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Abstract

Ecosystems provide life-sustaining services upon which human civilization

depends, but their degradation largely continues unabated. Spatially explicit

information on ecosystem services (ES) provision is required to better guide

decision making, particularly for mountain systems, which are characterized by

vertical gradients and isolation with high topographic complexity, making them

particularly sensitive to global change. But while spatially explicit ES quantification

and valuation allows the identification of areas of abundant or limited supply of and

demand for ES, the accuracy and usefulness of the information varies considerably

depending on the scale and methods used. Using four case studies from

mountainous regions in Europe and the U.S., we quantify information gains and

losses when mapping five ES - carbon sequestration, flood regulation, agricultural

production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m

vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of

scale on ES estimates and their spatial pattern and show how these effects are

related to different ES, terrain structure and model properties. ES estimates differ

substantially between the fine and coarse resolution analyses in all case studies

and across all services. This scale effect is not equally strong for all ES. We show

that spatially explicit information about non-clustered, isolated ES tends to be lost at

coarse resolution and against expectation, mainly in less rugged terrain, which calls

for finer resolution assessments in such contexts. The effect of terrain ruggedness

is also related to model properties such as dependency on land use-land cover

data. We close with recommendations for mapping ES to make the resulting maps

more comparable, and suggest a four-step approach to address the issue of scale
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when mapping ES that can deliver information to support ES-based decision

making with greater accuracy and reliability.

Introduction

The increasing recognition that unsustainable growth in population, per-capita

consumption, and related environmental impacts threatens both ecosystems and

the services they provide to people calls for an operationalization of the ecosystem

services (ES) concept [1–5]. Global, EU, and national policies such as the

Convention on Biological Diversity, the EU Biodiversity Strategy, and 2012 U.S.

Department of Agriculture-Forest Service Planning Rule (36 CFR 219) require ES

quantification, valuation, and mapping to assist decision makers in managing

areas supporting high biodiversity and ES provision [6]. Particularly when trade-

offs must be made in allocating land or other resources to competing human uses,

maps of ES under different scenarios can help identify synergies and trade-offs

among the different ES, better supporting decision making that balances long-

term protection of ecosystems and their services against short-term economic

development goals, e.g. [7–10]. Studies mapping the supply of and demand for

multiple ES from the global to the sub-national scale are increasingly common

[11–16], and show that both the diverse approaches to model and map ES and the

different scales of ES assessments can yield a wide range of metrics with results

that differ at best and are incomparable at worst. If ES mapping is to effectively

assist in spatial targeting of conservation and development activities, or in

evaluating the benefits and costs of alternative policies [17], the effect of scale on

the resulting ES maps should be addressed [18–20]. A full consideration of scale

includes: (1) the cartographic scale, describing the ratio of real to mapped

distance, (2) the spatio-temporal extent of the study area, (3) the grain, or finest

spatial resolution within a given dataset, i.e. cell size, (4) the level of organization

within the biotic hierarchy, (5) the resolution or the precision of measurement,

the same as grain size in spatial context [21], and (6) the level of jurisdiction or

aggregation of human institutions involved in the combined social-ecological

system [22]. For this paper, our analysis focuses on the effects of cell size on the

results of monetary and non-monetary ES estimates in mountain regions.

There is a long history of research on the effects of different aspects of scale, for

example in geography [23–25] and ecology [26–28]. Model resolution and spatio-

temporal extent are ideally chosen to correspond with their underlying

biophysical and socioeconomic processes [29]. Some ecological processes are

associated with a particular scale, while other processes may occur across multiple

scales. Wiens [26] provide ecological examples of scale effects on patterns. For

example, domestic cattle grazing in shortgrass prairie preferentially graze specific

plants, but landscape-scale grazing of vegetation types is proportional to their

coverage at that broader scale. Choosing the right scales thus means under-
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standing these processes at varying spatial and temporal scales. Furthermore,

when investigating socio-ecological systems, one cannot assume that ecological

and social processes operate at the same scales, and linkages must often be

developed to connect across scales [20, 30–33]. For instance, conventional

resource management has often increased the potential for larger-scale

disturbances and less predictable and less manageable environmental feedbacks.

These feedbacks can have unpredictable, negative effects on ecosystems and

societies that depend on the resources and services that ecosystems generate [34].

For example, instead of seeking to reduce local air pollution, taller smokestacks

have been built as a remedy to air pollution. If that took place on a limited scale,

the atmosphere’s capacity as a pollutant sink might not be exceeded. But when

numerous local stacks were built, they caused an accumulation of sulfur

compounds in the air that resulted in widespread regional acidification of aquatic

ecosystems. Thus a small, localized disturbance was turned into a larger regional

disturbance [34]. But while there is increasing recognition that different processes

operate at different scales and that cross-scale dynamics should be considered in

the studies of socio-ecological systems [29, 35–41], the issue of scale in ES

quantification, valuation, and mapping has only recently been addressed. The MA

(Millennium Ecosystem Assessment) [42] raised this issue by showing that some

losses of ES were related to the mismatch between the scales of ecosystem

processes and those at which governance institutions were effective, ranging from

community level to international relationships [1]. Hein et al. [32] showed that ES

estimates can change considerably depending on the stakeholders and the scales of

their associated institutions. However, a quantitative understanding of the diverse

scaling issues associated with ES mapping has not yet been achieved. It is unclear,

for instance, whether fine or coarse resolution input data should be expected to

yield greater or lesser modeled ES estimates. Konarska et al. [43] found 198%

greater monetary ES values using value transfer when paired with fine resolution

(30 m) relative to coarse resolution input data (1 km). They attributed this to the

loss of high-value land cover types that cover a small spatial extent (e.g., wetlands)

when land cover is classified at a coarse spatial resolution. This aligns with the

findings of Turner et al. [27], who describe the information loss of non-clustered

and isolated ecosystems with increasing level of aggregation. Kandziora et al. [44]

compared different land use-land cover (LULC) datasets for ES mapping and

found that provisioning services (crop and fodder production) were over-

estimated when the assessment was based on coarser CORINE LULC data

compared to ATKIS and combined ATKIS/InVeKoS/Landsat datasets. Divergent

results were largely caused by the inclusion of different land cover classes present

in the input datasets.

