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Abstract

Dynamic models for range expansion provide a promising tool for assessing species’ capacity to respond to climate change
by shifting their ranges to new areas. However, these models include a number of uncertainties which may affect how
successfully they can be applied to climate change oriented conservation planning. We used RangeShifter, a novel dynamic
and individual-based modelling platform, to study two potential sources of such uncertainties: the selection of land cover
data and the parameterization of key life-history traits. As an example, we modelled the range expansion dynamics of two
butterfly species, one habitat specialist (Maniola jurtina) and one generalist (Issoria lathonia). Our results show that
projections of total population size, number of occupied grid cells and the mean maximal latitudinal range shift were all
clearly dependent on the choice made between using CORINE land cover data vs. using more detailed grassland data from
three alternative national databases. Range expansion was also sensitive to the parameterization of the four considered life-
history traits (magnitude and probability of long-distance dispersal events, population growth rate and carrying capacity),
with carrying capacity and magnitude of long-distance dispersal showing the strongest effect. Our results highlight the
sensitivity of dynamic species population models to the selection of existing land cover data and to uncertainty in the
model parameters and indicate that these need to be carefully evaluated before the models are applied to conservation
planning.
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Introduction

One of the challenges in conservation and management

planning is developing robust assessments of the impacts of

climate change on species’ ranges. To date, such assessments have

relied on static ‘bioclimatic envelope’ (‘BEMs’), or ‘environmental

niche’ models (‘ENMs’) [1,2], which relate the species’ distribu-

tions to current climate and then project future ranges by fitting

the derived models to different climate scenarios. However, the

capacity of BEMs to provide useful guidelines for climate change

oriented conservation planning is limited. First, their outputs are

rather coarse-scaled and provide little understanding of potential

differences in species’ responses in different parts of the study

region [3,4]. Second, BEMs generally do not account for the fact

that a species’ range expansion depends on the characteristics of

the landscape over which individuals disperse [5–7]. Importantly,

connectivity of the habitat network has a critical role in species’

range dynamics [8,9].

Dynamic models for species’ range shifts are a promising tool

for conservation biology providing improved possibilities for

assessing species’ abilities to track the changing climate and persist

in a habitat network [6,10,11]. There are a few example of such

models, with applications to habitat networks developed at local

[12,13], regional [3,14,15] and national scale [16]. However,
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although these models hold much promise, they have potential

caveats which need to be explored to avoid their uncritical

implementation [12,17,18].

In this study we address two potentially important sources of

uncertainty: the selection of habitat maps and the parameterisa-

tion of species’ life-history traits. Modelling studies conducted over

large areas face the challenge of obtaining sufficiently robust data

on the distribution of suitable habitats for the species [19]. This is

because more accurate spatial data on species’ habitats are often

available only for some intensively surveyed localised areas. Land

cover databases gathered over large areas, such as national

CORINE databases in Europe, rely often on remote sensing and

other data sources and are thus likely to show substantially more

within-land-cover-type variation in habitat quality than the habitat

maps based on intensive field surveys. Recent studies suggest that

this lack of fine resolution in habitat classification is a feature of

European-wide databases including CORINE 2000 and 2006 and

that this may cause biases in modelling [20]. A key problem is that

coarse resolution classification can result in larger areas being

classified as suitable habitat for a species than there is in reality,

especially in the case of habitat specialists. This topic has been

surprisingly poorly investigated in the context of models for

projecting range expansion, although a few exceptions [12,16]

suggest that varying the amount of habitat in the landscape can

have a significant impact on the outputs of dynamic models.

A second main challenge and source of uncertainty is to develop

accurate estimates for species’ dispersal abilities and demographic

parameters [21–23]. The confidence in the species’ parameters

employed in simulations for range expansion is often very limited.

Thus, to be useful for conservation, dynamic simulation models

should provide estimates of the extent to which model outputs are

sensitive to these uncertainties. Sensitivity analyses provide means

for addressing this problem and for giving more robust confidence

intervals to the projections. A number of studies employing

simulated landscapes have shown that projections of species’

expansion rates may be rather sensitive to the parameter values for

certain key life-history traits [6,24,25]. However, corresponding

studies carried out for real species on real landscapes have

addressed model sensitivity to various degrees. Some of them have

scrutinised the impact of varying several species’ parameter values

[12,15,16], while others have assessed the model sensitivity to only

one or very few life-history parameters [e.g. 13], referred to a

priori tests [e.g. 14], or otherwise provided limited information on

the sensitivity of model projections to species’ parameter selection

[e.g. 26].

Here we investigate the impacts of land cover data selection and

parameterisation of species’ traits on the projected species’ range

expansion dynamics by using two butterfly species (Maniola
jurtina and Issoria lathonia) inhabiting different types of grasslands

in Finland. Butterflies are useful model species for studying range

expansion and ecological sufficiency of habitat networks because

they have the potential to respond rapidly to climate change [27–

29]. Our focal study environment, unimproved grasslands,

represents important habitat for nature conservation throughout

Europe [30,31]. These habitats are threatened due to agricultural

intensification and abandonment of marginal areas [32–34], which

is likely to hamper the range expansion of grassland specialist

species [28,35].

Our main objective in this study is to compare the degree of

uncertainty associated with the land cover data selection with that

stemming from the species’ life history parameterisation. The

range dynamics and population persistence capacity of our two

example butterfly species is explored using RangeShifter, a novel

dynamic modelling platform for species’ range dynamics [36].

