furthermore, proximal benthic communities often show

remarkably different post-bleaching trajectories which cannot be easily attributed

to environmental variability or management actions, such as protection of

herbivorous fishes [33–35]. Intra-reef variability in response to bleaching might be

particularly extensive on high-latitude reefs because of the mosaic of habitats

present, such as coral- and kelp-dominated habitats found in close proximity

[36, 37]. Despite increasing interest in the ecology of high-latitude reefs
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[18, 20, 38, 39], their temporal dynamics remain poorly described relative to

tropical reef ecosystems. This lack of data is problematic because extrapolation of

results from tropical reefs may not be appropriate. In addition to subtropical

corals exhibiting lower bleaching thresholds, higher nutrient levels result in

greater abundance of macroalgae on high-latitude reefs, which may potentially

limit coral recovery after bleaching events [39, 40]. Even if tropical corals can

disperse to higher latitudes, increased competition with macroalgae may inhibit

their ability to establish viable populations [41–43]. Consequently, it is critical to

understand the response of benthic communities on high-latitude reefs to

disturbances such as acute thermal anomalies.

Here, we use repeat surveys conducted by an autonomous underwater vehicle

(AUV) to quantify changes in benthic community composition over a four-year

period (2010–2013) straddling a large-magnitude thermal anomaly in 2011 and

smaller temperature anomalies in 2012 and 2013 at the Houtman Abrolhos

Islands (HAI), a high-latitude reef system in Western Australia. The 2011 ‘marine

heatwave’ was associated with strong La Niña conditions that caused extensive

coral bleaching on Western Australian reefs [24, 26, 44, 45]. We quantify benthic

community composition in three proximal 25625 m (,625 m2) ‘plots’ at the

HAI. We aimed to (1) quantify the nature and magnitude of shifts in benthic

community composition at intermediate but ecologically important spatial scales

(hundreds of square metres); (2) identify differences in susceptibility among both

coral and macroalgal taxa; and (3) determine how variability in the sensitivity to

thermal stress among plots and taxa influenced the short term trajectories of

benthic communities. Quantifying such spatial, temporal and taxonomic

heterogeneity in the effects of temperature anomalies at the HAI can provide

insight into the likely response of high-latitude reefs to rising sea temperatures

and increasing frequency of thermal anomalies.

Methods

No specific permissions were required for these activities and locations as no

organisms were removed in the process of collecting this remote information.

AUV surveys are conducted in collaboration with Fisheries Western Australia, the

managing agency for the Houtman Abrolhos Islands, and are facilitated by

Australia’s Integrated Marine Observing system (IMOS) AUV Facility. The study

did not involve endangered or protected species and was conducted at Geebank

28.81 S̊, 113.947 E̊.

Study Site

The HAI are a series of limestone outcrops on the edge of the continental shelf 60–

80 km off the coast of Western Australia (Fig. 1a). Located between 28 and 29 S̊,

they are among the highest-latitude coral reefs in the world [46]. Despite their

location, 184 reef-building coral species have been recorded from the HAI [47].

Effects of Warming High-Latitude Coral Reef
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Due to their unique location at the boundary of tropical and temperate zones,

corals often occur in mixed communities with various macroalgae, including

temperate taxa such as the kelp Ecklonia radiata [48–50]. Shifts in the latitudinal

boundary of these two major biogeographic regions due to rising sea temperatures

are therefore likely to be particularly apparent in the HAI [51]. We used the AUV

Sirius to study coral assemblages at Geebank (28.81 S̊, 113.947 E̊), a submerged

bank located between the Easter and Southern (Pelsaert) island groups of the HAI

(Fig. 1b).

