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Abstract

Uncovering community structures is important for understanding networks. Currently, several nonnegative matrix
factorization algorithms have been proposed for discovering community structure in complex networks. However, these
algorithms exhibit some drawbacks, such as unstable results and inefficient running times. In view of the problems, a novel
approach that utilizes an initialized Bayesian nonnegative matrix factorization model for determining community
membership is proposed. First, based on singular value decomposition, we obtain simple initialized matrix factorizations
from approximate decompositions of the complex network’s adjacency matrix. Then, within a few iterations, the final matrix
factorizations are achieved by the Bayesian nonnegative matrix factorization method with the initialized matrix
factorizations. Thus, the network’s community structure can be determined by judging the classification of nodes with a
final matrix factor. Experimental results show that the proposed method is highly accurate and offers competitive
performance to that of the state-of-the-art methods even though it is not designed for the purpose of modularity
maximization.
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Introduction

Many complex systems in the real world have the form of

networks whose edges are linked by nodes or vertices. Examples

include social systems such as personal relationships, collaborative

networks of scientists, and networks that model the spread of

epidemics; ecosystems such as neuron networks, genetic regulatory

networks, and protein-protein interactions; and technology

systems such as telephone networks, the Internet and the World

Wide Web [1]. In these networks, there are many sub-graphs,

called communities or modules, which have a high density of

internal links. In contrast, the links between these sub-graphs have

a fairly lower density [2]. In community networks, sub-graphs

have their own functions and social roles. Furthermore, a

community can be thought of as a general description of the

whole network to gain more facile visualization and a better

understanding of the complex systems. In some cases, a

community can reveal the real world network’s properties without

releasing the group membership or compromising the members’

privacy. Therefore, community detection has become a funda-

mental and important research topic in complex networks.

In recent decades, a number of methods have been developed

for community detection in which an objective function is

maximized or minimized. One of these community detection

methods is nonnegative matrix factorization (NMF), which was

proposed by Lee and Seung [3]. Using the matrix factorization

method, one can find the community membership of each vertex

in a network. Several improvements of the NMF have been

proposed, such as the Bayesian nonnegative matrix factorization

(BNMF) approach for identifying overlapping communities, which

was presented by Psorakis et al. [4]; the symmetric nonnegative

matrix factorization (SNMF) technique for detecting overlapping

communities proposed by Wang et al. [5]; and the bounded NMF

(BNMTF) technique for community detection proposed by Zhang

and Yeung [6]. NMF is a nonconvex optimization problem with

the inequality constraints shown in Eq. (1), and iterative methods

are required to obtain the solution.

min
W ,H

A{WHk k

W ,H§0
ð1Þ

However, the current NMF methods converge slowly and at

local minima [7]. Most of the algorithms in the literature

randomly initialize W and H . The results of these algorithms

are not unique when using different initializations, such as those

obtained using BNMF to detect a karate network, which is shown

in Figure 1. Therefore, several instances are needed to obtain a

better solution; however, this process is expensive.

Several methods have been adapted for initializing NMF. For

example, Meyer et al. [8] use the ‘‘random Acol’’ method, which
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takes the average of p random rows as the initialization for NMF.

Wild et al. [9] use ‘‘Clustering Centroid’’, which uses the centroid

vector for initialization. Another important initialization method is

NNDSVD (nonnegative double singular value decomposition),

which was proposed by C. Boutsidis and E. Gallopoulos [7].

NNDSVD uses the rank-2 matrix with the nearest positive

approximation as its initialization and obtains better results than

other initialization methods.

In this paper, we present a novel and running time efficient

method for community detection based on BNMF with a simple

NNDSVD approximation as the initialization, which we call

IBNMF, to determine the community membership. The merits of

this approach are as follows: i) computationally efficient and stable,

ii) high accuracy in determining the membership of networks, and

iii) overcoming the drawbacks of the maximum modularity

criterion.

Methods

In this section, we introduce the community discovery

framework of our method. Then, we test the performance of our

approach on a range of synthetic networks and real-world

benchmark examples and provide experimental evidence of the

effectiveness of the proposed algorithm.

Community Discovery Framework of IBNMF
Our community discovery framework for complex networks is

shown in Figure 2. First, we construct the networks’ adjacency

matrix from the original data. Then, using the simple NNDSVD

method, the initialization of W and H can be obtained.

Thereafter, we combine the initialized W and H and BNMF to

acquire the final matrix factor W after several iterations. Lastly,

the matrix factor is used to determine the community member-

ship.

