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Abstract

Much research on coral reefs has documented differential declines in coral and associated organisms. In order to
contextualise this general degradation, research on community composition is necessary in the context of varied
disturbance histories and the biological processes and physical features thought to retard or promote recovery. We
conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with
known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other
variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15
years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral
bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based
on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into
our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs.
Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs,
compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral
cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes,
or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that
best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish
biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to
mitigate local stressors will be imperative to encouraging coral communities to persist into the future.
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Introduction

The last two decades of coral reef research have seen a

proliferation of publications charting the declining condition of

coral reefs. These include reports of reductions in coral cover

across entire regions or oceans [1,2,3], changes in coral

community composition [4,5,6,7], and associated losses in coral

reef fish diversity and abundance [8,9]. One way to better

understand these changes is through research on community

composition of reefs with differing disturbance history, which

should also quantify ecological processes and physical features that

may be important for reef condition [10]. Coral reef communities

are known to vary with exposure to wave energy and the ‘zone’ of

the reef on which they occur, such as the flat, crest or slope

[11,12,13]. These differences are likely driven by variability in a

range of natural factors, such as water movement, light

penetration and temperature. However, whether these physical

factors interact with disturbances to affect coral communities is

poorly understood. Furthermore, the structural complexity of the

reef habitat can differ greatly by reef zone and exposure, and may

display varying vulnerability to structural collapse following severe

disturbance [14,15,16]. A high level of structural complexity is

fundamental to the persistence of a range of other organisms and

ecological processes on coral reefs [reviewed by 17]. Therefore,

varying levels of structural complexity may influence coral

communities in the context of disturbance history, likely through

indirect pathways. The majority of studies assessing coral

condition in the context of disturbance and recovery have focussed

on only one reef zone or level of exposure and many key variables,

such as various ecological processes or physical attributes, are

often not quantified [18].

Coral cover, when evaluated in isolation, is a fairly crude

measure of coral reef condition, and may mask other changes in

ecological processes or species composition [19,20]. Indeed, many

disturbances on coral reefs are non-random, with species-specific

susceptibility leading to disproportionate declines in some taxa,

resulting in shifts in the relative composition of species

[4,21,22,23,24]. Importantly, these compositional shifts can persist

through time [5], and may even lead to different species

dominating a recovered reef [6,7]. Although assessing coral

species or genera composition is often informative, the extremely

high diversity of coral reefs (the Great Barrier Reef, Australia has

.450 known species of coral, for example) has led to various

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e101204

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0101204&domain=pdf


attempts to group species into ecologically meaningful categories.

Categorising corals by growth morphology is one common way to

group species [25]. For example, Wilson et al. [26] assessed

recovery of corals in the inner Seychelles islands based on coral

growth morphologies, and identified a shift from branching to

encrusting forms through time. The use of coral trait information,

such as growth rate, reproductive mode and growth form, has

recently been used to identify four dominant life history strategies

of corals that are globally consistent [27]. Importantly, these life

history strategies (competitive, weedy, generalist and stress-

tolerant) should reflect how groups of corals both respond to

and recover from disturbances. For example, in a 20 year

assessment of Kenyan reefs, stress-tolerant and weedy species

varied least in response to a combination of fishing and bleaching

disturbances, whereas competitive species became a much smaller

component of the assemblage [28].

The Great Barrier Reef (GBR), Australia, is not immune to the

general degradation of reef condition reported for many other reef

regions of the world. Indeed, a series of large scale and influential

publications have documented the declining coral cover and

condition of the GBR, particularly in the mid to southern sections

and in-shore habitats [19,29,30,31]. This is of major concern as

the GBR is one of the largest reef systems in the world, supports an

annual revenue of ,AU$5.5 billion dollars through tourism and

fisheries, provides a wide range of other ecosystem goods and

services, and is a UNESCO World Heritage Area [32,33]. Aside

from the chronic impact of declining water quality following

European clearance and farming of adjacent catchments [34], the

Great Barrier Reef has experienced major large scale disturbances

to coral cover in the form of predatory crown-of-thorns starfish

(COTS) outbreaks, tropical cyclones, coral bleaching events and

coral disease [31]. Of these, COTS outbreaks and cyclones are

thought to have led to the most significant declines in live coral

cover [35]. Despite these substantial disturbances, the Great

Barrier Reef should be a very resilient system, capable of recovery.