Both species are reliant in Finland on the network of grassland

biotopes. We constructed representations of this grassland network

using two different extensive sources of land cover and land use

data sets. The first data set is the European-wide CORINE land

cover database, while the second data set is a combination of three

sources, the National Survey of Valuable Traditional Rural

Biotopes, grassland sites managed based on the Agri-environment

scheme (AES) [37,38], and data on distribution of all types of

grasslands in Finland, gathered in the SLICES land cover

database [39]. For species traits, we focused on the separate

impacts of four key dispersal and demographic parameters which

are likely to affect the model outcomes: population growth rate,

carrying capacity, mean dispersal distance and probability of long-

distance dispersal events [6,12,16,40].

Materials and Methods

Study species
Our two model species were Meadow Brown Maniola jurtina

(Lepidoptera, Nymphalidae) (Linnaeus, 1758) and Queen of Spain

Fritillary Issoria lathonia (Lepidoptera, Nymphalidae) (Linnaeus,

1758). Maniola jurtina is a grass-feeding species which behaves as

a grassland habitat specialist in Finland, where it occurs at its

northern range boundary [cf. 41]. In the butterfly transect

monitoring surveys in Finland, the species has been found to

favour managed (dry) unimproved grasslands over other types of

grasslands [42]. We acknowledge that the species is a common

grassland generalist in other parts of Europe, especially areas south

of Finland [43–45]. In contrast, Issoria lathonia is a violet-feeding

generalist fritillary and behaves in Finland similarly as in other

parts of Europe [46]. It is capable of inhabiting many different

grassland types, including lower quality grasslands such as set-

asides and grassy strips along field margins [43,47,48]. We focus

on these two butterfly species because they provide useful

examples of ecologically contrasting species inhabiting the

grassland habitat network. Moreover, the current range of both

species is limited to southern Finland, from where they can be

expected to move northwards following the warming climate,

making them realistic model species for simulating range

expansion dynamics.

The known occurrence records for the two study species were

extracted from the National Butterfly Recording Scheme in

Finland (NAFI). The NAFI is based on observations made by

professional and volunteer amateur lepidopterists using a uniform

10610 km grid system for the whole country [49,50]. We divided

these records into two time periods, 1991–2000 and 2001–2011,

and used the data from the first period, 1991–2000, to select the

areas for initialising the simulations (i.e. the 10610 km with

records of species occurrences; see Figure 1). It should be noted

that the butterfly occurrence records for the whole study area

(Figure 1) were available only at this resolution although solitary

records have been made using finer resolution mapping.

Therefore, in our simulations, we were constrained to initialise

the butterfly populations at a resolution of 10610 km. Moreover,

as all the simulations were run at a of 2006200 m (see below), all

the 2006200 m cells included in a 10610 km with known

occurrence records were seeded.

Land cover data
The first main source of land cover data employed was the

CORINE 2000 Land Cover database. We opted for these data

due to their complete spatial coverage of Finland, because of the

shared methodology at the pan-European level (EU countries) and

because they are widely used in studies on impacts of land use on

Land Cover, Species’ Traits and Range Shift Models
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species distributions [e.g. 51,52]. The classification of land cover

into CORINE classes in Finland is based on automated

interpretation of Landsat ETM satellite images and subsequent

data integration with existing digital maps on land use and soil

information [53]. The resolution of the CORINE data is

25625 m in Finland and the classification of land cover includes

four hierarchical levels. However, as we ran our simulations at a

resolution of 2006200 m, we scaled-up the CORINE data for the

relevant land cover types by simply summing-up their cover based

on the sixty-four 25625 m resolution cells embedded in each of

the 2006200 m grid cells. This was done throughout the study

area, which comprised southern Finland up to approximately the

latitude of 63uN (Figure 1).

For the grassland specialist species, Maniola jurtina, we

calculated the cover at 2006200 m resolution of the CORINE

categories ‘Pastures’ (2.3.1 in CORINE classification) and ‘Natural

grassland’ (3.2.1 in CORINE). For Issoria lathonia, the grassland

generalist, the CORINE categories 2.4.3 (‘Land principally

occupied by agriculture, with significant areas of natural

vegetation’) and 2.1.1.2 (‘Abandoned arable land’) were addition-

ally included, together with field margins measured based on the

CORINE class 2.1.1 (arable land), when assessing the total

amount of suitable habitat. Field margins’ cover was estimated by

multiplying their length in a 2006200 m cell by an effective width

of 1 meter, based on empirical observations from monitoring

schemes of grassland butterflies. For both the study species, a given

2006200 m grid cell was considered to be potentially suitable

‘‘habitat’’ for the species if it contained some amount of the above

listed CORINE classes (thus there was no threshold for the

amount of particular type of grassland required for a 2006200 m

cell to be considered habitat). The percentage habitat cover

determined the cell total carrying capacity for each species. For

example, the carrying capacity K for Issoria lathonia was

estimated to be approximately 60 individuals/ha (see Species
parameterisation and dynamic range expansion modelling); thus for

a 2006200 m cell with 100% cover of suitable habitat, the

maximal potential total carrying capacity was 240 individuals (for

more details see [36]).