In the austral summer of 2010–11, Western Australia experienced an

unprecedented ‘marine heatwave’ caused by an anomaly in the Leeuwin Current,

a major poleward boundary current, associated with strong La Niña conditions

[51, 52]. Average sea surface temperatures in February 2011 peaked at 3 C̊ above

long-term monthly averages along a large section of the Western Australian coast

from Ningaloo Reef to Cape Leeuwin, an area spanning 12˚of latitude [51]. In the

Figure 1. Location of the Houtman Abrolhos Islands, Western Australia (a); location of the study site Geebank between the Easter and Southern
(Pelseart) island groups (b). Black squares indicate the location of replicate plots (c).

doi:10.1371/journal.pone.0113079.g001
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(HAI), the average maximum summer (December to May) sea temperatures were

at least 4.7 C̊ above the previous 30-year average, and 4.3 C̊ above the average for

the previous 3 years (22.99 C̊¡0.21 C̊ based on HadISST) [16]. The marine

heatwave resulted in the first documented mass bleaching event in the HAI, and

also had detrimental effects on adjacent kelp communities [26, 44]. Additional

smaller thermal anomalies occurred during the summer of 2012 and 2013 [53],

although the effects of these events on benthic assemblages at the HAI have not

been described.

Data collection

The AUV Sirius collects geo-referenced stereo images from an altitude of 2 m with

each stereo pair covering approximately 1.561.2 m of the seafloor [54]. The

position of the AUV relative to the support ship is calculated using an Ultra Short

Base Line (USBL) acoustic positioning system. This information is combined with

the ship’s GPS, the vehicle’s on-board navigation sensors and the stereo imagery

to determine the geo-referenced position of each individual image [55]. The

position of each image across multiple year surveys was registered to an accuracy

of 10 cm [56]. By using this geo-referencing system, Sirius is able to accurately

survey the same sites across multiple years.

AUV surveys were conducted in three permanent 25625 m ‘plots’ at a similar

depth of ,15–18 m in April of four consecutive years from 2010 to 2013

(Fig. 1c): before, during and two years after the bleaching event. Surveys were

conducted at the same time of year (April) to allow comparison among years

while minimizing the influence of seasonal variability of some taxa (e.g.

macroalgae). Plots were spaced 50–100 m apart to ensure spatial independence

and capture spatial heterogeneity within each site [57].The size and random

placement of the plots increase the likelihood they are representative of the coral-

dominated communities within the study area. All data collected by the AUV and

used in this study are freely available through the Australian Ocean Data Network

Portal at https://auv.aodn.org.au/auv/ and the Integrated Marine Observing

System Data Portal http://imos.org.au/auv_data.html.

We selected a subset of 35 spatially balanced and randomly selected images

from each plot for each year using a Generalized Random Tessellation Stratified

(GRTS) sampling design in Matlab [58], resulting in a total of 420 images being

analysed from 2010–2013. Thirty-five images were chosen based on a power

analysis of changes in variance with increasing replication (up to 50 images) for

one plot (Table S1). This analysis indicated little further reduction in residual

standard error of percent cover for major benthic categories (i.e. table Acropora)

above 30 images per plot. Power analysis also indicated minimal improvement in

detectable effect sizes (given bootstrapped variance estimates, such as standard

deviation, standard error, confidence interval and residual standard error) for

image replication levels above 30, but to provide a margin of error we analysed 35

images per plot. The power analysis was executed in R using package plyr [59] (see

ESM Table S1 for more details). We also imposed a minimum distance of two
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meters between selected images to minimize spatial autocorrelation within each

plot. All randomly selected images were uploaded into CoralNet (http://coralnet.

ucsd.edu/http://coralnet.ucsd.edu/), an online repository and resource for benthic

image analysis that facilitates annotation of benthic survey images [60]. Twenty-

five points were randomly overlaid on each image, and the taxon or substratum

underneath each point identified into one of 32 categories (Table S1). The

proportional cover of each category in each quadrat was calculated as the number

of points overlying that category divided by 25. Corals were identified to either

genus or morphospecies (e.g. branching Acropora) because the resolution of

images was not always sufficient to distinguish between species.