The effect of changes in spatial resolution is known in geography as the

‘‘Modifiable Areal Unit Problem’’ (MAUP), consisting of a ‘‘zoning’’ effect and an

‘‘aggregation’’ effect, which are caused by changing the extent and grain size,

respectively. Changing the resolution and extent but also moving the area under

consideration is called the ‘‘modifiable’’ unit and has been shown to affect results

[45]. Turner et al. [27] investigated such effects on landscape patterns and
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demonstrated that with increasing grain size, the landscape becomes more

homogeneous, and rare land cover types characterized by a high level of

dispersion and small patch size disappear in a non-linear manner. When

aggregating spatial data, information loss can thus cause coarse-resolution data to

become more homogeneous with reduced variance, thus modifying average values

per spatial unit [46]. Qi and Wu [47] also analyzed the effect of changes in scale

on landscape patterns but focused on spatial structure, demonstrating their

variations related to changes in resolution: autocorrelation describing the spatial

structure decreased with increasing level of aggregation until the spatial structure

can no longer be detected and the size of the spatial pattern is smaller than the

grain size [48]. Typically, autocorrelation decreases with increasing distance

because ‘‘near things are more related to each other than distant things,’’ as

described in Tobler’s first law of Geography [23].

In this study, we examined the effect of increasing the spatial resolution of

model input data on ES estimates across different ES, case studies and models. We

focused on mountainous areas because, unlike the lowlands, they feature

compressed topography and vertical gradients, creating isolation and leading to

sharp social-ecological transitions that are particularly susceptible to global

change [49]. We quantified differences in ES estimates when mapping them at

comparable coarse and fine resolution at three study sites in Europe (250 m vs.

25 m) and one study site in the U.S. (300 m vs. 30 m). To illustrate the effect of

changing spatial resolution on estimates of different ES, we selected agricultural

and timber production (provisioning services), flood regulation and carbon

sequestration (regulating services), and scenic beauty (cultural service) from the

main MA [50] categories. We describe the spatial pattern of ES estimates at

different resolutions using Moran’s I correlograms and link differences between

fine and coarse resolution ES maps to terrain and model properties. We close with

scale-related recommendations for mapping ES to make the resulting maps more

comparable, and suggest a four-step approach to address the issue of scale when

mapping ES that can deliver information to support ES-based decision making

with greater accuracy and reliability.

Methods

We selected four case studies in mountain regions in Europe (Davos, Trentino

and Stubai) and the United States (Puyallup River watershed). Typically for

mountain regions, settlements are located at lower elevation and with increasing

elevation, agricultural fields and pastures are replaced by forest then alpine tundra

and rock, snow, and ice. The comparison of resolution differences in ES mapping

at several sites can yield more general and more robust conclusions about scales

effects [33].
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Case studies

The Puyallup River watershed covers an area of 2,455 km2 between longitude

122 28’ to 121 22’ E and latitude 46 47’ to 47 20’ N, near the southern end of the

Puget Sound, a glacially carved inlet of the Pacific Ocean in the U.S. state of

Washington. The Puyallup River’s headwaters are located on the glaciated western

slope of Mt. Rainier (4,392 m a.s.l.), a volcano and the region’s highest mountain.

The major port city of Tacoma (population 202,010) lies at the confluence of the

Puyallup River and the Puget Sound. The upper watershed remain largely

forested, while agricultural land use occurs in valleys and developed land mostly at

lower elevations nearer to the Puget Sound.

Davos is a mountain town located in the Eastern parts of the Swiss Alps with

11,000 permanent inhabitants and up to 28,000 seasonal tourists; its municipality

covers an area of 254.5 km2 between longitude 9 43’ to 9 57’ E and latitude 46 40’

to 467 51’ N. It is surrounded by peaks reaching over 3,000 m a.s.l. The main

valley is oriented in a NE-SW direction at an elevation between 1,400 and 1,600 m

a.s.l. Agricultural fields spread along the valleys. On steeper terrain, land is used

for extensive farming and summer pastures. Forests extend up to about 2,100 m

a.s.l.

The Stubai Valley, including the municipalities of Neustift in Stubai Valley and

Fulpmes, is located in the Central Eastern Alps in Austria between longitude 11 6’

to 11 25’ E and latitude 46 55’ to 47 15’ N. It has a permanent population of 8,782

and attracts 1.6 million overnight stays per year. The main valley is oriented to the

NE-SW and altitude ranges from 920 to about 3,500 m a.s.l, covering an area of

266 km2. The landscape is dominated by forests and grasslands, which differ in

management intensity and include meadows of high land-use intensity in the

valley bottom, alpine meadows of low land-use intensity and pastures at higher

altitudes, along with abandoned pastures and meadows.