It is extremely large (,3000 individual reefs, spanning 2300

kilometres), the reefs are relatively well connected [36], there is

substantial deep water coral habitat [37], it is adjacent to a sparsely

populated, affluent human population with relatively low reliance

on fish protein [38], and good fisheries management and

governance structures are in place [39]. With this high potential

for recovery, it is important to assess the composition of reef

communities, and assess key ecological processes that may

correlate with these compositions, on reefs that have been exposed

to varying disturbance histories.

Here we assessed the spatial community composition of five

mid-shelf reefs of the Great Barrier Reef with known recent

disturbance histories. Two of the reefs had relatively undisturbed

communities for at least 15 years prior to the study, whereas coral

cover on three of the reefs had been severely impacted by COTS

and coral bleaching approximately 7–10 years prior to our

surveys. Of these, only one of the reefs appeared to be recovering

well, based on independent surveys. We assessed reef condition on

these five reefs including data on coral cover, coral composition,

coral recruit density, reef structural complexity and fish assem-

blages. For each reef we surveyed three reef zones (slope, crest and

flat), at each of three sites on the wave exposed side of the reefs and

at three sites on the sheltered side of the reefs. The extensive data

we collected allowed a spatial assessment of the community

composition of these reefs, in the context of known disturbance

histories. Specifically we aimed to answer the following research

questions: 1) How does coral cover, composition and structural

complexity vary among reef zones and exposure levels on

degraded or recently recovered reefs compared to reefs subject

to little recent disturbance? 2) Which ecological predictor variables

best correlate with coral compositional differences among these

reefs?

Methods

Study sites
We surveyed five mid-shelf reefs on the central section of the

Great Barrier Reef near the city of Townsville (Fig. 1a). These

reefs were chosen based on prior knowledge of their medium-term

disturbance history [40,41]. Wheeler and Davies reefs had been

relatively undisturbed in the 15 years prior to the current surveys.

Conversely, coral cover on Rib, Trunk and John Brewer reefs was

severely impacted by a COTS outbreak between ,1999–2003

and a coral bleaching event in 2001–02 [40,41], leading to over

80% mortality of live coral, down to ,5% absolute cover (Fig. 1b).

Importantly, there was also variability in recovery rates; Rib reef

appeared to be recovering its coral cover fairly rapidly, whereas

Trunk and John Brewer reefs were showing much slower recovery

[40,41]. These differences in disturbance history and recovery

rates provided a suitable design for a spatial comparison of

differences in community composition and potential correlates of

these differences. Aside from disturbance history, all other

variables were held as constant as possible. For example,

substantial variation in community composition of coral reefs of

the Great Barrier Reef is well documented both across the shelf

(inner-mid and outer shelf reefs) and with latitude along the length

of the reef [11,31,42]. For that reason, all of the reefs we chose are

in the same reef shelf position (mid-shelf) and of a restricted

latitudinal range. Despite this, there is still potential for differences

in hydrodynamic regimes and geographic features among reefs,

which are hard to control for.

Wheeler reef is in a no-take ‘green’ zone of the GBR, whereas

the other four reefs are in ‘yellow’ and ‘blue’ zones where fishing

activities are allowed. The effects of the zoning on fish assemblages

of the GBR are generally related to a small suite of target

predatory species [43], with some indirect effects on fish prey [44].

Importantly, herbivorous fish species, which are thought to be

important for reef recovery dynamics [29], are not commonly

targeted by fisheries on the GBR. There is some evidence of

reduced impacts of COTS in green zones of the GBR [45], with

assessments of coral cover between no-take and fished reefs soon

after an outbreak showing higher cover in no-take zones [32].

However, other work has shown no difference in coral cover

between no-take and fished zones following the effects of various

disturbances [46].

We examined the influence of wave exposure and reef zone,

surveying six sites at each of the five reefs between November 2010

and January 2011. The predominant wave energy influencing

reefs of the GBR comes from the south-east, particularly during

the southern hemisphere winter trade wind months. Therefore, to

capture any influence of exposure, we surveyed three sites on the

south-east facing, wave exposed side of the reefs, and three sites on

the north-east facing, wave sheltered side of the reefs. At each site,

we collected data from 4 replicate transects in three different zones

(slope, crest and flat). Surveys on the reef slope were between 7–

9 m depth, parallel to the reef crest. The reef crest was well

defined on all sites and survey depth was generally between 2–3 m

depth. The reef flat communities were surveyed approximately

100 m back from, and parallel to, the reef crest.

