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Abstract

Helices are amongst the most common structures in nature and in some cases, such as tethered plant tendrils, a more
complex but related shape, the hemihelix forms. In its simplest form it consists of two helices of opposite chirality joined by
a perversion. A recent, simple experiment using elastomer strips reveals that hemihelices with multiple reversals of chirality
can also occur, a richness not anticipated by existing analyses. Here, we show through analysis and experiments that the
transition from a helical to a hemihelical shape, as well as the number of perversions, depends on the height to width ratio
of the strip’s cross-section. Our findings provides the basis for the deterministic manufacture of a variety of complex three-
dimensional shapes from flat strips.
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Introduction

Nature abounds with complex, three-dimensional shapes [1,2].

Of these, the helix and spiral are amongst the most ubiquitous,

often emerging during growth from initially straight or flat 2-D

configurations. For instance, initially straight roots form helical

shapes while attempting to penetrate more compact soils [3].

Similarly, as seed pods open, a chirality-creating mechanism turns

an initially flat pod valve into a helix [4–6]. In other instances, the

chirality can switch during growth as noted by Asa Gray [7] and

Darwin [8] in their studies of plant tendrils. They noted that as a

growing plant tendril circumnutates it can attach to another object

and then, being fixed at both ends, its chirality reverses in between

to maintain its topology as it continues to grow [9,10]. This

reversal of chirality - often referred to as a perversion - forms what

we term here a simple hemihelix. More generally, we introduce

the term hemihelix to describe multiple reversals in chirality

connected by perversions. As pointed out by McMillen and

Goriely [9], perversions have been observed in several physical

systems with a literature that dates back to Ampère’s letter to the

French Academy of Sciences. Subsequently, the word perversion

was used by J.B. Listing to describe the inversion of chirality in

seashells [11] and by Maxwell in the context of light propagating

in magnetic materials [12], but only recently have Goriely and

Tabor rigorously defined perversions [13]. Although perversions

can also be introduced manually, for instance, by the simple

operation of holding one end of a helical telephone cord fixed and

twisting the other in a direction counter to its initial chirality,

perversions occur in nature during growth and as illustrated by the

example of the attached plant tendril a single perversion forms.

Interestingly, wool fibres can also form hemihelices with distribu-

tions of perversions separating alternating helical sections of

opposite chiralities [14]. Recently, similar three-dimensional

shapes with multiple perversions have been created by joining

two strips of elastomers of different lengths [15]. Moreover, rippled

patterns with periodic distributions of perversions have also been

discerned along the peripheries of thin sheets, such as the edge of

the gut [16] and the edges of flowers and leaves [17–21]. These

observations raise two fundamental questions: (i) what controls

whether a helix or a hemihelix forms ? and (ii) what determines the

number of perversions that will form ?

In this work we address these two questions using a combination

of experiments, numerical simulations and analyses. These show

that the formation of both helices and hemihelices with periodic

distributions of perversions can be fully understood in terms of

competing buckling instabilities that depend on the aspect ratio of

the cross-section of the bi-strip. Experiments indicate that there is

a well-defined phase transition between the helix and the

hemihelix and this is confirmed by an analysis based on

Kirchhoff’s rod theory. Our analysis also shows how the number

of perversions depends on the cross-sectional aspect ratio,

confirming the experimental findings discussed below and shown

in Fig. 1 and those represented later on a phase diagram.

Experimental Observations

Our observations come from a series of experiments in which

two long strips of elastomer are stretched, joined and then

released. The sequence of operations is shown in Fig. 2. We start

with two strips of the same material (dyed to distinguish them) of

the same initial width w but unequal length. The short, red strip,

with length L’ and height h’, is stretched uniaxially to be equal in

length to the longer, blue strip, length L and height h. The initial

heights are chosen so that after stretching the bi-strip system has a
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rectangular cross-section. The two strips are then glued together

side-by-side along their length. At this stage, the bi-strips are flat

and the red strip is under a uniaxial pre-strain, defined as

x~(L{L’)=L’. Being elastomers, volume conservation requires

that the heights are related by h’~h
ffiffiffiffiffiffiffiffiffiffi
1zx
p

. Then, in the final

operation, the force stretching the ends of the bi-strip is gradually

released, with the ends free to rotate. More details of the

manufacturing and experimental procedures are given in Materials

and Methods.