Statistical analyses

Analysis of community composition was performed using multivariate techniques

in PERMANOVA+ for PRIMER v6 [61]. Permutational Multivariate Analysis of

Variance (PERMANOVA) [62] was used to examine changes in community

composition among plots and years. To identify differences among plots within a

single year we used the ‘Unrestricted permutations of raw data’, the recommended

option for single-factor PERMANOVA [61]. To examine changes in community

composition across years, we ran PERMANOVA with ‘year’ as a fixed factor and

‘plot’ as a random factor (to account for the initial variability among plots but

focus the analysis on any consistent changes over the study period) using

permutation of residuals under a reduced model [61]. Homogeneity of

multivariate variance among years was examined using Permutational Analysis of

Multivariate Dispersions (PERMDISP). All PERMANOVA analyses were

performed on square-root transformed Bray-Curtis similarity matrices using Type

III (partial) sums of squares with 9999 random permutations. Similarity

Percentages (SIMPER) identified the contribution of the dominant taxonomic

groups to the total variability between plots and years [63]. The relationship

between all plot/year combinations was visualised using Principal Coordinates

Analysis (PCO), with multiple partial correlation vectors indicating the

relationship between the dominant taxa and sites.

We used generalized linear mixed-effects models (GLMM) in R (package mass

R v3.0) [64] to compare changes in coral and macroalgal percent cover in each

image and plot across years. Coral cover was modelled as a function of year using

a linear mixed effect model. Year was designated as an ordered categorical

explanatory variable with four levels (2010, 2011, 2012 and 2013). Macroalgal

cover was modeled using two-part models with binomial (for presence absence)

and negative binomial distributions. Both coral and algal cover were modeled

hierarchically using plot as a random effect to account for variability among plots,

and all models incorporated a linear autocorrelation term to account for temporal

autocorrelation between years. The choice of model was informed by the need to

account for random effects of plot, the need to account for over-dispersed data

and potential autocorrelation. All initial models tested the interaction between

year and plot, but the interaction term was removed as it was not significant.

Effects of Warming High-Latitude Coral Reef
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Models were simplified following the parsimony principle and no significant

terms were removed from the final model. Assumptions of homoscedasticity,

independence and non- autocorrelation were confirmed using residual plots of all

models.

Results

Prior to bleaching, benthic assemblages within the Geebank plots were dominated

by hard corals, which occupied ,73% of available the substrate. Ninety-five

percent of the coral assemblage was composed of three coral morphospecies:

branching Acropora, plating/tabular Acropora (plating Acropora hereafter), and

plating Montipora (Fig. 2a). Macroalgae occupied ,11% of the substrate,

composed primarily of three taxa: the brown alga Lobophora, and the red algae

Asparagopsis and Sarcomenia. Despite all three plots being separated by ,100 m,

community composition among plots was significantly different prior to

bleaching (P50.001 for pairwise combinations in 2010). Plots 1 and 3 were both

coral-dominated (coral cover .80%), although plot 1 had higher abundance of

plating corals (Montipora in addition to plating Acropora), while branching

Acropora was more abundant in Plot 3 (Table 1). In contrast, plot 2 had a lower

abundance of plating corals, and was instead characterised by branching Acropora

and the red macroalga Sarcomenia.

Bleaching was observed in 10.5% of corals in 2011, but the extent of bleaching

varied substantially among plots and taxa. For corals, bleaching was most severe in

Montipora, with bleached colonies regularly observed adjacent to unbleached

Acropora in April 2011 (Fig. 2b). In total, 72% of plating Montipora were bleached

during the 2011 survey, compared to only 4.5% of plating Acropora and 0.5% of

branching Acropora. Bleaching was most prevalent in plot 1, with 21% of all coral

colonies showing signs of bleaching, compared to 3% and 7% for plots 2 and 3,

respectively. Some bleaching was also observed following the smaller thermal

anomalies in 2012 and 2013, although the incidence of bleaching was lower than

in 2011. In total, the proportion of corals showing signs of bleaching was 4.2% in

2012 and 1.6% of colonies in 2013, compared to 10.5% in 2011. No taxa or plots

bleached as severely as Montipora in 2011 in any other year, although bleaching

(generally partial bleaching) was observed in 19% of plating Acropora in plot 2

during 2012. In all other plot/year combinations, the incidence of bleaching was

,8% for any single taxon. Macroalgae did not exhibit visible signs of bleaching.