Adjacency matrix. For a given non-weighted undirected

network G(V ,E) whose vertex set is V and whose edge set is E, we

use an adjacency matrix N to describe the network. When nodes i
and j are connected by an edge, the element nij is set to 1;

otherwise, this element is set to 0. The diagonal elements are

Figure 1. A comparison of BNMF with two random initializations.
doi:10.1371/journal.pone.0107884.g001

Figure 2. The community discovery framework of IBNMF.
doi:10.1371/journal.pone.0107884.g002

Figure 3. A directed graphical model illustrates BNMF. This
graphical model describes the generation of N from W and H with the
components’ scale hyperparameters bk; a and b are fixed parameters.
doi:10.1371/journal.pone.0107884.g003
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usually 0, but by considering the difference between the zero

elements on the diagonal and off-diagonal, we set the degree of

node i as the value for each diagonal element nii.

Node classification. For an n|k factor matrix W , n is the

number of total nodes in the network, k is the number of the sub-

networks in the social network, and the element wij represents the

probability of the i{th node being in the j{th community. In this

work, we select the principle of probability maximization to

determine the community to which the node belongs: if wij is the

largest element in the i{th row wi:, then node i is part of

community j.

In the following section, we give the theoretical foundations of

the singular value decomposition (SVD) initialization method and

the IBNMF algorithm.

Simple NNDSVD Initialization
The SVD [10] of an m|n matrix A involves the factorization of

A into three matrices A~USVT , where both U and V are

orthogonal matrices, and S is an diagonal matrix with following

form:

S~

s1

P

sr

0

0

0

P

0

0
BBBBBBBB@

1
CCCCCCCCA

ð2Þ

Figure 4. Three different parameter GN benchmark networks. Each graph contains 128 vertices, and each vertex is connected to exactly
z~16 others. These vertices are divided into four separate communities: zin is the number of intra-community connections made to members of its
own community whereas zout~z{zin is the number of an inter-community connections with other communities.
doi:10.1371/journal.pone.0107884.g004

Figure 5. A comparison between our simple NNDSVD initialization method and a random initialization method. The results are given
in terms of modularity for a GN benchmark network with zin = 15.
doi:10.1371/journal.pone.0107884.g005
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In the above matrix, s1,s1, . . . ,sr are the singular values of A.

For each kƒr, the rank-k approximation of the matrix A based on

Frobenius norm can be written as [7]:

A(k) : ~
Xk

j~1

sjC
(j)~

Xk

j~1

sjujv
T
j , s1ws2w:::wsk ð3Þ

In the F-norm, each C(j) can be best approximated by the

nonnegative section C
(j)
z . We use the modification shown in

expansion (3) to produce the nonnegative approximation of A and

to obtain effective initial values for W and H to determine the

community membership.

To reduce the running time, the following two steps are used in

this paper to obtain a quick approximation of the network’s

adjacency matrix: first, the maximum rank of C
(j)
z is set to 1. We

use the main component l1e1f1 of C
(j)
z as an approximation of C

(j)
z

because this component contains most of the information in the

networks. Secondly, because C
(j)
z is the nearest positive approx-

imation of C(j), we can use C
(j)
z as the approximation of C(j).

Hence, if A = USVT is the decomposition of A by SVD, then we

have u~U( : , j) and v~V (j, : ). We initialize the column and

Figure 6. A comparison between our simple NNDSVD initialization method and a random initialization method. The results are given
in terms of modularity for a GN benchmark network with zin = 11.
doi:10.1371/journal.pone.0107884.g006

Figure 7. A comparison between our simple NNDSVD initialization method and a random initialization method. The results are given
in terms of modularity for a GN benchmark network with zin = 8.
doi:10.1371/journal.pone.0107884.g007
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row vectors in W and H, respectively, using the equations below.

W ( : ,1)~
ffiffiffiffiffi
s1

p
u1

H(1, : )~
ffiffiffiffiffi
s1

p
vT

1

W ( : , j)~

ffiffiffiffi
sj
p

uz if uzk k1§ u{k k1ffiffiffiffi
sj
p

u{ if uzk k1v u{k k1

(

H(j, : )~

ffiffiffiffi
sj
p

vT
z if vzk k1§ v{k k1ffiffiffiffi

sj
p

vT
{ if vzk k1v v{k k1

(
ð4Þ

From the preceding results, it is possible to approximate the

factors (W, H) as follows: i) perform a SVD of A with descending

eigenvalues, ii) compute the first column and row vectors in W and

H with Eq.(4), iii) compute the subsequent column and row

vectors in W and H with Eq. (4), and iv) use the results as an

initialization of the network’s adjacency matrix.