Simulations conducted with the CORINE-based grassland

network were compared with those ran using more detailed data

for grasslands, obtained by combining three different national

grassland databases. For Maniola jurtina, we calculated the

summed cover of all open grasslands in each of the 2006200 m

grid cells mapped in (1) the National Survey of Valuable

Traditional Rural Biotopes [54], together with the cover of open

grassland sites included in (2) the national Agri-environment

scheme (AES) in Finland [see 39]. Because both National Survey

and AES-based managed grasslands initially included also wooded

sites, we used (3) the SLICES land cover database to dissect the

open grasslands from the wooded ones [39]. The SLICES

database, which is compiled by the National Land Survey of

Finland, shows the distribution of all types of common treeless

grasslands in Finland. For Issoria lathonia, we added the non-

overlapping SLICES grasslands to the open AES-managed

grasslands and National Survey grasslands, in order to construct

an estimate of the total habitat available for a grassland generalist

species. All the habitat analyses and calculations were done by

using ArcView Spatial Analyst (Version 3.2, ESRI Inc., Redland,

CA, USA).

Figure 1. 10610 km grid cells with known occurrences for (A) Maniola jurtina and (B) Issoria lathonia. The occurrence records in the
10610 km grid cells in Finland were divided into the two time periods, 1991–2000 (red dots) and 2001–2011 (blue dots). Area where the range
expansion simulations were performed is shown with orange.
doi:10.1371/journal.pone.0108436.g001

Land Cover, Species’ Traits and Range Shift Models
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Additionally, for illustrative purposes we calculated the differ-

ence in the amount of suitable habitat estimated with the two

approaches (i.e. the CORINE database vs. the AES-National

Survey-SLICES databases). For this, we calculated for each of the

10610 km grid cells included in our study area, the amount of

habitat classified as suitable using each of the two methods, and

report the spatial distribution of differences between the two

methods.

Species parameterisation and dynamic range expansion
modelling

Range expansion modelling was conducted using RangeShifter

v1.0, a platform for individual-based dynamic modelling of single

species’ ecological and evolutionary dynamics [36]. At the heart of

RangeShifter is the explicit modelling of population dynamic and

dispersal, the latter divided into its three fundamental phases of

emigration, transfer and settlement.

From the options available within RangeShifter we chose to use

a female-only and non-overlapping generations population model

[55], which requires the population intrinsic growth rate (Rmax)

and carrying capacity (K). We assumed one reproductive season

per year [cf. 56]. After reproduction all adults die and each

offspring have a density-dependent probability of dispersing given

by the following equation:

d~
D0

1ze{ Ni,t=Ki{bð Þa

where D0 is the maximum emigration probability, b is the

inflection point and a is the slope of the curve at the inflection

Figure 2. Variation in the estimated amount of suitable grasslands for Maniola jurtina, a grassland specialist butterfly. The amount of
suitable habitat is shown for two exemplary 10610 km grid cells and it was calculated based of the two different sources of grassland data. A–B: the
first example 10610 km cell; C–D: the second example 10610 km cell. A and C: summed cover of open grasslands included in the National Survey
and grasslands managed via Agri-environment Scheme (AES) in the 2006200 m cells; B and D: summed cover of CORINE classes ‘Pastures’ and
‘Natural grassland’ in the 2006200 m cells.
doi:10.1371/journal.pone.0108436.g002

Land Cover, Species’ Traits and Range Shift Models
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point. Ni,t represents the number of individuals in cell i at time t,
while Ki is the carrying capacity of the cell. We fixed the above

parameters to D0 = 0.4, b= 1.0 and a= 5.0 (for the derived

emigration probability curve see Figure S1). For those individuals

who disperse, the distance is sampled from a double negative

exponential distribution [57,58]. This is composed from two

negative exponential distributions with different means and

different probabilities of occurrence: the first, more common and

with shorter mean (‘dispersal I’); the second, less common and with

longer mean in order to simulate relatively rare and long distance

dispersal events (‘dispersal II’). The dispersing individual is

displaced at the sampled distance in a random direction. If the

arrival cell is unsuitable, the individual is either displaced in one of

the eight nearest neighbouring cells, if any of those is suitable, or

assumed to die. We assume no additional dispersal mortality.

We conducted an extensive literature search to specify values for

the model parameters for our study species. To supplement

information from the literature, we used data extracted from long-

term butterfly monitoring surveys carried out in Finland, in

particular the transect count data from the Finnish Butterfly

Monitoring Scheme [59], as well as expert-knowledge-based

assessments on the study species’ biology. Where required,

dispersal and demographic parameter values were further adjusted

based on studies on ecologically similar species and, more

generally, on how life-history traits have been observed or

estimated to vary among grassland butterfly species [cf. 14,60].

A more in-depth description of the study species’ parameterisation

process is included in Text S1. Following we provide the key

information.

For the four focal life-history parameters in our model, i.e.

carrying capacity K, maximum population growth rate Rmax,

mean dispersal distances and probability of long-distance dispersal

events, an intermediate ‘default’ value and lower and higher

alternative values were determined for both of the model species.

We estimated carrying capacity from the data from the Finnish

Butterfly Monitoring Scheme [59] and selected literature [43].

K= 250 individuals/ha was employed as carrying capacity value,

while K= 200 and K= 300 as the lower and higher alternative for

Maniola jurtina, and K= 60 individuals/ha as default value and

K= 30 and K= 90 as the two alternatives for Issoria lathonia. The

amount of grassland habitat deemed suitable for the study species

was employed to assess the maximal potential size of the

population in each of the 2006200 m cells which were either

initially seeded or modelled to be colonised during the simulation,

and this assessment was conducted based on the three different

values of K for both the species (lower alternative for K resulted in

lower estimates of 2006200 cell population size, and higher

alternative to higher estimates, respectively).