Upon release, the initially flat bistrips start to bend and twist out

of plane and evolve towards either a helical or hemihelical shape,

depending on the cross-sectional aspect ratio. As indicated by the

images in Fig. 1, when the aspect ratio h=w is small, we observe the

formation of periodic perversions, separating helical segments of

alternating chiralities, whereas when the bi-strips have a large

aspect ratio, they spontaneously twist along their length to form a

regular helix. Significantly, these three-dimensional shapes form

spontaneously and do so irrespective of whether the release is

abrupt or the ends are slowly brought together. Furthermore, it is

also observed that after release, the bi-strip can be stretched

straight again and released many times and each time the same

shape, complete with the same number of perversions, reforms.

Experiments were also performed under water to minimize

gravitational effects and dampen vibrations. Video recordings,

reproduced in File S1, capture the evolution of the 3D shapes,

several transient features including how perversions move along

the bi-strip to form a regular arrangement as well as how an initial

twisting motion is reversed.

The experimental observations indicate that the number of

perversions n is the critical geometric parameter that distinguishes

which shape forms upon release. Assuming that the perversions

are uniformly distributed along the length of the bistrip, the

number that form can be expected to depend on the prestrain

ratio, the cross-sectional aspect ratio and the length of the bi-strip.

Dimensional arguments then suggest that the number is given by:

wn=L~g(x,h=w). To establish how the number of perversions

depends on these variables, a series of experiments were

performed with different values of pre-strain and cross-sectional

aspect ratio. The results of these experiments are shown in the

structural phase diagram in Fig. 3 where the numbers associated

with the symbols indicate the number of perversions observed.

The boundary between the formation of helices and hemihelices is

shown shaded. The data in Fig. 3 indicates that increasing the h=w

ratio drives the strip from the hemihelical configurations to helices.

On the other hand, the prestrain ratio x has only a weak influence

on both the helix-to-hemihelix transition and the number of

perversions. This phase diagram (Fig. 3) was established under

experimental conditions that allowed both ends to freely rotate as

the stretching force was reduced. A similar phase diagram (Fig. S5

in File S1) but notable by the absence of any helices was obtained

upon unloading when the ends were constrained from rotating (see

File S1 for details).

Finite element simulations

Numerical simulations to explore the morphological changes

occurring during the release in the bi-strip system were conducted

using detailed dynamic finite element simulations. In our analysis,

Figure 1. Illustration of a helix (top), a hemihelix with one
perversion marked by an arrow (middle) and a hemihelix with
multiple perversions (bottom). The scale bar is 5 cm, and is the
same for each image. These different shapes were all produced in the
same way as shown in figure 2 with the same value of pre-strain x~1:5
but with decreasing values of the height-to-width ratio of the bi-strip’s
cross-section. L~50cm, w~3mm, h~12,8,2:5mm).
doi:10.1371/journal.pone.0093183.g001

Figure 2. Sequence of operations leading to the spontaneous
creation of hemihelices and helices. Starting with two long
elastomer strips of different lengths, the shorter one is stretched to
be the same length as the other. While the stretching force, P, is
maintained, the two strips are joined side-by-side. Then, as the force is
slowly released, the bi-strip twists and bends to create either a helix or a
hemihelix.
doi:10.1371/journal.pone.0093183.g002