Bayesian Nonnegative Matrix Factorization
BNMF follows the generative model in Figure 3 [11], where the

detected nonnegative value nij denotes interactions occurring

between two nodes i and j in the network with adjacency matrix

Figure 8. A comparison between our simple NNDSVD initialization method and a random initialization method. The results are given
in terms of modularity for an LFR benchmark network with m = 0.1.
doi:10.1371/journal.pone.0107884.g008

Figure 9. A comparison between our simple NNDSVD initialization method and a random initialization method. The results are given
in terms of modularity for an LFR benchmark network with m = 0.2.
doi:10.1371/journal.pone.0107884.g009
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N[RI|J
z . In the process of interactions, two nonnegative matrices

W[RI|K
z and H[RK|J

z are found such that N&N̂N~WH.

BNMF assumes that each single element nij of N obeys Poisson

distribution at a rate n̂nij ~
P

wikhkj(k[ f 1,:::,K g ). In the

nonnegative matrices W and H, rank K is the number of groups

or communities in the networks, whose initial value is unknown.

By using scale hyperparameters b that control the importance of

the community in both the columns of W and the rows of H [12],

the values of these hyperparameters and the values of W and H
can be iteratively inferred by maximizing the posterior of the

parameters given by the data [13]. To be specific, the precise

values of W, H and b can be obtained by optimizing the maximum

a posteriori criterion:

max
W ,H ,b

p(W ,H,bDN) ð5Þ

Maximizing the posterior criterion is equivalent to minimizing a

cost function F in (6).

max
W ,H,b

p(W ,H,b Nj )

m

max
W ,H,b

p(b) p(H bj )p(W bj )p(N W ,Hj )

m

min
W ,H,b

F~{logp(b){logp(H bj ){logp(W bj ){logp(N W ,Hj )

ð6Þ

Considering the priors for W and H and the parameters’

probability distribution (standard Gamma distribution over b [13],

half-normal probability distribution of W and H parameterized by

precision b [13–17], and Poisson distribution of N over N̂N [11,13]),

the optimization model is.

min
W ,H,b

F~
XI

i~1

XJ

j~1

(nij log
nij

nij

z n̂nij {nijz
1

2
log(2pnij))zconst ð7Þ

According to the expression for F, the object function can be

minimized by optimizing the sum of W, H, and b’s log-likelihoods.

Considering [2,13,18,19] and adopting the update algorithm

Figure 10. A comparison between our simple NNDSVD initialization method and a random initialization method. The results are given
in terms of modularity for an LFR benchmark network with m = 0.3.
doi:10.1371/journal.pone.0107884.g010

Table 1. Iteration times for GN benchmarks.

GN(zout)

1 2 3 4 5 6 7 8

IBNMF 3 4 5 3 5 7 19 19

BNMF 9 11 10 11 19 16 30 39

doi:10.1371/journal.pone.0107884.t001

(6)
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proposed in [13], we obtain the update steps in Algorithm 1 with

an algorithmic complexity of O(NK).
Algorithm 1 Community Detection using IBNMF

Input:
Nonnegative matrix N, initial k, fixed Gamma hyper-

parameters a, b;

Output:
Nonnegative matrices W�,H�;

1: [m, n] = size(N); W = zeros(m, k); H = zeros(k, n);

2: [U,S,V] = psvd (N, k);

3 : W ( : ,1)~
ffiffiffiffi
s1

p
u1

4 : H(1, : )~
ffiffiffiffi
s1

p
vT

1

5 : W ( : ,j)~

ffiffiffiffi
sj
p

uz if uzk k1§ u{k k1ffiffiffiffi
sj
p

u{ if uzk k1v u{k k1

(

6 : H(j, : )~

ffiffiffiffi
sj
p

vT
z if vzk k1§ v{k k1ffiffiffiffi

sj
p

vT
{ if vzk k1v v{k k1

(

7: for each i in niter do

8: H/ H

W T zdiag(b)H
W T N

WH

9: W/
H

1I|JHTzWdiag(b)

N

WH
HT

10: b/
IzJz2(a{1)

1I|JW 2zH21I|Jz2b

11: check termination criterion: Wnew{Woldk kv
1e{4;//community structure is stable.