The population growth rates were determined based on

measurements on ecologically similar (and dissimilar) butterfly

species from the literature, and expert judgements based on field

observations. These suggested that both Maniola jurtina and

Issoria lathonia are likely to show intermediate population growth

rates. Thus, we used Rmax = 2.0 as the default value and Rmax = 1.5

and Rmax = 2.5 as the two alternatives for both species [15].

We used only one value for the mean short-distance dispersal

distance: 150 m for Maniola jurtina [21,61–64], and 300 m for

the more mobile Issoria lathonia [47,62,65,66]. For the mean

long-distance dispersal distance, we used 3 km as the intermediate

default value and 1.5 and 5 km as alternatives for Maniola jurtina,
and 3, 5 and 10 km for Issoria lathonia. Based on the observations

of Öckinger and Smith (2007) [62] on Maniola jurtina
movements, we set the probability of individuals dispersing with

the first, short distance dispersal kernel to either 0.80, 0.90 (default)

or 0.95.

We assumed no environmental stochasticity because our focus

was examining the potential impacts of the four key species life-

history traits on range expansion simulation results. However, it

should be noted that RangeShifter inherently incorporates two

other key sources of stochasticity, demographic stochasticity and

stochasticity in dispersal [67,68].

Species distribution data for the years 1991–2000 were used as a

starting point for the simulations. All the 2006200 m grid cells

with some suitable grassland habitat and located in the occupied

10610 km species’ distribution cells were initialised with a number

of individuals equal to the cell total carrying capacity, determined

by the habitat percentage cover in the cell. This initialisation

approach very likely produced an exaggerated abundance for the

species as a starting point. However, pilot runs showed that there

was only a 2–5 year burn-in phase in the simulations during which

the initialised cells with too little habitat or too isolated in space

lost their individuals, after which the total simulated population

size either remained constant or started to increase. All the

simulations were run over a 50-year time window.

Varying the parameters as described above resulted in 9

different simulations for both of the study species which were

conducted on the two alternative landscape maps. For each

simulation, 100 replicate runs were conducted. Here we focus on

Figure 3. Difference in the amount of estimated suitable grasslands between the two land cover datasets. The distribution of
differences was calculated by subtracting the amount of open grasslands in the National Survey-AES(-SLICES) databases from the amount of CORINE
land cover types deemed as suitable for the two study species. The differences are shown in hectares across the 10610 km grid cells of the simulation
area. (A) Maniola jurtina: National Survey-AES grasslands were subtracted from the summed cover of the CORINE types ‘Pastures’ and ‘Natural
grassland’; (B) Issoria lathonia:, National Survey-AES-SLICES grasslands were subtracted from the CORINE types ‘Pastures’, ‘Natural grassland,‘Land
principally occupied by agriculture, with significant areas of natural vegetation’, ‘Abandoned arable land’ and field margins measured based on the
CORINE class ‘arable land’.
doi:10.1371/journal.pone.0108436.g003

Land Cover, Species’ Traits and Range Shift Models
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Figure 4. The total population abundance and range dynamic statistics forManiola jurtina. The statistics include projected total number of
Maniola jurtina individuals (A–B), number of 2006200 m cells occupied (C–D) and maximal range shift of the butterfly (E–F) at the end of a 50 year
dynamic simulation period. Simulations were conducted using RangeShifter, a dynamic and individual-based modelling platform, and either summed
cover of CORINE classes ‘Pastures’ and ‘Natural grassland’ (A, C, E) vs. open grasslands included in the National Survey of Traditional Rural Biotopes
and grasslands managed via Agri-environment Scheme (B, D, F). All nine different simulation settings included 100 replicate runs. Species
parameterisation: BASE = the default model parameterisation (K = 250; DL= 3000 m; DP=0.90; GR= 2.0); alternative values for mean distance of long-
distance dispersal events (DL1= 1500 m, DL2= 5000 m), probability of short-distance events (DP1= 0.80, DP2= 0.95), growth rate (GR1= 1.5,
GR2 = 2.5) and carrying capacity (K1 = 200, K2 = 300).
doi:10.1371/journal.pone.0108436.g004

Land Cover, Species’ Traits and Range Shift Models
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the simulation results dealing with the species’ projected ranges: (1)

total numbers of individuals, (2) total numbers of occupied cells

and (3) species’ range extents and projected shifts in range,

measured as the maximum latitude at the year 0 vs. the maximum

latitude year 50 (east–west range shifts were not examined).

Results

Mapping habitat suitability using the alternative land
cover data

Comparison of the total amount of suitable grassland habitat in

the study area, i.e. the CORINE database vs. the AES-National

Survey-SLICES databases, revealed substantial differences in both

the studied butterfly species. These differences were greater for

Maniola jurtina, the grassland specialist. In total, 7,705 ha are

classified as suitable for Maniola jurtina when using AES-National

Survey while it increases to 33,951 ha when using the CORINE

database. For Issoria lathonia there is again greater total amount

of suitable habitat when using CORINE database compared to

AES-National Survey-SLICES databases (160,075 ha versus

60,035 ha). In addition, there is substantial spatial variation in

the extent of the difference obtained using the two alternative

datasets. An illustration for Maniola jurtina for two 10610 km

example grid cells shows one area where the CORINE-based

habitat availability pattern is broadly similar to those based on

data from AES-managed grasslands and grasslands included in the

National Survey (Figure 2A vs. B), and another area where the

CORINE data suggests that much more suitable habitat occurs in

the landscape than AES - National Survey data (Figure 2C vs. D).