Figure 3. The number of perversions observed as a function of
both the prestrain and the cross-section aspect ratio, h=w. The
data indicates that there is a transition between the formation of helixes
at larger aspect ratios and hemihelices at smaller aspect ratios. The
precise phase boundary cannot be determined with any precision
experimentally and so is shown shaded but there is evidently only a
weak dependence on the value of the pre-strain. In some cases, bistrips
made the same way produce either one or the other of the two
perversion numbers indicated.
doi:10.1371/journal.pone.0093183.g003
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the non-linear response of the elastomer was captured using a

hyperelastic Gent model [22]. 3D models of the bi-strip system

were built and the prestretch effect was modeled by decomposition

of the deformation gradient, F~FLFP, where FL is the loading

induced gradient while FP is the prestretch induced gradient,

FP~diag(xz1,1=
ffiffiffiffiffiffiffiffiffiffi
xz1
p

,1=
ffiffiffiffiffiffiffiffiffiffi
xz1
p

) [15]. More details of the FE

simulations are given in Materials and Methods and File S1. These

fully reproduced the experimental observations. For instance,

snapshots recorded at three successive stages in the release of bi-

strips having three different cross-sectional aspect ratios are shown

in Fig. 4. Clearly, the simulations correctly capture the principal

features observed in the experiments including the formation of

perversions as well as the detailed evolution of the hemihelix and

the helix as unloading occurs.

Analytical Model

To understand the origin of the experimental and numerical

results reported above, we analyze the deformation of the bi-strip

system modeled as a homogeneous rod with a rectangular cross

section h by 2w (see Fig. 5) and study its behavior using Kirchhoff

rod theory [23–27]. Due to the pre-stretch, the equivalent

homogeneous rod has a natural curvature K and a undeformed

contour length L� when no external forces and moments are

applied (see Fig. S8 in File S1). Both K and L� can be related to x,

w and L from the bi-strip system (see File S1 for details)

K~
1

w

12x

8(xz2)
, L�~L

8(xz2)

x2z16xz16
: ð1Þ

The rod is then represented by a space curve x(s,t), whose position

depends on the arc length s and time t (see Fig. 5). In addition, to

characterize the deformation of the rod an orthonormal local

director basis (d1,d2,d3)~(d1(s, t)),d2(s, t),d3(s, t)) is introduced,

where d3 is identified as the tangent vector and d1 and d2 lie along

the principal directions of the cross-section (Fig. 5). The condition

of orthonormality implies the existence of a twist vector

k~k1d1zk2d2zk3d3 satisfying

di ~k|di, i~1,2,3 ð2Þ

where (:)’~L(:)=Ls, k1 and k2 are the material curvature and k3 is

the twist density.

Balance of force and angular momentum gives

F0 ~rA€dd3

M0zd3|F~r I2d1|d1zI1d2|€dd2

� � ð3Þ

where ( )~L(:)=Lt, F and M are the resultant force and moment

acting on the cross section, r is the mass per unit volume of the

rod, A~2wh is the cross-sectional area and I1~(2w)3h=12 and

I2~2wh3=12 are the principal moments of inertial of the cross

section.

Finally, to facilitate the analysis, the material is taken to be

linear elastic, so that

M~E I1(k1{K)d1zE I2k2d2zG Jk3d3, ð4Þ

where E is the Young’s modulus, G is the shear modulus, K

describes the local non-vanishing intrinsic curvature and is given

by Eqn. (1). Moreover, J is the torsion constant, which for a

rectangular cross-section can be approximated as

J&ab3 1=3{0:21b=a 1{(b=a)4
� �� �

[28], where a = max(2w,h)

and b = min(2w,h).

Stability Analysis
Our starting point is a fully stretched rod under applied tension

F~F1d1zF2d2zF3d3~Pd3. Since our experimental observa-

tions clearly show that at a critical point during the release the

straight configuration becomes unstable and the rod evolves into

complex 3D shapes (see videos in SI), we investigate the stability of

the system during unloading. We first analyze the transition from

straight to helical configurations and then the formation of

hemihelices with periodic distributions of perversions. Finally, we

will show that at the onset of bifurcation a helix can be described

as a hemihelix with a vanishing number of perversions.