12: end for
13: return W�,H�

Results and Discussion

In this section, we used both synthetic (computer-generated) and

real-world networks to show IBNMF’s effectiveness. The synthetic

datasets enable us to test the algorithm’s performance and stability,

and the real datasets allow us to observe the method’s accuracy

under practical, real-world conditions.

Synthetic Networks
Our first synthetic network examples employ Newman’s large

set of artificial, computer-generated benchmark networks (GN

benchmarks) [1]. Each graph was constructed with 128 vertices,

and each vertex was connected to exactly z~16 others. These

vertices were divided into four separate communities such that

some number zin of each vertex’s 16 connections were made to

Table 2. Iteration times for LFR benchmarks.

m

0.1 0.2 0.3 0.4 0.5 0.6

IBNMF 1 2 2 10 14 20

BNMF 11 17 21 20 37 40

doi:10.1371/journal.pone.0107884.t002

Figure 11. Average normalized mutual information for GN benchmarks.
doi:10.1371/journal.pone.0107884.g011
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randomly chosen members of its own community while the

remaining zout~z{zin connections were made to random

members of other communities. This process produces graphs

that have a known community structure, but are essentially

random in other respects. As shown in Figure 4, when zin~15, the

vertexes have more intra-community connections than inter-

community ones; when zin~11, the vertexes also have more intra-

community connections than inter-community ones; finally, when

zin~8, the vertexes have as many intra-community connections as

inter-community ones. Note that in the third graph, the

community structure is not clear and the vertices cannot be

accurately divided into four parts as in the first and second graphs.

To evaluate the performance and stability of IBNMF with

respect to determining the community structure, we choose the

widely used measure called modularity Q [20,21], which can be

given by:

Q~
X

i

(eii{a2
i ) ð8Þ

The modularity is the sum of the sub-modularities in different

communities [20], which measures the density of intra-community

connections and inter-community connections.

Using the synthetic benchmark networks, we tested the

modularity and stability of our algorithm in comparison with the

random initialization method (BNMF) as the ratio of intra-

community connections to inter-community connections varied.

After running our method and the random initialization method

100 times, we obtained the 600 sets of results shown in Figures 5, 6

and 7.

In these figures, we give the results of the two algorithms in

terms of their stability and average performance as measured by

the modularity. Generally, the experimental performance of

IBNMF is better than that of the random initialization algorithm

in terms of modularity. When zin~15 and zin~11, our method

has a higher initial modularity and converges more rapidly to a

better final result, and the final stable modularity is also higher

than that of the random initialization method. Furthermore, when

zin~8, we also obtain a higher initial modularity and an average

solution even though the network cannot be appropriately divided.

Furthermore, the most important fact is that our method gives a

Figure 12. Average normalized mutual information for LFR benchmarks.
doi:10.1371/journal.pone.0107884.g012

Table 3. Summary of statistics for modularity based on the use of different priors.

Simple NNDSVD Random

Mean Variance Mean Variance

GN(zout~1) 0.6716 6.1007e–031 0.6482 0.0023

GN(zout~5) 0.4418 1.5252e–031 0.4267 8.7437e–004

GN(zout~8) 0.2347 2.5212e–031 0.2306 2.7471e–004

LFR(m~0:1) 0.8617 0 0.8326 3.9899e–005

LFR(m~0:2) 0.7616 0 0.7314 2.7275e–005

LFR(m~0:3) 0.6636 1.3696e–032 0.6416 1.9708e–005

doi:10.1371/journal.pone.0107884.t003
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unique solution for 100 experiments, as indicated by the red lines

in Figures 5, 6 and 7.

In short, when the community structure is clear, as shown in

Figure 4, IBNMF obtains a stable solution that does not change as

the number of iterations increases, and this solution is obtained in

fewer steps than with BNMF. In addition, when the community

structure is not clear, our method produces a unique solution, as

represented by the red line, which is better than the BNMF results

in terms of the average modularity.

Our second synthetic network examples are based on a

Lancichinetti-Fortunato-Radicchi (LFR) benchmark network

[22], which more accurately reflects the properties of real-world

networks. In LFR benchmark networks, distributions of node

degrees and community sizes follow power laws with exponents c
and b. The network cohesion is controlled by two mixing

parameters 1{m and m, which denote the fraction of a node’s

neighbors in its own community and the fraction of neighbors that

are in the other communities, respectively. In this paper, the

parameters of the LFR benchmark were set as follows: the number

of nodes equals 1000, the average degree is 15, the maximum

degree is equal to 50, and the mixing parameter m ranges from 0.1

to 0.3. The number of runs is set to 10. Moreover, we evaluate the

performance and stability of IBNMF using modularity; the results

presented in Figures 8, 9 and 10 demonstrate that our IBNMF

method has a higher initial modularity and rapidly converges to a

better final result.