Figure 3A illustrates the overall distribution of differences across

all 10610 km cells of the study region in Southern Finland.

Greatest differences occur in SW archipelago where much more of

the landscape is designated as suitable when using CORINE. A

similar general pattern in differences (though more subtle) is found

for Issoria lathonia in the two 10610 km example grid cells

(Figure S2), but the areas where the differences in the 10610 km

grid cells are greatest occur now in different regions (Figure 3B).

Maniola jurtina – the grassland specialist
Varying the four life-history parameters had notable impacts on

the projected number of individuals, number of occupied grid cells

and the maximal latitudinal range shift of Maniola jurtina. In the

analysis where the default parameter values and the CORINE

land cover data were used, the projected mean (6 standard

deviation) number of Maniola jurtina individuals was

1,913,603630,162 individuals after 50 years. The strongest

change in this baseline result occurred when changing the mean

length for long-distance dispersal (Figure 4A). In contrast, the

corresponding results from the simulations based on the more

detailed land cover data, i.e. the AES-based managed grasslands

and the National Survey grasslands, indicated highest importance

for carrying capacity and growth rate (Figure 4B). However, the

most striking result was the notable difference in the projected

number of individuals in the simulations based on the two land

cover data sources: in the simulations with the default demo-

graphic parameters 1,913,603630,162 (CORINE) vs.

144,264617,156 (AES-National Survey) individuals.

The impact of varying the four life-history traits on the

projected total number of occupied 2006200 m grid cells was

qualitatively similar in CORINE-based vs. AES-National Survey

data based simulations. Here, the largest life-history trait based

impact was related to alternative carrying capacities (Figure 4C

and 4D), and the quantitative difference in the number of

occupied cells between simulations based on the two land cover

data sources was clear, reflecting the conspicuous difference in

amount of suitable habitat between the two landscape maps.

The mean (6 s.d.) projected latitudinal range shift was

12.767.2 km in the simulations based on the CORINE data,

and 3.164.1 km in the National Survey – AES data based

simulations, respectively (Figure 4E and 4F). The largest range

shifts were observed for the higher carrying capacity, but also

increasing the growth rate and the probability and mean distance

of long-distance dispersal events caused an increase in projected

latitudinal range shifts. In very few cases, the maximal range shifts

obtained exceeded 50 km in the CORINE data based results.

Figure 5 shows the spatial differences in the projected occupancy

probability of the 2006200 m cells in the SW coastal area of

Finland. In this comparison there are clear spatial differences

between the model outputs from CORINE data vs. National

Survey – AES data, whereas the corresponding differences

stemming from varying the four species traits were more subtle

(results not shown).

Issoria lathonia – the grassland generalist
The corresponding simulations for Issoria lathonia showed

qualitatively similar patterns (Figure 6). There was a substantial

quantitative difference between the results obtained for the

Figure 5. Example output maps for the simulated range
expansion of Maniola jurtina in SW Finland. The maps for range
expansion were produced by RangeShifter. Probability of a 2006200 m
grid cell to be occupied after a 50-year simulation run is depicted with a
colour ramp from red (high) to orange (intermediate) and yellow (low),
with areas in dark blue having a probability of zero. Probability of a cell
having a population was assessed based on 100 replicate simulations.
Light blue squares indicate 10610 km grid cells where the simulations
were seeded. Simulations were done using default values for species
traits and (A) CORINE data and (B) AES – National Survey data.
doi:10.1371/journal.pone.0108436.g005
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different landscape datasets. The projected number of individuals

and occupied cells were clearly higher in the CORINE results

(mean 6 s.d.): 1,144,264623,470 vs. 733,457624,782 individuals,

and 62,9886993 vs. 18,4446574 occupied 2006200 m cells, in

CORINE data vs. AES – National Survey – SLICES data based

results, respectively (Figure 6, simulations with default values).

Figure 6. The projected total abundance and range dynamic statistics for Issoria lathonia. The projected total number of Issoria lathonia
individuals (A–B), number of 2006200 m cells occupied (C–D) and maximal range shift of the butterfly (E–F) at the end of a 50 year dynamic
simulation period. Simulations were conducted using either summed cover of CORINE classes ‘Pastures’ and ‘Natural grassland’, ‘Land principally
occupied by agriculture, with significant areas of natural vegetation’, ‘Abandoned arable land’ and field margins (A, C, E) vs. open grasslands included
in the National Survey, SLICES database and those managed via AES (B, D, F). For species parameterisation see Figure 3.
doi:10.1371/journal.pone.0108436.g006
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The differences between the projected maximal range shift

between the two land cover data types were also prominent

(Figure 6E and 6F). In the CORINE data based results, mean

range shifts were often projected to be larger than 20 km, whereas

in the AES – National Survey – SLICES data based results only a

limited number of individual runs exceeded a shift of 20 km. In

both land cover data sets, higher carrying capacity returned the

largest projected shifts. These differences are visible in the maps of

Figure 7. Example output for the simulated range expansion of Issoria lathonia in S Finland. Probability of a 2006200 m grid cell to be
occupied after a 50-year simulation run is depicted with a colour ramp from red (high) to orange (intermediate) and yellow (low), with areas in dark
blue having a probability of zero. Simulations were done using (A) CORINE data and default values for species traits, (B) CORINE data and increased
carrying capacity value, and (C) AES – National Survey – SLICES data and default values for species traits. In (B), areas in pink indicate 2006200 m cells
projected to have a population only when the higher carrying capacity is assumed.
doi:10.1371/journal.pone.0108436.g007
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species’ occupancy probabilities in the simulations based on

CORINE data and default trait parameters vs. increased carrying

capacity (Figure 7A and B), particularly as the extended expansion

of range margin in certain regions. However, overall the spatial

differences are more notable when probability of occupancy values

from simulations based on CORINE data are compared with

those based on AES – National Survey – SLICES data (Figure 7A

and C).