All fieldwork was observational, non-extractive, data collection,

and was conducted under research permit number G10/33239.1,

issued by the Great Barrier Reef Marine Park Authority.
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Figure 1. Location of studied reefs and historical patterns of coral cover through time. a) Map of the surveyed reefs. The green dots are
the undisturbed reefs, the red dots are the disturbed reefs that did not recover, and the blue dot is the disturbed reef that recovered. b) Coral cover
(%) estimates from the 5 reefs from 1995 to 2009 providing the disturbance history context for the spatial data collected in this study. Data for Trunk
reef are from Pratchett et al. [40], and for Wheeler, Davies, Rib and John Brewer reefs are from the AIMS Long Term Monitoring Program [41].
doi:10.1371/journal.pone.0101204.g001
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Assessment of benthic and fish communities
We surveyed the benthic and fish communities along four 50 m

replicate transects within each zone of each site. This resulted in a

rich dataset of 72 transects per reef and 360 across all five reefs.

The benthic composition was surveyed using the point intercept

method, where the substrate directly below the transect tape was

surveyed every 50 cm along each transect tape. Categories

included sand, rubble, pavement, algae, hard and soft coral, and

other benthic invertebrates (e.g. sponges). Hard corals were

surveyed to the genus level and growth form noted, whereas

algae were surveyed to broad functional classifications, such as

turf, crustose coralline algae (CCA) and fleshy macroalgae. The

density of coral recruits (colonies ,1 cm diameter) and juvenile

corals (colonies between 1 and 5 cm diameter) was quantified in a

10 m by 1 m belt transect at the start of each 50 m transect tape.

The structural complexity of the reef at each transect was

estimated visually on a six point scale, following Polunin & Roberts

[47]. The scale ranges from no vertical relief, to exceptionally

complex habitats with numerous caves and overhangs. This

measure of structural complexity captures a broad picture of the

structure, has been shown to correlate well with a range of other

structural complexity measurement techniques, and to correlate

with the density and diversity of coral reef fish assemblages [48].

All diurnally active, non-cryptic, reef associated fish species .

8 cm total length (TL) were surveyed. Larger more mobile species

were counted as transects were laid in a 5 m wide belt, and small

territorial species (mostly pomacentrids and some labrids) were

surveyed on the return pass along the transect in a 2 m wide belt.

Individual fish were identified to species, their abundance counted

and their size estimated to the nearest centimetre (TL). Length

estimation was calibrated at the start of each day’s diving by

estimating the length of a random selection of PVC pipes. A total

of 261 species of fish from 27 families were recorded in the surveys.

Fish survey data were converted to biomass using published

length-weight relationships [49,50]. Species were assigned to

feeding groups (corallivores, herbivores, invertivores, mixed diet,

piscivores) based on the literature and dietary information [50].

Data analyses
Broad differences in the percent cover of live coral, structural

complexity and the coral genus richness per reef were initially

assessed using one-way ANOVAs and Tukey’s post-hoc tests to

identify which reefs were driving any differences. A more detailed

assessment of the variation in these three response variables was

assessed using a hierarchical model, with wave exposure (exposed

and sheltered) and zone (slope, crest and flat) as fixed factors that

also include their interaction, and reef as a random effect.

Normality of the residuals and homogeneity of variances were

assessed by reviewing plots of residuals against fitted values and Q-

Q plots, and all assumptions of the test were met.

We classified our coral genera/growth form data into the four

life history strategies defined by Darling et al. [27] (Table S1). We

used the direct genera classifications presented in Darling et al.

[27] where available, and the description of the categories for the

remaining coral genera. Competitive corals are described as large,

branching and plating species that grow quickly, occur at shallow

depths and reproduce by broadcast spawning. Weedy corals are

described as species that can reproduce by brooding and have

smaller colony sizes. Stress-tolerant corals are slow-growing species

that reproduce by broadcast spawning and have primarily

massive/domed morphologies, large corallites and high fecundity.

Generalist corals include an assortment of species that show some

overlap with the competitive, weedy and stress-tolerant life

histories. We included a fifth category, other, which included

corals that we could not classify into one of the four life history

groups with genus/growth form data.