However, there were substantial changes in the relative abundance of each

macroalgal taxon over the four-year study period. Sarcomenia and Aspargopsis,

two of the most abundant macroalgae in 2010, were completely absent in 2011,

while Lobophora increased from 2 to 11% of total benthic cover. Asparagopsis

returned in 2012 and had increased significantly by 2013, but Sarcomenia

remained rare.

All three plots experienced significant changes in community composition over

the study period (Table 1). However, there was substantial variability among plots

Effects of Warming High-Latitude Coral Reef
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Figure 2. Autonomous Underwater Vehicle (AUV) images showing examples of shifts in community
composition from 2010–2013; (a) high abundance of branching Acropora, plating Acropora and
Montipora in 2010; (b) bleached Montipora adjacent to unbleached Acropora in 2011; (c) red
macroalga Asparagopsis colonising substrate exposed by coral decline in 2013.

doi:10.1371/journal.pone.0113079.g002
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in the magnitude and nature of these shifts. All three plots exhibited a general shift

away from plating corals (Montipora and plating Acropora) (Fig. 3). Plots 1 and 3

were similar in composition in 2010, but showed very different trajectories from

2011–2013. In plot 1, declines in plating corals were offset by an increase in

branching Acropora, while plot 3 exhibited a large increase in the abundance of

macroalgae. Plot 2 supported lower coral and higher macroalgal abundance

during the initial survey in 2010 and coral abundance continued to decline after

2011, apart from an increase in branching Acropora between 2012 and 2013.

Among macroalgae, Asparagopsis increased in abundance from zero in 2011 to

14% of total benthic cover in 2013, where it was commonly observed growing on

top of dead coral skeletons (Fig. 2c). In contrast, Sarcomenia remained rare in

2013, occupying just 1.5% of the substrate in 2013. Lobophora was less abundant

in 2013 than immediately following the heatwave in 2011, but increased in

abundance from 2% (in 2010) to 8.5% (in 2013) of benthic cover over the study

period. The timing of community shifts also varied among plots: plot 1 showed no

significant change in composition between 2010 and 2011, but had changed

significantly by 2012 (p50.0001) (Table 1). In contrast, community shifts in plots

2 and 3 occurred more rapidly, with significant changes observed between 2010

and 2011. Despite these changes in composition, there was no significant

difference in multivariate dispersion among years in any plot.

From 2010 to 2013 Montipora and plating Acropora had declined by 48% and

23%, respectively, across all plots compared to 2010, but branching Acropora

increased by 25%. However, shifts in the abundance of different taxa were highly

variable among plots (Fig. 4). Branching Acropora increased by 120% in plot 1,

but declined 36% in plot 2 and 7% in plot 3 over the study period. The majority

of increase in branching Acropora in plots 1 and 2 occurred between 2012 and

2013. Among macroalgae, Asparagopsis and Lobophora increased markedly in plot

3 over the study period, but not in plots 1 or 2.

Table 1. Most abundant taxa in each plot in each year, identified using Similarity Percentages (SIMPER) analysis.

Plot 1 Plot 2 Plot 3

2010 Plating Acropora Branching Acropora Plating Acropora

Montipora Sarcomenia Branching Acropora

2011 Plating Acropora Lobophora Plating Acropora

Montipora Branching Acropora Branching Acropora

N/S *** *

2012 Plating Acropora Lobophora Branching Acropora

Montipora Plating Acropora Plating Acropora

*** *** **

2013 Plating Acropora Lobophora Branching Acropora

Branching Acropora Asparagopsis Plating Acropora

** *** ***

* indicates significant change in community composition from 2010; *50.1, **50.001, ***50.0001.

doi:10.1371/journal.pone.0113079.t001
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Figure 3. Principal coordinates plot of shifts in composition of dominant benthic taxa from 2010–2013.
Shapes indicate the different plots (circles5plot 1, diamonds5plot 2 and crosses5plot 3, while colours
indicate different years (blue52010, red52011, orange52012 and green 2013). A general trend of declines in
plating corals and increased macroalgae were observed in all plots, although coral decline was most
pronounced in plot 3. Declines in plating corals were offset by increases in branching Acropora in plots 1 and
2 between 2012 and 2013.