Trentino is an Alpine region located in Northeast Italy between longitude 10

27’ to 11 57’ E and latitude 45 41’ to 46 28’ N with 530,000 inhabitants. It covers

6,207 km2 and most of the area is mountainous, with elevation ranging from

about 65 to 3,760 m a.s.l. About 60% of the land is covered by forests, and

orchards and vineyards are commonly found on the main valley floors and

favorably oriented slopes.

To compare the topographical characteristics of the different sites, we

calculated the topographic ruggedness index (TRI) [51] using fine-resolution

digital elevation model datasets (30 m resolution for the U.S. and 25 m for the

European case studies) as a measure of elevation difference between adjacent cells.

We categorized TRI into seven classes as suggested by Riley [51] (Fig. 1). Greater

TRI indicates a more rugged surface with greater topographic heterogeneity.

While Stubai and Davos are mainly covered by mountainous terrain with

elevations no lower than 920 and 1,400 m.a.s.l. respectively, Trentino includes

larger valleys with gently increasing slopes, and Puyallup covers low-TRI areas

near Puget Sound as well as highly rugged terrain around Mt. Rainer.
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Models

A variety of modeling approaches can be used for ES assessment. Martı́nez-Harms

and Balvanera [14] distinguished five categories: (a) assigning constant ES values

to each land cover class (lookup tables), (b) expert-based ranking of an

environmental variable that influences ES supply, (c) developing ‘‘causal

relationships’’ between environmental variables and the supply of ES based on

secondary data, (d) extrapolating ES values from primary data such as field

measurements to the total study area, (e) regression models, which quantify the

relationship between field measurements of ES (response variable) and

measurements of environmental variables (explanatory variable).

In this study, we used causal-relationship models to quantify and map the five

selected ES. Detailed model properties are described below. In Puyallup, scenic

beauty and flood regulation were estimated using the ARIES mapping tool [52].

For the other ES and case studies, LULC and other environmental parameters

were linked to secondary data, except the scenic beauty model applied in Davos

and Stubai, which is based on a regression model. For each ES and site, we always

used the same model with both coarse and fine resolution input data. Models are

designed to account for local conditions at different sites, and input data used are

of different level of detail depending on data availability as described below.

Where possible, models were applied at more than one site (see S3 Table for a list

of input data used for each model). Monetary values for ES are expressed in 2012

U.S. dollars. For the U.S. case studies, values were converted to 2012 U.S. dollars

using the U.S. Bureau of Labor Statistics CPI inflation calculator. For Davos, Swiss

Francs were converted using the historical exchange rate [53]: 1 CHF51.1 USD.

For Stubai and Trentino the exchange rate was 1 EUR51.3 USD [53].

Agricultural Production

To estimate agricultural production values, we combined agricultural production

statistics with LULC information that identified the spatial extent of agricultural

land. The level of detail of production statistics differed between study sites. We

Fig. 1. TRI values and location of case study areas (world map: [103]).

doi:10.1371/journal.pone.0112601.g001
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did not consider management costs. For the Puyallup case study, agricultural

production includes all agricultural products sold – both crops and animals. For

Stubai and Davos, only forage production was considered because all parcels are

currently managed as intensive, extensive or summer pastures. In Trentino,

agricultural products that were valued included tree farming (fruits, olives, nuts),

grassland, crop and potato cultivation, and market gardening products.

Davos, Stubai: In Davos and Stubai, all parcels are managed as intensive or

extensive pastures or, at higher elevation, as summer pastures with cattle grazing

during the summer. Only summer pastures were considered in Davos. Forage is

either cut as hay or directly grazed by the cattle. We estimated maximum potential

forage quantity for each land cover class based on the growing season length,

which depends on elevation and productivity of the grassland type. We derived

actual forage quantity from potential forage quantity by additionally considering

slope, aspect, and summer precipitation. Local topographic parameters (slope,

aspect) influence heat balance due to diminished solar radiation. For instance,

forage quantity is reduced up to 20% on northern slopes over 10˚ [54]. The total

amount of summer precipitation (April–September) can also be a limiting factor,

as increased precipitation yields an increase in forage production. We used fodder

price at different elevations and for different production intensities for valuation

[55].

Trentino: Our analysis included 27 types of agricultural products. Selling prices

of agricultural products and their productivity were obtained from existing

inventories [56]. We valued productivity using selling prices and mapped the

result across agriculture cadastral parcels. Further details are described in Ferrari

and Geneletti [57].

Puyallup: We summed agricultural land area mapped by LULC datasets by U.S.

county. We then divided the total market value of agricultural products sold

within each county by actual estimates of the area of farmland in each county

from the 2007 U.S. Department of Agriculture – Census of Agriculture [58]. This

yielded per-hectare agricultural values for the Puyallup watershed; we applied

these values to farmland mapped by fine and coarse resolution LULC datasets.

Timber Production

To estimate timber production values per hectare and year, we used timber

harvest statistics that were combined with LULC information. We did not

consider management costs.

Stubai: Based on spatial data for forest and management types, we monetized

the average timber harvest for each forest and management type by an average

value of $128 per m3 of harvested timber [59].

Davos: We derived harvestable timber from total forest area at different

elevations. Valuation was based on the average annual value of harvested timber

[60], which we monetized using an average price of 86 CHF/m3 for different

timber products. The price considers the amount of timber products sold on the

market: 77% construction timber at 100 CHF/m3, 8% pulpwood at 55 CHF/m3

and 15% firewood at 30 CHF/m3 (see [61] for details).

On the Effects of Scale for Ecosystem Services Mapping
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Trentino: We derived harvestable timber from forest management plans in the

region, with forests divided into parcels of minimum area of 20 hectares. For each

parcel, the harvested volume of wood is monitored, as is the volume available for

cutting. We multiplied selling prices by the timber harvest and mapped the

results. Further details are described in [57].