Main traits affecting range expansion
To illuminate which of the four studied life-history traits had the

strongest impact of the three measures of the species’ range and

population dynamics we summarized the most influential traits for

the study species in Table 1. This summary shows that altering the

carrying capacity typically has the strongest impact, especially on

mean maximal range shifting, while the second most important

driver is long-distance dispersal ability.

Discussion

Land cover data and species habitat specificity
We have shown that the selection of the land cover data upon

which dynamic models are built may have a major effect on the

projections of species’ range expansion. These findings are

important because systematic land cover data from detailed field

surveys rarely exist for larger regions. CORINE is one of the few

systematically constructed land cover databases covering conti-

nent-wide areas and it is commonly used in species distribution

modelling [51] [51,52,69]. However, its usefulness with respect to

modelling species with strict habitat requirements is insufficiently

known [20]. Several niche modelling studies have shown that the

projections of species distributions may be substantially affected by

the selection of environmental variables, including land cover

variables [70,71]. The results from our study illustrate the fact that

using insufficient quality landcover data can introduce substantial

bias also into the results of dynamic modelling exercises projecting

species responses to climate change.

The differences in the projected species population abundance

and range dynamics gained using the AES – National Survey data

based simulations compared to those based on CORINE data

emerge from certain important sources. The quality of the

grassland sites in the National Survey of Rural Biotopes and

those managed for biodiversity via AES specific contracts very

likely varies less than the CORINE data from the perspective of

grassland specialist butterflies which often require managed

unimproved grasslands [72–74]. However, spatial cover of more

thorough field investigations (including National Survey of

Valuable Traditional Rural Biotopes) is often constrained by the

limited resources, which may result in the underestimation of

habitat availability in insufficiently surveyed areas. This is likely to

be one of the reasons behind the very substantial differences in

estimated habitat availability in the SW archipelago. In addition,

here uptake of AES contracts may also be lower than in the

mainland areas. In contrast, the spatial cover of CORINE data is

better, but it may be more variable and overestimate the habitat

availability, especially for grassland specialists. This is because

CORINE data are based on various sources such as other existing

land cover databases and satellite imagery.

The recorded occurrences of Maniola jurtina in SE Finland are

a point of specific interest. Namely, there are some isolated

10610 km grid cells with records of the species in 2001–2011 that

are situated far from the potential source populations (Figure 1).

To reach these cells from the earlier known sites would require

dispersal over several tens of kilometres within ten years, a

situation hardly possible only via the network of AES – National

Survey grasslands, as shown by our simulation results. Three

factors may play a role here. First, the map of known records for

Maniola jurtina is inevitably an underestimation of the true

distribution because of the spatial variation in survey effort [see

75,76]. Second, it is possible that the grassland network in SE

Finland is in many areas insufficient to maintain longer-term

populations of grassland specialists and thus regional butterfly

populations may be dependent on the constant arrival of

immigrants from Russia, where higher quality grasslands are

more common, possibly representing a large-scale source-sink

system between Russia and Eastern Finland [73]. Thirdly, it is

possible that the habitat fidelity of Maniola jurtina is in a changing

stage. Thus, we may be dealing with changing habitat specificity of

a species at its northern range boundary where climate has

Table 1. Summary of the varied life-history traits causing largest change in the three measured species’ range expansion
measures, i.e. the projected number of butterfly individuals, number of occupied 2006200 m grid cells and mean maximal
latitudinal range shift, shown for the two species and two land cover types separately.

Maniola jurtina Issoria lathonia

Number of individuals
(x 1000) CORINE data

AES – National
Survey data CORINE

AES – National Survey –
SLICES data

Lowest DL1 (1,495622) K1 (67613) DL1 (461.7612) DL1 (29669.8)

Highest DL2 (2,350644) K2 (222631) DL2 (2,324. 639) DL2 (1240639)

Number of occupied 200-m grid cells

Lowest K1 (10,2836143) K1 (416658) GR1 (35,1326591) GR1 (124266243)

Highest K2 (16,6736360) K2 (1,2426146) K2 (92,35661,573) K2 (251246658)

Maximal latitudinal range shift

Lowest K1 (6.362.2) K1 (1.061.5) K1 (10.064.3) DL1 (1.664.1)

Highest K2 (24.169.8) K2 (5.967.6) K2 (38.463.0) K2 (12.0610.9)

The mean value (+/2 standard deviation) from the 100 replicate runs is given for each measure in parenthesis. Species parameterisation abbreviations: Maniola jurtina
and Issoria lathonia: DL1 = 1500 m, DL2 = 5000 m (alternative values for mean distance of long-distance dispersal events); K1 = 200, K2 = 300 (alternative values for
carrying capacity); Issoria lathonia, GR1 = 1.5 (lower alternative value for population growth rate).
doi:10.1371/journal.pone.0108436.t001
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recently become more favourable. Due to this, the butterfly might

now utilise a wider range of grassland habitats than earlier [41].