doi:10.1371/journal.pone.0113079.g003
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Change in hard coral and macroalgal relative abundance

Hard corals declined in abundance from 73% to 59% of total benthic cover across

all plots from 2010 to 2013, while macroalgae increased from 11% to 24%. Coral

cover declined significantly by 8% from 2010 to 2011, then declined further by 7%

from 2011 to 2012 and by 5% from 2012 to 2013 (Table 2). Prior to bleaching,

plots 1 and 3 both supported high coral cover (.80%) and low macroalgal cover

(#5%); while, plot 2 had lower coral (55%) and higher macroalgal (24%) cover

(Fig. 5). However, declines in total coral cover were also highly variable among

plots (Table 2), and appeared unrelated to either the amount of pre-existing coral

cover or the extent of bleaching.

Macroalgal cover in 2013 also remained low (6%) in plot 1, but increased from

24% to 43% and 5% to 24% of total benthic cover in plots 2 and 3, respectively

(Fig. 5). In contrast to the declines observed in coral cover, macroalgal cover

increased significantly between 2010 and 2013, but only by 0.5% across the three

plots. Algal cover did not change significantly between 2010, 2011 and 2012.

Figure 4. Changes in percent cover of hard coral (a) and macroalgae (b) in each plot from 2010 to 2013.

doi:10.1371/journal.pone.0113079.g004
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Interestingly, the presence of algae in any plot was more likely in 2012 and 2013

than in 2010 and 2011 (Table 2).

Discussion

The high summer sea temperatures at the HAI had multifaceted impacts on the

benthic community at Geebank, leading to significant shifts in the composition of

benthic communities over the four-year study period. Two years after the 2011

heatwave, no plots showed trajectories indicative of recovery to 2010 composition,

with plating corals and subtropical macroalgae appearing particularly susceptible

to thermal stress. Despite being located in close proximity and in a similar

geomorphic setting, the three plots showed differing post-bleaching trajectories.

Plot 1 was able to maintain high coral cover due a shift from plating corals to

branching Acropora. Plots 1 and 3 supported similar communities in 2010, but by

2013 plot 3 appeared on a trajectory from coral-dominated to algal-dominated

states. In contrast, plot 2 exhibited substantially lower coral and higher macroalgal

abundance prior to bleaching, and although composition changed significantly

among all years algal cover did not increase significantly until 2013 in plot 2.

At the HAI, diver-based surveys indicated ,22% of corals in shallow depths (6–

9 m) bleached during the heatwave [26], while AUV surveys at 15 m depth

estimated the incidence of bleaching to 4–19% [65]. Our study is among the first

to examine post-bleaching trajectories of benthic assemblages on a high-latitude

reef in Australia, and further demonstrates that high-latitude reefs are not

immune from coral declines due to temperature stress. Many corals that showed

negative responses to thermal stress were likely subtropical species (e.g. the plating

Table 2. Summary statistics of the final GLMMs for coral percent cover (LMM) and algal percent cover (two-part model) from 2010–2013.

Coral cover Coefficient SE p-value

2010 79.61 9.64 0.0000

2011 28.35 3.80 0.0287

2012 215.32 3.81 0.0001

2013 220.35 3.81 0.0000

Random effect Coefficient Residual

plot 15.963 26.439

Algal cover Presence/absence model Negative binomial model

Coeff. (SE) p-value Coeff. (SE) p-value

2010 20.374 (0.756) 0.6210 2.931 (0.254) 0.0000

2011 0.055 (0.331) 0.8680 0.153 (0.168) 0.3610

2012 0.738 (0.328) 0.0245 0.171 (0.157) 0.2786

2013 1.355 (0.334) 0.0001 0.484 (0.154) 0.0017

Random effect Coefficient Residual Coefficient Residual

plot 1.547 1.344 0.141 0.948

SE5standard error, Coeff.5Coefficient.

doi:10.1371/journal.pone.0113079.t002
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Acropora species A. stoddarti and A. spicifera that dominate the assemblage at the

HAI [66]) and therefore had little capacity to withstand a large-magnitude

thermal anomaly, even though water temperatures of 27–29˚ were below the

bleaching thresholds for many tropical reefs. These results suggest that even if sea

temperatures remain within the known thermal tolerance limits for many tropical

coral species, high-latitude reefs are likely to undergo significant shifts in

community composition as subtropical species are displaced by tropical taxa.