Puyallup: Timber harvest data from the Washington Department of Natural

Resources [62] include both the spatial extent of parcels undergoing timber

management and timber market data. Timber was valued at $321 per thousand

board-feet [63]. At the coarse resolution, we applied this value towards the timber

harvest using forest cover change between the 2005–2006 and 2009 GlobCover

datasets. At the fine resolution, we applied this value towards the summed timber

harvest value in timber harvest polygons for the Puyallup watershed.

Carbon Sequestration

We calculated yearly changes in carbon stocks considering above- and

belowground biomass, based on available data such as carbon stocks in different

vegetation types. All carbon sequestration values were based on Tol’s estimate of

$43/ton social cost of carbon as cited in Nelson et al. [7].

Stubai: Carbon storage calculations were based on above- and belowground

biomass [64]. We derived yearly changes to the carbon stock values from the total

biomass of timber stocks [65, 66] and spatial information on forest type, forest

structure and management plans for different years.

Davos: Quantification of carbon sequestration was based on average yearly

growth rate of the forest in Davos [61]. We calculated the corresponding carbon

sequestration capacity following Thürig and Schmid [67]. We estimated growth of

belowground biomass and its associated carbon stock using appropriate ‘‘root to

shoot’’ ratios [68].

Trentino: We mapped carbon stock and yearly carbon sequestration based on

data for eight forest types [69] and for agriculture (further details in [70]).

Puyallup: We paired global and local LULC data with tables that quantify

carbon sequestration by landcover type. These include estimates for the U.S.

Pacific Northwest for forests [71–73], wetland carbon sequestration estimates for

mineral soil wetlands in the coterminous United States [71], and cropland and

grassland/shrubland estimates for the Marine West Coast Forest region [72]. For

forested landcover types, we assumed forests to be of moderate age (65 years).

Regionally appropriate carbon estimates were not available for urban land cover,

so we underestimate carbon sequestration for this land cover type [74].

Scenic Beauty

Ecosystems and their spatial patterns contribute to landscapes of particular

beauty, inspiring spiritual, aesthetic values and historic memory. Views of these

aesthetically appealing natural landscapes are often valued by residents and

tourists [75]. To map the scenic beauty of a landscape, we calculated the visibility

of particularly beautiful spots such as mountains, open water, forests, and
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heterogeneous landscapes. We standardized results between 0 and 100 to yield

quantitative, comparable results, which we did not monetize.

Davos, Stubai: The model was based on randomly selected viewpoints

distributed along roads and hiking paths. We considered fore- and background

visibility (i.e., the presence of nearby and distant visual features) by adding mean

vegetation and building heights to the ground elevation then calculating the

viewsheds. Based on a set of 60 landscape metrics describing area, patch, edge and

shape properties, which were summarized using principal component analysis

(PCA), we characterized the spatial structure of visible landscapes. Stakeholder

preferences were evaluated using a perception study that presented a

questionnaire with photographs and asked tourists and residents of the Central

Alps to score the photographs according to their scenic beauty. After

georeferencing the photographs and calculating the landscape metrics of the

related viewpoint, a stepwise linear regression analysis was performed, enabling

the quantification of scenic beauty of any viewpoint [76].

Trentino: We used a GIS viewshed analysis to calculate the visibility of

landscape points of particular beauty for a maximum distance of 10 km,

considering the effects of the terrain’s surface. Landscape points of particular

beauty included natural and cultivated ecosystems, characteristic landscape

elements, and archaeological sites; visibility depends on terrain features that may

obstruct views. We considered a total of 333 viewpoints, consistent with existing

inventories [77].

Puyallup: We quantified scenic beauty using Bayesian models that quantified

the relative quality of high-quality views (e.g., mountains and open water) and

‘‘visual blight‘‘ features that degrade view quality (e.g., developed land), based on

a review of the hedonic valuation literature for viewsheds [78]. We mapped

beneficiaries of the viewshed analysis as homeowner locations where views

enhance property values. We linked beneficiary locations with a viewshed model

to map areas that provide scenic views to beneficiaries and how obstructions or

visual blight degrade high-quality views [74].

Flood Regulation

Methods used to estimate flood regulation capacity differed slightly for each case

study, but in all cases we estimated mitigated runoff as the difference between

total input precipitation and runoff. Runoff is influenced by factors such as soil

properties, vegetation and slope. We did not monetize results.

Stubai: We predicted surface runoff using an ordinary least-squares (OLS)

regression equation developed based on field experiments at the study site using a

rain simulator. All independent variables were tested for multicollinearity. The

regression equation used surface runoff as the dependent variable and above-

ground phytomass (included as dry weight (gm22) of a 0.3 m x 0.3 m square,

harvested at peak biomass), skeleton fraction-soil stone content in 0–0.1 m soil

depth (analyzed by sieving disturbed soil samples and weighing the gravel

fraction.2 mm), precipitation and elevation as independent variables [79]. We
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then estimated mitigated runoff of a storm event as the difference between

precipitation and runoff.

Davos: We used the KINematic Runoff and EROSion (KINEROS) surface

runoff model available in the Automated Geospatial Watershed Assessment

(AGWA) GIS tool v2.0. KINEROS calculates runoff and peak flow based on

terrain, land use and soil data, as well as storm event precipitation [80]. We

calibrated peak runoff with rain gauge measurements. We calculated mitigated

runoff by subtracting the modeled runoff from total input precipitation.