We assessed differences in square root transformed coral

composition (based on the above life history categorisation) among

the reefs, zones and exposure levels using non-metric multidimen-

sional scaling (MDS) on a Bray-Curtis similarity matrix. We used a

three-way PERMANOVA, with interactions (maximum permu-

tations = 9999), to test whether the coral group composition

differed significantly among sites experiencing different levels of 3

factors: reef, zone (slope, crest, flat) and exposure (exposed,

sheltered). We ran the same analyses using the original coral

genera/growth form data as a comparison to the results of the life

history categorisation of the corals.

We assessed broad differences among the reefs in a range of key

variables that are known to have the potential to influence coral

community dynamics using one-way ANOVAs. These variables

included total fish biomass (kg/ha), herbivore biomass (kg/ha),

number of coral juveniles (1–5 cm), number of coral recruits (,

1 cm), macroalgae cover (%), fish species richness per sites, and

CCA cover (%). We used Tukey’s post-hoc tests to identify which

reefs drove any identified differences. Assumptions of the test were

assessed by reviewing plots of residuals against fitted values and Q-

Q plots. To assess which combination of these predictor variables

was best correlated with the site level patterns in the coral

communities, we first normalised the predictor variables listed

above to put them on the same scale, and log transformed them to

improve the spread of the data. We then used the rank-correlation

BEST BIO-ENV routine to assess which combination of the

predictor variables best correlated with the patterns in the coral

life history community data. The technique computes rank-

correlations for all possible combinations of predictor variables,

and converges on the combination with the strongest relationship

with the dependent community composition dataset [51]. The

significance of the relationship between the predictor variables and

the coral life history composition data was assessed using a

permutation test, that randomly reassigns sample lables multiple

times to create a null distribution of potential correlation

coefficients to compare the actual value to. This analysis was

performed on the entire dataset, and for the three disturbance

categories (undisturbed, recovered, unrecovered) of reefs separate-

ly to see if the recovered reef had a different set of predictor

variables from the unrecovered reefs. Because the BEST BIO-

ENV routine does not provide information on the direction of

influence of predictor variables, we also performed a redundancy

analysis (RDA) to examine the directions of the relationships

between the predictor variable data matrix and the coral

community data matrix.

Results

Assessing broad differences at the reef scale identified significant

differences in coral cover (F4,85 = 32.89, p,0.001), structural

complexity (F4,85 = 2.98, p = 0.024), and coral genus richness

(F4,85 = 14.19, p,0.001) (Fig. 2). Specifically, the undisturbed

reefs, which were similar to each other for all three variables,

generally exhibited significantly higher coral cover, structural

complexity and coral genera richness than the two unrecovered

reefs (Trunk and John Brewer; Fig. 2). In comparison, the

recovered reef (Rib) had similar coral cover and structural

complexity to the undisturbed reefs (Wheeler and Davies), but

was only similar to one of the undisturbed reefs (Wheeler) in terms

of coral genera richness. The total coral genus richness recorded at

the reef level was 39 and 43 for Wheeler and Davies reefs, 36 for

Rib reef, and 27 and 30 for John Brewer and Trunk reefs.

Coral Reef Community Composition in the Context of Disturbance History
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Assessing coral cover, structural complexity and coral genus

richness among zones and wave exposure treatments exposed

more of the variation in the data (Fig. 3). The random factor, reef,

separated out the reefs similar to the one-way ANOVA above with

respect to disturbance history (Table S2). There was a significant

effect on coral cover among reef zones and for the interaction

among zones and exposure (Table 1). Coral cover was generally

higher on sites in reef crest and slope habitats, compared to reef

flat habitats (Table 1, Fig. 3a). Coral cover was 2 to 3 times lower

on the unrecovered reefs, than the undisturbed and recovered

reefs, regardless of zone or exposure level, indicating that all of

these environments are vulnerable to coral loss through COTS

and/or bleaching (Fig. 3a). For the recovered reef, live coral cover

was comparable to the undisturbed reefs across all zones and

exposures, except for wave sheltered reef flat environments and

exposed reef slopes, where it was lower (Fig. 3a).

For structural complexity there were also significant effects of

reef zone and the interactions between exposure and zone

(Table 1). Overall structural complexity was substantially lower

on the reef flat habitats than reef crest and slope habitats, and this

was particularly the case for exposed locations (Fig. 3b). Differ-

ences in structural complexity among sites associated with

disturbance were restricted to the reef slope habitats and the crest

habitats on sheltered sides of reefs (Fig. 3b). The structural

complexity of the recovered reef generally fell somewhere between

that of the undisturbed and unrecovered reefs (Table S2, Fig. 3b).