Transition from straight to helical configurations. A helical configura-

tion with curvature k and torsion t is defined by the position

vector

Figure 4. Snapshots recorded from the finite element simula-
tions, illustrating the formation of (A) a helix, (B) a hemihelix
with single perversion and (C) a hemihelix with 12 perversions.
The colors represent the local values of the computed von Mises stress.
The prestrain x~1:5 was the same in all three cases. L~50cm,
w~3mm, (A) h~2:5mm, (B) h~8mm, (C) h~12mm. The images are
taken when the end to end distances are 35cm,26cm,18cm. Gravity was
included in the simulations and acts from left to right in these images.
doi:10.1371/journal.pone.0093183.g004

Figure 5. Coordinate system used in the Kirchhoff analysis
together with the dimensions h and w of the cross-section.
doi:10.1371/journal.pone.0093183.g005
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x~
k

c2
sin(cs)e1z

k

c2
cos(cs){1ð Þe2z

t

c
se3, ð5Þ

where c~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2zk2
p

and ei denote the global coordinate frame. To

evaluate the evolution of k and t as a function of the applied force

P, we minimize the total energy density (energy per unit length) of

the helix

E~ 1

2
EI1 k{Kð Þ2z 1

2
GJt2{

P

L�

tL�
c

, ð6Þ

where the first, second and third term are the bending energy,

twisting energy and force potential, respectively. The energy

minimization criterion requires that LE=Lk~0 and LE=Lt~0,

which can be solved to obtain k and t as a function of the applied

force P. It is easy to show (see File S1 for details) that they admit

real, positive solutions k and t only if

PƒPhelix
cr ~

(EI1K)2

GJ
: ð7Þ

Thus, our analysis predicts the formation of helical configurations

during release when PvPhelix
cr .

Transition from straight to hemihelical configurations. For the case of

small aspect ratios h=w, the formation of hemihelices with multiple

reversal of chirality is observed in the experiments during release.

These complex 3D shapes can be captured by studying perturbed

states of the systems in a small neighborhood of the straight

configuration [13,29,30] (see File S1 for details). This can be

systematically implemented by expanding the relevant variables di

and Fi as power series in a small perturbation parameter E

di~d
(0)
i zEd

(1)
i zE2 d

(2)
i z � � � i~1,2,3

Fi~F
(0)
i zEF

(1)
i zE2 F

(2)
i z � � � :

ð8Þ

Substituting Eqns. (8) into (3), the Kirchhoff equations to the i-th

order (Ei) can be obtained (see File S1 for details). The first order

solution is then assumed to take the form c exp(ivn s), where c is

the amplitude vector and vn~nps=L� represents the angular

frequency of the mode. Assuming there are no constraints on the

rotation or displacement at both ends, we find that when the

applied force P is decreased to

Phemi
cr ~

(EI1K)2

GJ
{EI2v2

n, ð9Þ

a non-trivial solution to the first order equations exists. Therefore,

for PvPhemi
cr the straight configuration is unstable and complex

3D configurations are expected to grow and dominate. The shape

of the modes may be obtained by solving the 2-nd order

equilibrium equations, yielding

x~

{ GJXn sin(vns)
EI1K

G2J2(2EI1zEI2{GJ)X2
n v2

n(cos(2vns){1)

2E3I3
1

K3z2E2GI1(4I1{I2)JKv2
n

s{
G2J2X2

n vn sin(2vns)

4E2I2
1

K2

0
BBBBB@

1
CCCCCA

, ð10Þ

where Xn is the mode amplitude.

The modes obtained from Eqns. 10 with n~0:5,1,4,7 are

shown in Fig. 6. Note that modes with nv1 are included because

the two ends of the bi-strip are allowed to rotate freely in the

experiments. The modes with nw1 clearly resemble the hemi-

helices observed in the experiments and consist of multiple,

periodic and alternating helical sections of opposite chiralities,

separated by n perversions. However, for nv1 the perversion lies

outside the rod, so that the system deforms into a single helical

segment, leading to the formation of an helix. This is also

confirmed by the fact that Phemi
cr approaches Pheli

cr as n?0.