Impact of uncertainty in life-history traits relative to
uncertainty in land cover

As the climate impacts research community increasingly uses

dynamic models to project species’ future distributions, it is crucial

that we begin to gain some insight into the relative importance of

different forms of input uncertainty to the uncertainties associated

with the outputs from these models. We ran our dynamic model

using an illustrative set of values for key life history parameters that

were chosen to represent the bounds of uncertainty for those

parameters. This allows us to compare how influential uncertainty

is in each of those life history parameters as well as comparing how

important uncertainty around life history generally is relative to

that due to choice of landscape database.

Unsurprisingly, altering the four focal life-history traits had an

impact on the projected number of individuals and occupied grid

cells of the two study species. Earlier studies have indicated that

assuming a higher dispersal ability will allow a faster range

expansion and a more successful tracking of changing climate

[13,25] and similar results are obtained in our study with more

rapid range expansions when the probability of the long-distance

dispersal jumps is increased. However, our results are not fully

straightforward and the impact of increasing long distance

dispersal depends on the landscape context. With Maniola jurtina,

increasing the mean magnitude of long-distance dispersal events

had the strongest impact on projected number of individuals

within the CORINE pastures network. Otherwise, the strength of

this effect was much reduced. With Issoria lathonia, increasing the

mean length of long-distance movements typically had a more

prominent role than increasing the proportion of long distance

dispersal and showed consistent effects on both landscape maps.

Increasing the probability of long-distance dispersal events had

mainly an intermediate impact on the projected population

estimates. This effect was larger than that of the length of long-

distance movements for the species’ maximal range shifts, being

most evident in the results for Issoria lathonia and CORINE

grassland data.

As expected [77], we found population growth rate impacted

the projected population dynamics during range expansion.

Theoretical models [5,40] have also highlighted the importance

of rapid growth rate for species population persistence under a

changing climate. Further, in one study very relevant in the

context of our work, Willis et al. [16] showed that the projected

rate of expansion of the Pararge aegeria butterfly in the UK was

especially sensitive to altering population dynamics; a 25%

increase in productivity resulted in a 56% increase in range

expansion.

Interestingly, we found very substantial sensitivity to uncertainty

in carrying capacity showed for both Maniola jurtina and Issoria
lathonia. Classical theory on range expansion has typically stressed

the important joint roles of population growth rate and dispersal

[67,77–79] and has not highlighted an important role for carrying

capacity. However, South [24] showed with a spatially explicit

population model that there may be complicated links between

dispersal success, dispersal initiation mechanism, patch growth

rate and patch carrying capacity, which all ultimately affect

population persistence. Moreover, a recent theoretical study by

Bocedi et al. [80] using artificial fragmented landscapes and

theoretical species, demonstrated that carrying capacity can often

be influential. The results we present here lend weight to the

suggestion that, at least on fragmented landscapes, we need to pay

greater attention to this parameter.

However, it should be noted that what our result highlight most

strongly is the substantial uncertainty we find due to the choice of

habitat maps relative to the uncertainties due to the demographic

parameters. In dynamic modelling studies there is often some

discussion of potential uncertainties related to estimation of

demographic parameters and especially dispersal, but much less

attention is given to uncertainty in the spatial representation of

suitable habitat. Our results demonstrate very clearly that

uncertainty due to habitat mapping can be at least as great as

that due to the demographic parameters. This reinforces the

results of a study by Willis et al. [16] that demonstrated that the

projected rate of spread on Pararge aegeria butterfly was more

sensitive to altering habitat availability than variation in demo-

graphic factors and seed locations in the simulations. A further

study focussing on population viability rather than range

expansion [12] has specifically focused the importance of the

uncertainties in developing habitat maps for a species, such as

potential errors in satellite imagery and georeferencing. They used

a spatially explicit model based on two contrasting habitat maps

created from remote imagery for a forest dwelling bird species, a

‘generous’ and ‘strict’ habitat map. The selection between the two

habitat maps caused differences in total population size three times

more important than other factors, such as dispersal model type,

maximal dispersal distance and bird clutch size. Our study bridges

these previous two studies by exploring the extent of uncertainty

that arises in projections of range expansion due to the choice of

dataset for constructing a habitat map. Interestingly, our results

also highlight that the extent of uncertainty due to choice of

dataset can be very different between species; we found a much

greater effect for Maniola jurtina than for Issoria lathonia.

Implications for conservation planning
Our modelling results have clear importance for conservation

planning because conservation biologists and managers are

currently seeking robust tools to project the changes in species’

distributions in response to changing climate. Dynamic range

expansion models are considered one promising approach to

develop improved assessments on the impacts of global changes,

potentially providing a sounder basis to allocate the scarce

conservation resources than the widely applied bioclimatic

envelope models [11]. However, the end-users of dynamic models

need to be aware of the limitations in the modelling approaches

available. Indeed, our results suggest that dynamic modelling

approaches should also be used with caution when applied to real-

life nature conservation questions. This is because dynamic range

expansion and population models have sources of uncertainty of

their own and failing to acknowledge this may invoke a false sense

of confidence [12,17,18].