There were significant differences for coral genus richness

values among sites, driven by wave exposure and reef zone

(Table 1). Coral genus richness on unrecovered reefs was lower

than on undisturbed reefs at all reef zones and exposure levels, and

lower than on recovered reefs on the reef flat and sheltered slope

sites (Table S2, Fig. 3c). The recovered reef had similar levels of

coral genus richness as the undisturbed reefs for the reef flat sites,

but lower values for the reef crest and slope habitats, although in

the sheltered slope environment it was approaching the levels of

the undisturbed reefs (Fig. 3c). For the undisturbed reefs, richness

was highest on the reef slope and sheltered crest habitats and

lowest on the reef flat and exposed crest habitats (Fig. 3c).

Figure 2. Variation in: a) coral cover (%), b) structural
complexity, and c) coral genus richness among reefs. Red bars
are unrecovered reefs, blue bar is the recovered reef and green bars are
undisturbed reefs. Bars represent means per site 6standard error.
Horizontal lines represent homogeneous subsets from post hoc
comparisons using the Tukey test.
doi:10.1371/journal.pone.0101204.g002

Figure 3. Influence of zone and exposure on coral cover,
richness and structural complexity among disturbance group-
ings. Variation in: a) coral cover (%), b) structural complexity, and c)
coral genus richness among disturbance category, reef zones and wave
exposure levels. Bars represent means per site 6 standard error.
doi:10.1371/journal.pone.0101204.g003
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The coral communities based on life history groups highlight

substantial differences in composition among reefs, exposure and

zone (Fig. 4a, Table 2). Pairwise tests among the reefs grouped

them by disturbance history; the undisturbed reefs (Wheeler and

Davies) were similar, as were the two unrecovered reefs (John

Brewer and Trunk), while the recovered reef (Rib) was different to

all other reefs except Wheeler (Table S3). The sites at unrecovered

reefs all cluster away from the other reef sites, with the lowest

values of cover for all coral life history strategies. The undisturbed

sites generally had a mix of coral life history strategies dominating,

particularly for the reef slope habitats. Conversely, the recovered

reef sites, particularly for reef slope and crest habitats, are skewed

towards the competitive coral life history group, which likely helps

explain why many of these sites have a lower genera richness than

the undisturbed sites. Assessing the cover of these life history

groups by treatment helps uncover these patterns in more detail.

Competitive corals were responsible for the majority of cover on

the recovered reef, particularly in the reef slope and crest habitats

(Fig. 4b, Table S4 and S5). Indeed, in the slope habitats, this group

of corals was far more dominant on the recovered reef than on the

undisturbed reefs. Conversely, the other groups of corals (lumped

into non-competitive here) had substantially higher cover on

undisturbed reefs in the reef slope habitats and sheltered crests

(Fig. 4c, Table S4 and S5). Much of this difference in non-

competitive corals was driven by stress tolerant genera, with some

generalist, weedy and unclassified (other) corals also contributing,

particularly in exposed slope habitats (Table S4 and S5, Fig. S1).

Although grouping corals into these life history categories helps to

explain a complex community with relatively few groups, it is

important to assess if very different results occur if raw coral

genera data are used. Analysing the data in the same way using

coral genera level data produced a very similar ordination, with

the three disturbance categories separating out, and the branching

and tabular Acropora corals accounting for of the cover in the

recovered reef category (Fig. S2).

Assessing variables that are thought to influence reef dynamics

at a broad reef scale highlighted significant differences in fish

biomass, herbivore biomass, the number of juvenile corals and the

cover of macroalgae (Table 3). Fish biomass and herbivore

biomass were both highest on Wheeler reef. Of particular note on

the only disturbed reef to have recovered in our study (Rib reef),

the number of juvenile corals was the greatest and the cover of

macroalgae was the lowest of all the reefs studied (Table 3). The

BEST BIO-ENV analyses showed that considerable amounts of

the variation in coral composition (based on cover of different life

history groups) were associated with the predictor variables

(Table 4). For all reefs combined, the best set of predictor

variables associated with patterns in the coral community were

herbivore biomass (most associated with recovered and undis-

turbed reefs and competitive coral cover on the RDA), fish species

richness (most associated with other types of corals on undisturbed

reefs on the RDA), and the cover of macroalgae, which was most

associated with unrecovered reefs (Table 4, Fig. S3). In the subset

of sites on undisturbed reefs, macroalgae cover alone had a

correlation of 0.52 with the coral community composition. For the

reef that recovered, fish biomass, coral juveniles and fish species

richness produced a correlation of 0.60 with the coral community.