Sensitivity Analysis
Furthermore, we use normalized mutual information (NMI)

[23] to evaluate the sensitivity of our method on synthetic

networks (GN and LFR). The free parameters used here include

zout and m. We vary parameter zout from 1 to 8 and parameter m
from 0.1 to 0.6. The number of runs is set to 10, and the average

NMI results are shown in Figures 11 and 12. From these two

figures, one can observe the following: (i) the results of both the

BNMF and IBNMF models decrease as zout or m increases; and (ii)

IBNMF consistently outperforms BNMF on both benchmarks.

From the above results, we can also see that IBNMF outperforms

BNMF with respect to the iteration times. The detailed iteration

times of IBNMF and BNMF that are required to obtain a steady

solution are shown in Tables 1 and 2.

To analyze the sensitivity of the modularity for different priors,

we perform a statistical analysis of the mean and variance by using

simple NNDSVD and the random initialization, as shown in

Table 3. From the experimental results, one can observe the

following: (i) IBNMF obtains a higher mean modularity value than

random initialization BNMF; and (ii) the simple NNDSVD

initialization model is more stable than the random initialization

model. The higher mean value and lower variance indicate that

IBNMF has better and more stable performance for the GN and

LFR benchmarks.

We have also tested our method on numerous real-world

networks. In the next section, we provide detailed accuracy results

of our method for the community detection of specific examples.

Table 4. Ten real-world datasets used in this work.

Dataset n M K Description

Karate 34 78 2 Karate club [32]

Dolphins 62 159 2 Dolphin network [33]

Friendship6 68 220 6 High school friendship [26]

Friendship7 68 220 7 High school friendship [26]

Polbooks 105 441 3 US politics books [34]

Word 112 425 2 Word network [35]

Polblogs 1490 16718 - Blogs about politics [36]

Football 115 613 - American college football [21]

Net Science 1589 2742 - Scientific collaboration networks [37]

Email 1133 5451 - Email network [38]

doi:10.1371/journal.pone.0107884.t004

Table 5. A comparison of IBNMF with the Louvain, BNMTF, BNMF, RCBNMF, CBNMF, SSNMF and RSNMF methods for six real
networks with FVCC.

FVCC IBNMF Louvain BNMTF BNMF RCBNMF CBNMF SSNMF SNMF

Karate 100 97.10 93.62 79.41 100 95.88 100 91.76

Dolphins 96.77 96.67 82.97 83.39 87.29 73.39 91.94 85.79

Friendship6 84.06 92.70 76.35 88.99 91.16 88.15 84.06 84.19

Friendship7 92.75 91.30 87.58 91.45 90.87 89.30 92.75 86.70

Polbooks 82.86 84.80 72.91 79.60 81.11 78.63 81.90 74.85

Word 66.38 58.95 59.58 57.34 63.71 61.20 54.46 56.10

The abbreviations of different initialized nonnegative matrix factorizations: RCBNMF is BNMF with ‘‘random Acol’’ initialization; CBNMF is BNMF with clustering
initialization; SSNMF is SNMF with our initialization.
doi:10.1371/journal.pone.0107884.t005
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Real Networks
While synthetic networks provide a reproducible and well-

controlled testing platform for our community structure algorithm,

it is desirable to test the algorithm on real-world networks as well.

To this end, we selected ten datasets representing real-world

communities and compared the results of IBNMF with those of

several state-of-the-art methods. In Table 4, our real-world

network datasets are described by the vertex number n, edge

number m and actual community number k. ‘‘Friendship6’’

network and ‘‘Friendship7’’ network are the same high school

friendship network based on two different ground-truths [24]. All

of the networks that we used here were obtained from Newman’s

website [25], except for ‘‘Friendship’’, which was obtained from

Add Health in [26]. The methods that we used for comparison

include the Louvain method [27], which is one of the best

approaches for vertex partition [24]; Newman’s fast algorithm

[28], which is one of the most widely used methods for community

detection; the mixed-membership stochastic block model (MMSB)

[29], which is based on a Bayesian model of networks that allows

nodes to participate in multiple communities; RN [30], which is

based on a minimization of the Hamiltonian of a Potts-like spin

model; Infomap [31], which is based on optimally compressing the

information in the structure of the graph; BNMTF and SNMF

methods, which are NMF based community detection ones; and

other initialization methods.