Our results confirm previous studies showing bleaching response can be highly

variable among taxa and across relatively small spatial scales [23, 32, 67–70].

Interestingly, at Geebank coral bleaching incidence during the 2011 heatwave

showed little correlation with changes in coral cover. In 2011, the highest

incidence of bleaching was observed in plot 1, but from 2011 to 2013 coral decline

was greater in plots 2 and 3. These results highlight the importance of considering

local-scale variability when assessing not only bleaching mortality, but also post-

bleaching trajectories on coral reefs. However, identifying the cause of the

variability observed at Geebank is difficult. Of the three dominant coral taxa,

Figure 5. Changes in the abundance of the dominant coral and macroalgal taxa across the three plots
from 2010–2013.

doi:10.1371/journal.pone.0113079.g005
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Montipora was clearly the most vulnerable to bleaching, with 72% of all colonies

observed in 2011 bleached or recently dead, compared to only 4.5% of plating

Acropora and 0.5% of branching Acropora. Plot 1 contained a greater abundance

of Montipora in 2010 and therefore exhibited the highest incidence of bleaching.

However, declines in Montipora in plot 1 were offset by a 120% increase in

branching Acropora from 2011 to 2013. In contrast, macroalgae increased

substantially in plots 2 and 3 while branching Acropora declined or remained

stable (Fig. 4). The cause of such strong site-specific patterns is not clear, given

that all three plots are located in relatively close proximity, in a similar

geomorphic and gross oceanographic setting and at comparable depths.

Given our surveys were conducted annually, we cannot rule out additional

undetected disturbance events contributing to the observed community shifts.

Peak temperatures during the 2011 heatwave occurred in early March [24], and

the absence of bleached or recently dead Acropora colonies in our survey six weeks

later suggests that no additional mortality occurred as a direct result of the 2011

heatwave. However, there is evidence of some additional bleaching between 2011

and 2013. NOAA Coral Reef Watch indicates potential bleaching conditions did

occur at the HAI in ,1 month prior to our survey in 2012 (http://coralreefwatch.

noaa.gov/satellite/vs/australia.php), and we did observe some bleaching in both

2012 and 2013. However, the incidence of bleaching was substantially lower than

in 2011, and many colonies were partially bleached and/or showing evidence of

disease (Fig. S1), causing difficulty in attributing declines to a single cause.

Increased susceptibility to disease is a common result of sub-lethal thermal stress

in corals, and is an important indirect cause of coral mortality following bleaching

events [7, 70–73]. In addition to bleaching-induced mortality, some coral loss in

Western Australia during 2011 was attributed to storm damage due to an

unusually active cyclone season associated with the strong La Niña [26]. However,

no storm passed within 400 km of the HAI, well beyond the 50–70 km range

generally associated with cyclone damage [74, 75]. Furthermore, the AUV images

showed no sign of broken corals or overturned plates characteristic of storm

damage, despite their high mechanical vulnerability [76]. Consequently, we

suggest that coral decline observed at Geebank from 2011 to 2013 was caused

primarily by secondary effects of thermal stress (e.g. disease outbreaks or

competition with macroalgae) and/or cumulative heat stress from successive years

of high summer temperatures, rather than as a direct result of bleaching-induced

mortality during 2011. Regardless of the cause, our results demonstrate that small-

scale variability in habitat conditions can result in a mosaic of responses,

highlighting the importance of examining post-bleaching trajectories and

emphasising the need for a better understanding of local environmental drivers,

especially on high latitude reefs.