For unrecovered reefs, a correlation of 0.29 was found, including

the variables herbivore biomass, the density of coral juveniles and

fish species richness (Table 4). Interestingly, herbivore biomass was

negatively correlated with coral juvenile density (rs = 20.28, p,

0.01), but positively correlated with total hard coral cover

(rs = 0.41, p,0.001).

Discussion

We found substantial differences among reefs, zones and

exposure for coral cover, structural complexity and the richness

of coral genera. Although the recovered reef appeared to be

reaching coral cover levels of the undisturbed reefs, the coral

composition differed substantially, particularly in reef slope and

crest habitats. This may support previous studies showing long-

Table 1. Sources of variation in coral cover, structural complexity and coral genus richness among zones and exposure.

Value Std.Error Df t-value p-value Sig

a) Hard coral cover

(Intercept) 38.99 6.59 80 5.920 0.0000 ***

Flat 216.78 3.29 80 25.105 0.0000 ***

Slope 1.05 3.29 80 0.319 0.7509

Sheltered 0.07 3.29 80 0.020 0.9839

b) Structural complexity

(Intercept) 2.34 0.15 80 15.959 0.0000 ***

Flat 21.11 0.14 80 27.660 0.0000 ***

Slope 0.53 0.14 80 3.687 0.0004 ***

Sheltered 20.04 0.14 80 20.249 0.8043

c) Coral genus richness

(Intercept) 7.87 2.06 80 3.812 0.0003 ***

Flat 20.27 1.30 80 20.205 0.8378

Slope 7.80 1.30 80 6.006 0.0000 ***

Sheltered 3.80 1.30 80 2.926 0.0045 **

Hierarchical model results assessing: exposure (exposed, sheltered); and zone (flat, crest, slope) and their interaction, with reef as a random factor for a) coral cover (%),
b) structural complexity, and c) coral genus richness. Significance levels: ***,0.001, **,0.01, *,0.05. Crest and exposed are the intercept. The interaction of zone and
exposure had a significant impact on hard coral cover and structural complexity.
doi:10.1371/journal.pone.0101204.t001
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term shifts in coral composition following disturbances and

recovery [5,6,7], or may represent a different natural climax

community on this reef. The composition and cover of unrecov-

ered reefs was quite depauperate, even ,1 decade post-

disturbance. Interestingly, the ecological predictor variables we

collected were quite strongly correlated with these coral compo-

sition patterns, suggesting predictable relationships that may be of

use for management.

Rib reef was the only one of our three disturbed reefs that had

demonstrated substantial recovery of live coral cover (inferred

from the AIMS long term monitoring data and the status of the

reef in our spatial surveys). The recovery time period (,1 decade)

is similar to other published examples of rapid reef recovery

following severe disturbance [52,53,54,55]. The broad reef

attributes unique to Rib reef were: a higher density of juvenile

corals than at any other reef, and lower cover of macroalgae.

Juvenile coral survivorship has been shown to be key to reef

recovery dynamics [55] and low levels of macroalgae cover can

also greatly increase the rate of recovery of hard coral cover [26].

Rib reef has previously been shown to have high coral recruitment

(especially Acropora) and low coral recruit mortality [56]. Rib reef

sits within the Palm Passage, a major zone of GBR water inflow

from the Coral Sea [57], and it has been suggested that high coral

recruitment rates could be explained by water exchange between

Figure 4. Differences in coral community composition by life history strategy with disturbance, zone and exposure. a) Non-metric
multidimensional scaling analysis of coral group cover (%) based on life history categorisation. Colour and shape of symbols represent disturbance
category, reef zone and wave exposure. Vectors represent the relative contribution of the coral groups to the observed variation among sites. b)
Competitive coral cover (%) among disturbance category, reef zone and wave exposure. c) Non-competitive (weedy, stress-tolerant, generalist and
other) coral cover (%) among disturbance category, reef zone and wave exposure. Bars represent means per site 6 standard error.
doi:10.1371/journal.pone.0101204.g004
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the outer shelf and Rib Reef along the Palm Passage [58].