Trentino: We used precipitation data and runoff Curve Number (CN) results to

quantify flood regulation. The CN is an empirical parameter developed by the

U.S. Soil Conservation Service [81], which is used in hydrology to determine the

approximate amount of direct runoff from a rainfall event in a particular area. CN

is a function of permeability and land use; its value ranges from 30 to 100. Smaller

numbers indicate low runoff potential while larger numbers denote increasing

runoff potential.

Puyallup: In 45 small sub-watersheds within the Puyallup River watershed, we

mapped 1) precipitation, 2) outputs of a Bayesian model of vegetation,

topographic, and soil influences on ecosystems’ ability to intercept, absorb, or

detain flood water, and 3) developed land within the 100-year floodplain as the

beneficiary of flood regulation. We quantified flood regulation in each sub-

watershed as the percentage of mitigated flood water (intercepted, absorbed, or

detained flood water divided by total precipitation) multiplied by the number of

beneficiaries at risk of flooding [74].

Statistics

Statistical analysis was performed using the statistical software ‘‘R’’, version 3.0.1

[82]. To compare ES estimates mapped at different spatial resolution and across

sites, we calculated the arithmetic mean and standard deviation of the estimates

for each ES at each site and resolution. We derived percent changes in ES by

calculating the difference between coarse and fine resolution estimates divided by

coarse resolution values. We tested for significant differences between high- and

low-resolution ES estimates using the Wilcoxon rank sum test [83]. To describe

the relationship between land use classes and ES estimates, we calculated box-and-

whisker plots [84].

To describe autocorrelation, we calculated Moran’s I correlograms [85] in R

with the library sp.correlogram of the spdep package including a test for

significance. Correlograms show autocorrelation values for certain distance classes

or so-called lags. We chose a lag distance of 500 m for generating distance classes.

Weights within classes were equal and row-standardized. Using the same lag

distance allows the comparison of Moran’s I values of different sites for a

particular distance class. Moran’s I can only be calculated with a minimum

number of data points at a specific distance, thus it was not always possible to

build distance classes of 500 m. Fine-resolution data were subsampled into

random point samples with 1/50 of initial data points to enable the calculation of
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Moran’s I. For timber production and flood regulation service in Trentino, the

size of subsamples was set to 1/150 of initial data points because Trentino covers

the largest extent of all study sites, leading to a large initial sample size. Scenic

beauty values were only subsampled for Trentino due to already small sample sizes

in the other case studies.

Results

Effect of Resolution on LULC

Differences between fine- and coarse-resolution LULC classes can in part be

related to the TRI values. Averaged over each case study site, TRI was lowest in

Puyallup (117), intermediate in Trentino (288), and highest in Davos (364) and

Stubai (414). Standard deviation was lowest in Davos (107) and similar in all

other case studies (136 in Trentino and Puyallup, 138 in Stubai). The mean TRI

values represent the different topographic characteristics of the study sites: while

Stubai and Davos are mainly covered by moderately and highly rugged terrain

with the highest mean TRI, Trentino includes lower-TRI valley bottoms with

intermediate TRI values, and Puyallup includes substantial low-TRI areas.

Differences between fine- and coarse-resolution LULC classes were greatest in

the Trentino and Puyallup case studies and were greatest for forests, whose extent

was largely overestimated by the coarse-resolution datasets, followed by bare land,

which was typically underestimated at the coarse resolution (Fig. 2, S1 Table).

Other LULC classes with substantial differences between fine- and coarse-

resolution datasets were intensive agricultural and pastures/uncultivated in the

Trentino case site and settlement in Puyallup and Davos. LULC classification data

in the greater-TRI Davos and Stubai case studies differed less between resolutions.

In Puyallup, NLCD LULC datasets were used for the fine resolution analysis and

GlobCover for the coarse resolution, whereas in Davos, Stubai and Trentino,

CORINE data were used at the coarse resolution and local datasets at the fine

resolution. LULC maps derived from satellite images (CORINE, NLCD and

GlobCover) contain classification errors which likely differ for classes and regions

[21]. In the aggregation process for coarse-resolution datasets, information about

dispersed and isolated structures is easily lost while clustered structures are more

likely to persist [26].

Ecosystem Services Maps

ES estimates vary considerably at different resolutions (Fig. 3); mean values and

percentage changes between resolutions are provided in the S2 Table. Maps of all

ES as well as LULC maps are provided in S1 File; raster data are provided in S1

Data. Changes in ES estimates at different resolution for agricultural production,

timber production, carbon sequestration and flood regulation were greatest in

Puyallup and for scenic beauty differences were greatest in Trentino; both areas

are characterized by lower TRI than the Stubai or Davos case study sites. Despite

On the Effects of Scale for Ecosystem Services Mapping

PLOS ONE | DOI:10.1371/journal.pone.0112601 December 30, 2014 11 / 26



this tendency of lower-TRI case study sites to show greater variations in ES

estimates at different resolutions, the relationship between terrain ruggedness and

changes in ES estimates at different resolution was not linear, i.e., the differences

in ES estimates did not constantly decrease with increasing TRI. Notably,

agricultural production and flood regulation in Trentino showed little variation

between resolutions whereas in Stubai, agricultural and timber production values

change considerably at different resolutions.