To compare the performances of our method with the

algorithms mentioned above, we adopt accuracy comparison

and community modularity as measures for real-word datasets.

Accuracy comparisons. Various measures can be used to

compare the given community structure with the one discovered

by the algorithm. Here, we take fraction of vertices classified

correctly (FVCC) [1], as a metric of accuracy comparison. The

methods for comparison include the following: Louvain, RN,

Infomap, BNMTF, and SNMF. Newman’s fast algorithm is not

included in this comparison, as it was not designed for FVCC. To

test the influence of simple NNDSVD and a random initialization

method, SNMF, SSNMF, IBNMF, and BNMF are also compared

in our experiment. Furthermore, to test the influence of simple

NNDSVD and other initialization methods, RCBNMF and

CBNMF are also included. The abbreviations of the various

initialized NMFs are introduced in Table 5.

Table 5 and 6 are the experimental results of different

community detection algorithms based on FVCC index. As can

be seen, IBNMF gives better results than other community

detection methods and has the best performance in real-world

networks. Compared with the random initialization method,

simple NNDSVD initialization gives better results: both BNMF

and SNMF have better performance on real-world networks. In

addition, compared with other initialization methods such as

‘‘random Acol’’ and clustering, simple NNDSVD initialization also

gives the best performance. In fact, IBNMF requires fewer

iterations to obtain a unique result than the other initialization

methods.

Modularity comparisons. As mentioned above, modularity

is one of the most widely used indexes for community detection.

Here, we select the modularity as our second evaluation criterion.

In previous experiments, NNDSVD initialization has exhibited

better performance than the other initialization methods. Thus,

the methods for comparison include the Louvain method, MMSB,

RN, Infomap, Newman’s fast algorithm, SSNMF, and BNMTF.

Table 6. A comparison of IBNMF with MMSB, RN, and Infomap for six real networks with FVCC.

FVCC IBNMF MMSB RN Infomap

Karate 100 94.12 64.71 82.35

Dolphins 96.77 62.90 98.39 58.06

Friendship6 84.06 84.06 18.84 84.06

Friendship7 92.75 75.36 18.84 92.75

Polbooks 82.86 76.19 80.95 78.10

Word 66.38 55.36 49.11 51.79

doi:10.1371/journal.pone.0107884.t006

Table 7. A comparison of IBNMF with the Louvain, MMSB, RN, Infomap, Newman’s fast, SSNMF and BNMTF methods for nine real
networks with modularity.

Dataset IBNMF Louvain MMSB RN Infomap Newman’s fast SSNMF BNMTF

Karate 0.406 0.419 0.332 0.406 0.402 0.379 0.388 0.372

Dolphins 0.512 0.514 0.253 0.379 0.529 0.500 0.507 0.507

Friendship 0.586 0.590 0.500 0.400 0.595 0.585 0.583 0.524

Polbooks 0.519 0.520 0.451 0.527 0.527 0.486 0.506 0.492

Word 0.227 0.291 0.121 –0.0002 0.031 0.291 0.284 0.267

Polblogs 0.509 0.425 0.230 … 0.425 0.419 0.413 0.404

Football 0.594 0.604 0.261 0.601 0.601 0.572 0.592 0.570

Net Science 0.821 0.848 0.734 0.734 0.807 0.848 0.804 0.782

Email 0.540 0.548 0.190 0.008 0.538 0.477 0.532 0.511

doi:10.1371/journal.pone.0107884.t007
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Table 7 gives the results of different algorithms in terms of the

average modularity. As can be seen, our IBNMF has competitive

performance even though it was not designed for the purpose of

modularity maximization, unlike Louvain and Newman’s fast

method. Furthermore, our algorithm has the advantage of

providing higher accuracy for community detection. In conclu-

sion, our approach gives a better and more stable result than other

initialization methods with a shorter running time.

Conclusions

In this paper, we present a novel method, IBNMF, for

community detection, which adopts a simple NNDSVD initiali-

zation based on BNMF to achieve better and more stable results

than other community detection methods. Experimental results

show that IBNMF can determine the community membership in

both synthetic and real-world networks. The proposed approach is

more accurate and offers competitive performance to that of the

RN, Infomap, Louvain and Newman’s fast methods even though it

is not designed for the purpose of modularity maximization. In

contrast to other initialized NMF methods, our method is

computationally efficient and obtains a better and more stable

result with less running time.
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