Therefore, n~1 defines the boundary between forming hemi-

helices and helices.

In Fig. 6 we also report the evolution of the critical loads the

critical loads Phelix
cr and Phemi

cr as a function of h=w for different

modes. The results clearly show that the helix is always the first to

be excited. However, it is important to note that for small values of

h=w the modes are very closely spaced, while as h=w increases, the

critical values for different modes become more and more

separated. Therefore, for high aspect ratio bistrips, helices are

more likely to form and dominate, since they evolve before

hemihelical modes are triggered. In contrast, for low values of h=w
we do not expect to observe helices, since multiple modes are

triggered almost simultaneously.

Mode selection
In this section, we determine which mode grows to dominate

the shape evolution during the release process. Since the stability

analysis above indicates that several competing modes could form

almost simultaneously for low values of h=w, we expect not only

geometric non-linearities, but also the interactions between

different modes to play a role in the mode selection process,

making a rigorous mathematical analysis intractable.

For this reason and to capture the instability beyond its onset we

make the ad-hoc assumption that it is the fastest growing

perturbation mode at the onset of the instability that will dominate

the shape evolution. Although this approach neglects the

contribution of geometric non-linearities and possible interactions

between different modes, it has already been successfully used not

only to determine the mode selected by slender rods [29,31,32]

under a number of different loading conditions, but also to identify

Figure 6. The critical loads for different buckling modes. For a
small h=w ratio, the critical end-to-end distances r for different modes
are very close to one another and difficult to distinguish. Increasing the
aspect ratio by increasing the thickness decreases the critical buckling
load as well as separating the individual modes. To illustrate this
behavior results for four modes and the helix are shown.
doi:10.1371/journal.pone.0093183.g006
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the spatial fluctuations that will grow in theories of phase

separation, for instance [33]. Moreover, we will show that the

predictions obtained using this simple analysis nicely agree with

both our experimental and numerical results.

Specifically, we assume that perturbations in the shape take the

form c exp(stzivn s) [13,30,34–36], where s represents the

growth rate of the mode (see File S1 for details). We then

calculate the growth rate s for a given value of P and vn by

substituting the solution into the Kirchhoff equations to the first

order. When PvPhemi
cr solutions with positive real values of s are

found, identifying those perturbations that grow exponentially

with time. We expect the mode with the highest growth rate s to

dominate the shape evolution and to be the one observed in the

experiments. In contrast, for PwPhemi
cr solutions with imaginary or

negative s are obtained; these will be of the order of the

perturbation itself, cannot grow and hence will not be observed.

Finally, when P~Phemi
cr we find that s~0 and the solution reduces

to the one determined analytically in the stability analysis above.

In Fig. 7 we show the growth rate as a function of the mode

number n for strips with different aspect ratios h=w. The results

clearly show that the fastest growing mode in a strip with h=w~1
is characterized by n~9. In contrast, for a higher aspect ratio strip

with h=w~2 the mode with n~3 is the fastest to evolve and is

expected to dominate. Finally, if h=w further increases, the growth

rate is maximum for nv1, so that the formation of a helix is

expected. These analytical predictions are fully consistent with the

experimental results shown in Fig. 3, where it is clearly shown that

the mode number monotonically decreases as a function of h=w.

Next we identify the boundary delineating the formation of

hemihelices and helices. We find the mode n that has the

maximum growth rate for rods characterized by different values of

prestrain x and cross-sectional aspect ratio h=w. The results are

reported in Fig. 8 as contour map. The dashed lines indicate the

values of n for which the growth rate is maximum and therefore

corresponds to the expected number of perversions np. This

parametric study reveals that the number of perversions in the rod

after bifurcation is only moderately affected by the pre-strain x,

while the aspect ratio h=w is found to have a significant effect,

again consistent with experiment. In particular, the red line in the

plot marks the configurations for which np~1. As highlighted

above, if npv1 the perversion lies outside the ends of the rod, so

that the system deforms into a single helical segment and the

formation of helices is expected during the release process.