The highest difference - 329% - between timber production values calculated at

the different resolutions in Puyallup is an artifact of a coarse-resolution LULC

Fig. 2. Absolute difference in coverage (%) between fine and coarse resolution LULC classification. +
and – indicate over- and underestimation at the coarse resolution.

doi:10.1371/journal.pone.0112601.g002

Fig. 3. Absolute difference between coarse and fine resolution ES values (%) for all ES and case study
areas.

doi:10.1371/journal.pone.0112601.g003
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dataset (GlobCover), which dramatically overestimated the extent of forest when

compared to high-resolution NLCD data. Similarly, the CORINE LULC

classification did not distinguish between intensive and extensive pastures, which

led to greater agricultural production estimates at the coarse resolution in Stubai.

Because agricultural and timber production services were both estimated with

causal-relationship models, the changes in ES values at different resolutions were

mainly related to differences in the LULC datasets and their classifications.

Differences between fine- and coarse-resolution carbon sequestration estimates

were smallest for all sites and models compared to the other ES types, except in

Davos where differences in timber production, flood regulation and scenic beauty

estimates were lower. Carbon sequestration in Davos was estimated using data for

forest growth rates, another measure that is sensitive to differences in forest land

cover classification.

Changes in scenic beauty estimates between resolutions were greatest in

Trentino, followed by Puyallup and were lowest in Davos and Stubai. In Trentino

and Puyallup, differences between fine and coarse resolution ES estimates were

strongly related to how the viewpoints were selected. The number of use points

representing the demand was substantially lower in the coarse-resolution dataset

in Puyallup, which led to large differences in ES estimates at the different

resolutions. For mapping flood regulation, demand for the service was also

quantified in Puyallup, resulting in an overestimate of developed land located in

floodplains when using coarse-resolution data, leading to a 51% overestimate of

this service. In this case, the differences in ES estimates between resolutions can be

related to the ARIES mapping approach (which considers spatially separated

supply of and demand for ES) as well as the LULC classifications that over- or

underestimated the number of use points for scenic beauty and flood regulation.

In contrast, while different flood regulation mapping approaches were applied in

the European case studies, the differences between coarse and fine resolution flood

regulation ES estimates were minor as these approaches did not account for

demand for ES.

Effect of Resolution on ES Spatial Patterns

Fig. 4 shows Moran’s I correlograms for fine- and coarse-resolution ES estimates

for the different case studies. Moran’s I values range from 21 to 1, where 1

describes a highly clustered (correlated) pattern. Autocorrelation quantifies the

lack of independence (e.g., correlation) between features located near to each

other. With increasing distance, this relationship weakens and autocorrelation

becomes insignificant as Moran’s I approaches zero. Increasingly negative values

of I indicate greater dispersion, with a value of 21 indicating perfect, regular

dispersion. Lacking an adequate number of data points for scenic beauty in Davos

and Stubai and agricultural production in Puyallup, Moran’s I was only calculated

for some lags for these case studies and ES. All ES in all study sites showed positive

spatial autocorrelation, which decreased nonlinearly with distance. Spatial

patterns of all ES values changed at different resolutions: as aggregation increases,
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fine-resolution variance was lost and patterns became more homogeneous, with

more abrupt transitions occurring between patches (see S1 File). In highly

heterogeneous mountain environments, abrupt changes in spatial pattern such as

valleys can lower autocorrelation values because spatial patterns persist over

shorter distances than in more homogeneous landscapes. These mountain-region

gradients persist through the aggregation process, leading to similar spatial

patterns at fine and coarse resolution as opposed to more homogeneous terrain,

where aggregation produces greater changes in the spatial patterns. In fact,

autocorrelation tended to be greatest across all distance classes in Puyallup (the

site with the lowest mean TRI) for agricultural production, timber production,

carbon sequestration and flood regulation. For scenic beauty, the greatest

autocorrelation was found in Trentino followed by Puyallup.

Lag distances generated by Moran’s I correlograms in Fig. 4 give more

information about changes in spatial patterns between fine- and coarse–resolution

estimates. Timber production, for example, is highly dependent on LULC, but the

highly clustered structure at low distances decreased rapidly and leveled off at a lag

distance of 4,500 m at all sites (even if the areas of forests differed greatly between

fine and coarse resolution), indicating that the spatial pattern is not highly related

to the total forested areas in the case study sites.

Fig. 4. Moran’s I for all case study areas and ES at fine and coarse resolution plotted against lag distance classes of 500 m. Indicated on the x-Axis
is the upper distance of each lag.

doi:10.1371/journal.pone.0112601.g004
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For carbon sequestration at the fine resolution in Stubai, different forest and

management types were considered in the analysis, leading to a more dispersed

pattern when compared to the low resolution analysis. Similarly, clustering of

carbon sequestration values is greater in Puyallup at the high resolution whereas

in Davos and Trentino, the spatial structure varied little between scales.

For agricultural production, autocorrelation decreased gradually with increas-

ing lag distance and the spatial pattern between fine- and coarse-resolution

analyses varied across all sites, indicating different patterns of agricultural

production values. Agriculture in all mountain-region case studies is generally

located in the lowlands and valley bottoms. In comparison to the European sites,

where farmland is divided into small parcels, agricultural fields in the Puyallup

watershed are located in broader, flatter valley bottoms; parcels there are

aggregated to larger patches with greater autocorrelation values.

Scenic beauty and flood regulation showed similar spatial structures between

fine- and coarse-resolution assessments across all sites, with greatest scale

differences in Stubai for flood regulation. Flood regulation was quantified by sub-

watershed in all studies except Trentino, resulting in coarse structures that were

similar for both scales but generating different ES estimates. In Trentino, the

structure was very dispersed at both resolutions; it was highly clustered with a

linear decrease in Puyallup. For scenic beauty in Davos and Stubai, autocorrela-

tion rapidly decreased until a lag distance of about 2,500 m. Scenic beauty values

at these sites were derived based on viewpoints along roads. The Moran’s I

correlograms thus reflect the linear, clustered structure of the roads. The estimates

derived by viewshed analysis in Puyallup and Trentino showed greater clustering

but very similar patterns across resolutions as presented in S1 File.