Such uncertainties are centred around three main issues: (1) the

scarcity of accurate species and habitat data over larger areas [15],

(2) uncertainties in data for species life-history traits critical for

dispersal and population dynamics [11,22], and (3) difficulties in

determining direct and robust links between the species’ habitat

requirements and the land cover data available [12]. Under these

circumstances, running sensitivity analysis for dynamic species

population models before they are used in different applied

conservation and management planning questions is essential [18].

The results of this study demonstrate that the sensitivity analysis

can indeed provide important insights for the sensitivity of

dynamic models to altering species parameters and habitat

requirements.

Developing improved conservation planning tools for grassland

species is important, because different types of grassland habitats

from unimproved semi-natural grasslands to non-cultivated

Land Cover, Species’ Traits and Range Shift Models
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elements such as larger field margins and wooded pastures have

faced a drastic decline during the last century [30,34]. This has

resulted in a major loss of landscape heterogeneity and habitats

favoured by many butterfly species. Our simulation results suggest

that the possibilities of both grassland habitat specialist and

generalist butterfly species to adapt to projected climate change

may be limited. Only in our most generous simulation setting,

Issoria lathonia in network of CORINE grasslands and abandoned

cultivated land and field margins, the mean maximal range shifts

were projected to exceed 20 or 30 km kilometres within 50 years.

These forecasts are well in line with the recently observed range

shifts of grassland butterflies in Finland. Interestingly, they fall

much below the observed fastest range shifts in butterflies,

generally encountered in forest edge generalist species with high

dispersal ability [28].

Moreover, many grassland butterfly species depend on the

occurrence of semi-natural grasslands managed by mowing or

grazing [73,74], or other similar higher-quality grasslands

connected with traditional agricultural practices [81]. Our

simulation results for Maniola jurtina suggest that the ecological

sufficiency of the grasslands included in the National Survey of

Rural Biotopes and those managed by specific AES is poor for a

strict grassland specialist species depending on high-quality sites.

In particular, the likelihood that the grassland specialist species

respond to climate change by dispersing into new suitable areas in

southern Finland seems low, as the projected maximal range shifts

for Maniola jurtina were modest at best.

In conclusion, the adaptation and persistence possibilities of

grassland specialist species under environmental changes in our

study area appear to be very limited; thus, major changes are

required to improve the critical situation of these habitats and their

species. The two complementary main lines of required future

action are: (1) increasing of the area of grasslands managed for

biodiversity to mitigate long-term habitat loss impacts [82] and

support local population persistence [83], and (2) improving their

connectivity to support grassland species range shifting across the

landscape [5].

Supporting Information

Figure S1 Shape of emigration probability curve used in
the simulations. The calculation of the emigration probability

curve is based on the density-dependent emigration assumption

with maximum dispersal probability D0 = 0.4, slope a= 5.0 and

inflection point b= 1.0.

(TIF)

Figure S2 The cover of suitable grassland habitat for
Issoria lathonia, a grassland generalist butterfly, in two
exemplary 10610 km grid cells based on two different
sources of spatial grassland data. A and C: summed cover

of all kinds of open grassland included in the National Survey,

AES and the SLICES database in each of the 2006200 m cells; B

and D: summed cover of CORINE classes ‘Pastures’, ‘Natural

grassland’, ‘Land principally occupied by agriculture, with

significant areas of natural vegetation’, and ‘Abandoned arable

land’, together with the cover of field margins, in each of the

2006200 m cells.

(TIF)

Text S1 Supporting information for the two model
species’ parameterisation for the RangeShifter dynamic
range expansion simulations. More in-depth description of

the process how the dispersal and population biological param-

eters for the two butterfly species, Maniola jurtina and Issoria
lathonia, required to perform the range expansion simulations

with RangeShifter algorithm were done based on the following

sources: an extensive literature search, the data extracted from

long-term butterfly monitoring surveys carried out in Finland such

as the Finnish Butterfly Monitoring Scheme, published data on

population biological parameters from studies on ecologically

similar species, and empirical data -based expert assessments on

the general variation of demographic parameters among grassland

butterfly species.
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islands and assessment of the effects of the agri-environmental support scheme.

The Finnish Environment 734: 1–210.

43. van Swaay CAM (2003) Butterfly densities on line transects in The Netherlands

from 1990–2001. Entomologische Berichten 63: 82–87.

44. Van Swaay CAM, Van Strien AJ, Harpke A, Fontaine B, Stefanescu C, et al.

(2010) The European Butterfly Indicator for Grassland species 1990–2009.

Wageningen: De Vlinderstichting.

45. Dennis RLH (2004) Butterfly habitats, broad-scale biotope affiliations, and

structural exploitation of vegetation at finer scales: the matrix revisited.

Ecological Entomology 29: 744–752.

46. Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa.

Haarlem: Schuyt.

47. Maes D, Bonte D (2006) Using distribution patterns of five threatened

invertebrates in a highly fragmented dune landscape to develop a multispecies

conservation approach. Biological Conservation 133: 490–499.

48. Jonason D, Milberg P, Bergman KO (2010) Monitoring of butterflies within a

landscape context in south-eastern Sweden. Journal for Nature Conservation 18:

22–33.

49. Saarinen K, Lahti T, Marttila O (2003) Population trends of Finnish butterflies

(Lepidoptera: Hesperioidea, Papilionoidea) in 1991–2000. Biodiversity and

Conservation 12: 2147–2159.
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