Among macroalgae, the tropical taxa Lobophora and Asparagopsis increased

over the study period but the temperate Sarcomenia became rare. Macroalgal

occurrence can be dynamic and the abundance of different taxa may show strong

seasonality [77, 78], complicating attempts to quantify variability among years. By

collecting data during the same month (April) in each year, the shifts in
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macroalgal abundance reported here are likely to reflect actual changes rather than

simply seasonal shifts. Differences in vulnerability among taxa were also consistent

with expectations based on their geographic ranges. The HAI represent the

northern, warm-edge range boundary for Sarcomenia delesserioides, a temperate

species that occurs along the south coast of Australia, while Asparagopsis

taxiformis and Lobophora variegata are widespread tropical species distributed

throughout the Indo-Pacific [79]. Although both Sarcomenia and Asparagopsis

declined substantially from 2010 to 2011, Asparagopsis increased significantly

from 2011–2013, whereas Sarcomenia remained rare. Species with wider

geographic ranges that encompass the tropics would be expected to cope better

with warmer temperatures than subtropical species at their range boundary,

supporting the hypothesis that the observed shifts in macroalgal abundance were

likely due to temperature and not seasonality. These results suggest tropical

macroalgae are well equipped to take advantage of temperature-induced

disturbances on high-latitude reefs. Consequently, increases in the frequency of

thermal anomalies may fundamentally change the composition of macroalgal

assemblages. In addition, our results also suggest that benthic communities in the

HAI, and potentially other high-latitude reefs, may respond differently to thermal

stress compared to Indo-Pacific reefs at lower latitudes. Although there is

extensive literature on disturbance-induced coral-algal shifts on coral reefs

[80, 81], such shifts are uncommon in the Indo-Pacific, where macroalgae

dominate only 1% of reefs [82, 83]. Macroalgal shifts are more common on

western Atlantic reefs, potentially due to factors including higher rates of

macroalgal growth and/or recruitment and lower herbivore biomass and diversity

[83]. Many of these conditions prevail on high-latitude reefs, suggesting they may

be less resistant to macroalgal shifts than their counterparts at lower latitudes.

Post-disturbance trajectories in benthic community composition are highly

variable among events and regions [7, 84], therefore predicting longer-term

trajectories of benthic communities in the HAI is difficult. Some reefs recover

rapidly after bleaching-induced mortality, whereas others may show little recovery

many years after a bleaching event [84–86]. Why some reefs recover while others

do not is not always clear, but the absence of additional or chronic stressors (e.g.

overgrowth of hard substrate by macroalgae, outbreaks of Acanthaster planci and

coral disease) is clearly important for coral recovery [7, 33, 86]. Recovery rates on

high-latitude reefs are poorly known, but the lower coral recruitment and greater

competition with macroalgae may slow recovery in the HAI compared to reefs at

lower latitudes [39]. The frequency and severity of thermal anomalies in HAI in

recent years is unprecedented in at least two centuries [52], increasing the

likelihood that benthic communities will experience significant changes in coming

decades. Tropical-temperate transition regions influenced by a strong poleward

boundary current such as the HAI provide a model system to detect the biotic

tropicalization of temperate latitudes [17, 20, 50]. Therefore, we recommend

ongoing monitoring of coral reefs in the HAI to identify long-term trajectories of

benthic community composition on high-latitude reefs, which will provide

important insights into the nature of community reassembly in response to
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climate change. More broadly, our results support the hypothesis that stochastic,

extreme events may be more important than climatic means for determining the

effects of climate change on ecological communities, and that stochastic events

may cause and/or accelerate sustained shifts in species composition and

abundance [44, 87, 88]. Understanding the ecological consequences of changes in

the frequency and/or severity of acute disturbances is therefore critical for

predicting the effects of climate change on coral reef ecosystems, and such

predictions should include both tropical and subtropical ecosystems.

Supporting Information

Figure S1. AUV image from 2013 showing partial mortality characteristic of

white-band disease on an Acropora colony at Geebank.

doi:10.1371/journal.pone.0113079.s001 (TIFF)

Table S1. Power analyses summary table showing the residual standard error

(%) for each class and different no. of images analysed (n) from 5 to 50.

doi:10.1371/journal.pone.0113079.s002 (DOCX)
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