Model Properties and Influence of LULC Classification

Due to different levels of data availability and the need to account for site-specific

conditions, selected mapping approaches included different parameters (e.g.,

elevation, LULC) at different levels of detail (e.g., number of LULC classes). To

isolate the effects of scale from those caused by differing level of detail of the

models, we compared agricultural production, timber production and carbon

sequestration estimates derived from simple relationships between LULC and

secondary data, when using the same LULC classes across all case study sites.

Flood regulation and scenic beauty could not reliably be determined by such a

simple relationship because they are more complex processes (i.e., flood

regulation) or because they reflect unique regional preferences (i.e., scenic

beauty). We selected LULC classes based on the least common denominator,

which reduced the number of LULC classes to seven: forest, grassland, agriculture,

bare land, water, wetlands and settlement. Comparing these estimates to those

generated using the site-specific approaches described above, scale differences in

carbon sequestration were 34% and 58% greater in Trentino and Puyallup,

respectively, but were similar in Davos and Stubai (1% reduced in Stubai).

Differences between high and low resolution timber production were lower
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(Stubai 263%, Puyallup 295%) or similar (Davos +2%, Trentino +6%) when

using lookup tables and common LULC classes. Agricultural production showed

greater scale differences when using the simpler approach in Stubai (+11%) and

Trentino (+34%) and lesser scale differences in Davos (-30%) and Puyallup (-

642%). Because of the few LULC classes used in this simpler approach, the

difference between fine- and coarse-resolution mapping was directly related to the

difference in the LULC classification. The more LULC classes were considered in

the site-specific approach, the greater the difference found when using the simple

approach. Lesser differences indicated that the more complex site-specific

approach relied on LULC with a similar classification.

All models use LULC data as input data, but they differ in the level of detail

(e.g., different forest or pasture types); some models use additional biophysical

and/or socio-economic data to quantify and map ES (see S3 Table). The

specificity or generality in the various LULC classifications shown in Fig. 2

influenced ES estimates, particularly when the model strongly depended on a

particular level of specificity in its LULC classification. Some services were

modeled using several different classes, while others mainly relied on one or a few

land use classes. Figs. 5 and 6 show the relationship between LULC classes and ES

values where different LULC classes were plotted on the x-axis and ES estimates

on the y-axis. The ES models rely on different numbers of LULC classes to

different extents. A smaller spread of the boxplot for a certain land use class

indicates a direct link between that LULC class and the service, e.g., a production

value is assigned to a certain crop. A greater spread of the boxplot within an

individual land use class indicates that other parameters may be influential (e.g.,

elevation) causing a wider spread of ES estimates. Timber production in Davos

and Trentino, for example, was modeled as fully depending on the ‘‘forest’’ class

at the fine resolution. Yet ES values differed because productivity was estimated at

different elevation levels (i.e., other input data helped determine final ES values

aside from LULC). Differences in input values of these additional parameters

between fine and coarse resolution add to the LULC differences in the final ES

estimate. In addition to the spread of the boxplot of an individual LULC class, the

dependency of ES estimates on LULC is related to the number of classes

considered. Where many classes were present, the effect of a single class was

reduced and the connection between land use and ES was less pronounced, as seen

for example in fine resolution timber production and coarse resolution scenic

beauty in Trentino.

Discussion

EU Member States are required to map ES by 2014 as stated under Target 2,

Action 5 of the Biodiversity Strategy [86]. Similarly, various U.S. government

agencies are beginning to work on quantifying, valuing, and mapping ES [87]

resulting for example in the recent release of the first ‘‘EnviroAtlas,’’ which

delivers 250 ES-related data layers to users ([88]) (and in a proliferation of
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modeling and mapping approaches [89]. Due to the different approaches

(including different choice of scales, model complexity, data inputs, and output

metrics) used in the different countries, the comparability of results across

administrative boundaries will be difficult [17]. If better knowledge about the

effects of up- and downscaling of mapped ES estimates were available, decision

makers could better identify priority areas and policy measures at aggregated

levels, such as the European level [18].

Mapped ES for four different mountainous case studies at two different

resolutions using similar mapping approaches showed significant differences in ES

estimates across scales. For some services such as carbon sequestration, scale

differences were minor across all case study sites. In contrast, the other services

showed differences between fine and coarse resolution estimates of up to 329%.

Differences in ES estimates at different resolutions can be related to terrain

properties. The spatial pattern analysis showed that the sharper the gradients, the

more consistent spatial pattern is observed between resolutions: in lower-TRI

regions with smoother biophysical gradients, more information on the spatial

pattern of ES estimates was lost with changes in resolution. Our results showed

Fig. 5. Box- and Whisker plots of land use classes (x-Axis) and ES values (y-Axis) for fine resolution
timber production.

doi:10.1371/journal.pone.0112601.g005
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that changes in ES values were greatest in Puyallup for all services except scenic

beauty, where differences were greatest in Trentino (both case study sites

characterized by a lower TRI values). Furthermore, changes in the spatial pattern

between resolutions tended to be greatest for the lower-TRI case study sites -

Puyallup and Trentino - except for flood regulation, where changes were greatest

in Stubai. This seems to confirm that compressed topography and vertical

gradients lead to more isolated social-ecological systems, where mountain

biophysical systems share a long-term co-evolution with humans - an

interdependency that results in tightly coupled but highly diverse mountain

social-ecological systems [90].