Therefore, the red line defines the geometric transition between

hemihelices and helices and the shaded region indicates where

hemihelices form.

Conclusions

Our experimental and modeling studies show that there is a well

defined structural transition between the formation of a helix and

a hemihelix. The helix is energetically preferred over the straight

rod as the load stretching a rod is reduced (see Fig. S10 in File S1),

but other buckling mode instabilities associated with twisting can

intervene preventing the shape evolution from following the lowest

energy path [15]. Instead, these instability modes result in the

formation of hemihelices with multiple perversions even though

their total energies are higher than the simple helix [9,13,15]. We

find that the growth of the buckling mode instabilities depends

principally on the aspect ratio of the rod cross-section with the

fastest growing mode determing the number of perversions

formed. Rods with a high-aspect ratio are less susceptible to

twisting instabilities and so form helices. The perversions once

formed are trapped in higher energy states and can only be

removed by the application of an external set of forces, for instance

rotating one end with respect to the other. Additional perversions

can also be introduced by counter-rotation of the ends as is

common experience with winding and unwinding telephone cords.

Our analysis correctly captures both the trend of perversion

number with aspect ratio as well as the hemihelix to helix

transition as represented on the phase diagram of Fig. 8 and found

experimentally Fig. 3. The fact that the same geometrical features

are predicted to form in either linear or nonlinear elastic materials,

as borne out by finite element simulations [15], indicates that

while the actual number of perversions may differ and the

transition from the hemihelix to helix may occur at a somewhat

different aspect ratio for different materials (see Fig. S9 in File S1),

the formation of hemihelices is not dependent on the material

having a specific constitutive deformation behavior. It is essential,

though, that the material be capable of large strains without

Figure 7. Growth rate s as a function of the mode number n for
three different strips characterized by h=w~5,2,1:5,1, w~3mm,
x~1:5 and L~500mm. The growth rate is determined when the
applied force decreases to P~0:981Phemi

cr .
doi:10.1371/journal.pone.0093183.g007

Figure 8. Contour plots showing the value of n for which the
growth rate is maximum as function to x and h=w. The growth
rates are calculated for P~0:981Pcr. Black dotted lines show the
boundaries between modes with different number of perversions np,
while the red line corresponds to np~1 and separates hemihelices (on
its left) from helices (on its right). For clarity not all the higher modes are
shown.
doi:10.1371/journal.pone.0093183.g008

Structural Transition from Helices to Hemihelices
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failing. Indeed, it is highly probable that the reason hemihelices

with multiple perversions have escaped notice in the past has been

that most man-made materials, unlike elastomers, would fracture

well before these strains could be achieved.

We note from finite element simulations in our earlier work [15]

that perversions have an elastic self-energy. This leads to the

perversions repelling one another and adopting a regular spacing.

Indeed, observations of the stretched bi-strip upon release, some of

which are shown in videos in the supplemental information, reveal

complex transients associated with the perversions. These include

re-adjustment of their positions during release as well as the initial

formation of a single perversion at one end that then moves along

the bi-strip to the other end where it vanishes.

In a wider context, the emergence of intricate and well

controlled patterns in natural slender structures, such as flowers

or leaves, is often the result of specific mechanical instabilities.

However, at present, our understanding of how in-plane stresses

generated by nonuniform growth lead to such 3D complex shapes

is incomplete. Furthermore, there is a need for translating these

rules into simple strategies to engineer flat systems that shape

themselves into desired 3D configurations. Indeed, the original

motivation for this work was to understand which 3D shapes could

be produced from flat elastic strips using one particular set of

simple stretching and joining operations. Much to our surprise, we

discovered that a wide range of possible shapes can be attained in

our simple stressed system, specifically hemihelices with multiple

chirality-reversing perversions formed under certain conditions

rather than the simple helix we had expected. In summary, this

work has shown, experimentally and through analysis, that by

carefully controlling the cross-sectional aspect ratio and the pre-

strain, it is possible to form a helix or a hemihelix with a prescribed

number of perversions. We believe that our findings hold promise

for fully deterministic manufacture of three-dimensional objects

from pre-strained flat parts.

Materials and Methods

Materials
The elastomer strips were cut from silicone rubber sheets

formed by casting a two-part commercial product (Dragon Skin 10

Slow, Reynolds Advanced Materials), between two large parallel

acrylic sheets (20660 cm) held 3 mm apart. Coloring agents

(Silicone pigment, Reynolds Advanced Materials) were added

before mixing. After curing for 7 hours at room temperature, the

top acrylic sheet was peeled away and then the strips were cut to

the desired width using a blade and peeled away from the bottom

acrylic sheet. The glue was also a silicone rubber product (Sil-

Poxy, Reynolds Advanced Materials).

Unloading procedure
The experimental observations of the unloading of the bi-strip

were made under axial loading and free-rotation conditions. This

was achieved by attaching the bi-strips between two thin nylon

fibers, one attached to a fixed frame and the other to a weighted

container free to rotate (Fig. S1 in File S1). The container, which

had a small hole in the bottom, was filled with small metal balls to

stretch the bistrip. As the metal balls ran out of the hole in the

container, the gravitational force on the bi-strip steadily decreased

and the deformation of the bistrip was recorded (Videos S1, S2,

and S3, Figs. S2, S3, and S4 in File S1). Similar experiments but

with neither end permitted to rotate (Videos S4, S5, and S6) and

only one end permitted to rotate (Video S7, Fig. S6 in File S1)

were also performed. Unloading experiments were also performed

under water to dampen vibrations and oscillations (Video S8).

Simulations
The commercial FE software Abaqus FEA was used for the

analysis, employing the the Abaqus/Explicit solver. Three-

dimensional models were built using 3D linear reduced integration

elements (ABAQUS element type C3D8R). The accuracy of each

mesh was ascertained through a mesh refinement study. Dynamic

explicit simulations were performed and quasi-static conditions

were ensured by monitoring the kinetic energy and introducing a

small damping factor. The analysis were performed under force

control. The material model was implemented into Abaqus/

Explicit through user defined subroutine VUMAT. The material

response was captured using the hyper-elastic Gent model [22].

More details on the FE simulations are provided in the File S1.

Supporting Information

File S1 Details for experimental set-up, finite element
simulations and analytical model. This file also contains
Figures S1–S16.
(PDF)

Video S1 Video recording for a hemihelix with multiple
perversions. Both ends are free to rotate.

(WMV)

Video S2 Video recording for a hemihelix with only one
perversion. Both ends are free to rotate.

(WMV)

Video S3 Video recording for a helix. Both ends are free to

rotate.

(WMV)

Video S4 Video recording for a hemihelix with multiple
perversions. Neither end is free to rotate. The geometry and

prestretch are the same as those in Video S1.

(WMV)

Video S5 Video recording for a hemihelix with two
perversions. Neither end is free to rotate. The geometry and

prestretch are the same as those in Video S2.

(WMV)

Video S6 Video recording for a hemihelix with one
perversion. Neither end is free to rotate. The geometry and

prestretch are the same as those in Video S3.

(WMV)

Video S7 Video recording for a helix. One end is free to

rotate while the other is fixed. The geometry and prestretch are

the same as those in Video S3.

(WMV)

Video S8 Video recording for a hemihelix with one
perversion under water. Both ends are free to rotate. The

geometry and prestretch are the same as those in Video S2.

(WMV)
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