However, the effect of increasing differences in ES estimates in lower-TRI areas

was not consistent across the four case studies, although there was a tendency for

resolution differences to be greater in lower TRI areas. This inconsistency was

caused by the differences in the models applied; in all cases the selected models

were adapted to local data and site-specific conditions. The models generally used

similar approaches to generate estimates with analogous metrics, but in a multi-

continent comparative study, it is likely unrealistic to expect model structure and

Fig. 6. Box- and Whisker plots of land use classes (x-Axis) and ES values (y-Axis) for coarse
resolution scenic beauty across all sites.

doi:10.1371/journal.pone.0112601.g006
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data inputs to be identical. If a model strongly depended on LULC data, land use

classification error, e.g., caused by MAUP, was directly incorporated into the ES

estimates. This calls for a ‘‘science of scale’’ in mapping ES, in which scale is

included as an explicitly stated variable in the analysis (similar to the call by

Meentemeyer and Box [91] for the development of a ‘‘science of scale’’ in

ecology), particularly when developing policy strategies in data poor environ-

ments or comparing values across sites or countries.

Our analysis used simple statistical measures and spatial autocorrelation

metrics to investigate the effect of scales on ES mapping estimates. Yet, there have

been a wide range of other landscape metrics used to study scale effects in ecology,

remote sensing, and geography in the past three decades, seeking to better

understand those landscape features that can be extrapolated or interpolated

across spatial scales [91–95], some of them reflecting shifts in the average

landscape properties about patch size and shape. Both the effects of the shape of

the mapping unit and the size of the study area are known to have a strong effect

on the outcomes of the assessments [96]. The shape is known to change within-

sample unit variance, changing the effects of environmental gradients. The size of

the study area may incorporate multiple subregions, each having different

underlying social-ecological processes and environmental conditions, which can

make values non-stationary over the entire area. But other studies have

demonstrated that simple variance and correlation measures, such as the analyses

conducted in this paper, were able to detect scale breaks in real and artificial

landscapes when calculated at different grain sizes [97, 98]. It is more important,

however, to describe the determinants of patterns, thus the mechanisms that

generate and maintain them. Since in most cases it is not feasible to run all ES

assessments at a fine resolution, ES mapping must thus begin with (1) a thorough

understanding of the spatial and temporal relationships between ES patterns and

social-ecological processes. Ostrom [99] recommended that the entry point of the

analysis of each socio-ecological system be based on the question of major interest

to the researcher, user, or policy maker. The MA also highlighted the importance

of spending initial time and resources to investigate the mechanisms and processes

of the socio-ecological system [42]. Only after knowing that maps and analyses

can provide adequate information to answer the original question should the user

begin applying spatial analyses and landscape metrics to the input data to better

understand up- and downscaling and aggregation of ES maps. The spatial

correlation analysis conducted in this study is just a first step in this direction.

Getis [100] lists analyses that can assess the spatial nature of the data including

e.g., tests on assumptions of spatial stationarity and spatial heterogeneity and

measures to understand temporal effects. Similarly Wu [101] lists relevant

landscape metrics, which could be tested both on the input data of differing

resolution and on ES mapping estimates. Based on such analyses, one can then (2)

choose the modeling approach that best fits the question and spatial

characteristics of the system property of interest, (3) choose appropriate metrics

by considering the heterogeneity that is relevant to the ecological process of

interest, and (4) formulate a theoretical relationship between a mapping approach
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and the socio-ecological processes, improving the likelihood that empirical

evidence can be related to the results of the analysis. Multi-scale and cross-scale

approaches have been promoted in recent years and are appropriate when the

problem or objectives intrinsically require a multi-scale approach, the responses

require syntheses of data across scales, analysis of causality and trade-offs are

important to users, or a sense of ownership of the assessment is required from

stakeholders at various scales [22, 102]. The emerging concept of macrosystem

ecology has gone one step further in emphasizing the investigation of the

interactions between different temporal and geographic scales (telecoupling)

integrating knowledge of different disciplines [33]. Particularly important in all

these approaches is their application to multiple landscapes for establishing

reliable relationships between landscape-scale pattern and process [22, 101] But

for all these approaches, a key is to understand the effect of scales on the

unpacking or aggregation of variables up and down a conceptual hierarchy.

Generating the ‘‘right scale’’ map requires us thus to first understand how the

variables under consideration affect ES interactions, supply, and demand related

to the specific scientific or policy question, and to adjust the scale of the study to

be as close as possible to that relevant to decision makers.

Conclusions

By mapping ES for four mountain region case studies in Europe and the U.S., we

demonstrate the importance of addressing scale issues when comparing ES maps

conducted at different resolutions. The amount of change in the ES estimates with

increasing level of aggregation is different for each site, ES, dataset used and model

applied. However, the resolution effects are not equivalent for all ES. Differences

in ES estimates between resolutions were more pronounced in lower-TRI areas

due to the persistence of sharp gradients in greater TRI areas even when using

coarse-resolution data. In less rugged terrain or other environments where

information about non-clustered, isolated ES is more likely to be lost at coarse

resolution, we recommend finer resolution analysis for monitoring of isolated,

non-clustered patterns of ES supply and demand. Furthermore, if ES value maps

are compared, it is important that they be grounded in a thorough understanding

of the relationships between ES patterns and socio-ecological processes. Further

research in this area should seek to better understand theoretical relationships

between mapping approaches and underlying socio-ecological processes so that

the ES-based information will be accurate and reliable enough to support

improved decision making.
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