Furthermore, high recruit survivorship and potentially retarded

macroalgae growth may be aided by lower levels of terrestrial

influence, due to the separation of Rib reef from the inshore

environment by the Palm islands [59]. Such geological and

hydrological explanations for differing reef dynamics are poorly

understood, but may be important variables to understand and

incorporate into management planning.

The substantial compositional differences observed in our data

beg the question as to whether these are natural differences, slow

successional processes that will converge through time, or if these

differences in composition are likely to be permanent. The

composition of corals at Rib reef reflect recovery back to

compositions seen on that reef in the past. Data from Rib reef

in the 1980’s and 1990’s indicate a dominance of (plating) Acropora

corals [41,60], during a time when the reef had been recovering

from recurrent COTS impacts. Interestingly, dominance by

plating Acropora corals was also apparent for John Brewer reef in

the 1990’s [41], yet this reef had low coral cover, including plating

Acropora in the current spatial surveys. Succession theory suggests

that while biomass or cover may recover rapidly, it can take a lot

longer for species diversity and community composition metrics to

reach similar levels as undisturbed communities [61,62,63]. A

recent temporal study of 6 reefs on the Great Barrier Reef indicted

that reefs recovered coral cover faster than reassembling

composition, and some reefs appeared unlikely to reassemble

their pre-disturbance compositions [64]. The authors suggested

that many reefs are unlikely to return to pre-disturbance

compositions if disturbance events become too frequent. Indeed,

coral genera responses to many disturbances are non-random,

with some genera being considerably more susceptible than others

[4,65,66], and non-random re-shuffling of coral composition may

lead to longer-term novel ecosystem configurations that are

unlikely to continue to recover to pre-disturbance configurations

[67]. It is not possible to distinguish among these various

possibilities for differing compositions with snapshot spatial data,

such as that presented here. However, this is clearly a topic in need

of substantial research attention given the increasing frequency of

disturbances impacting coral reefs.

Assigning coral genera and growth forms into life history

groupings provided a mechanism to simplify the information

presented, and highlights some interesting patterns in the data.

Most of the cover recorded for Rib reef was associated with

competitive corals, which are principally Acropora species. This

genus is known to be fast growing, and has been shown to

underpin rapid recovery trajectories [54,55]. However, this finding

Table 2. Results of PERMANOVA test on coral life history strategy data.

Source df SS MS Pseudo-F P(perm)

reef 4 33242 8310.4 27.267 0.001

expo 1 1232 1232 4.0422 0.011

zone 2 17552 8775.8 28.795 0.001

reef*expo 4 3539.5 884.88 2.9034 0.001

reef*zone 8 13766 1720.7 5.6458 0.001

expo*zone 2 2353.4 1176.7 3.8609 0.003

reef*expo*zone 8 3097.5 387.19 1.2704 0.18

Residuals 60 18286 304.77

Total 89 93068

Factors: reef (Wheeler, Davies, Rib, Trunk, John Brewer); expo = exposure (exposed, sheltered); and zone (flat, crest, slope).
doi:10.1371/journal.pone.0101204.t002

Table 3. Variation in total fish biomass, herbivore biomass, number of coral juveniles, number of coral recruits, macroalgae cover,
fish species richness, and CCA cover among reefs.

Undisturbed Recovered Unrecovered

Wheeler Davies Rib John Brewer Trunk
Significant differences
(p-value,0.05)

Fish biomass (kg/ha) 993.6 (6123.4) 771.8 (697.2) 625.0 (677.1) 595.7 (679.5) 478.7 (662.4) Wheeler . John Brewer, Rib, Trunk

Herbivore biomass (kg/ha) 566.1 (647.0) 453.4 (657.3) 387.4 (647.2) 343.5 (653.6) 265.5 (631.5) Wheeler . John Brewer, Trunk

Number of coral juveniles
(,5 cm) per site

46.1 (64.6) 63.1 (64.6) 96.6 (69.1) 60.8 (66.0) 59.1 (67.2) Rib . Davies, John Brewer, Trunk,
Wheeler

Number of coral recruits
(,1 cm) per site

1.7 (60.3) 2.0 (60.4) 1.6 (60.3) 1.2 (60.3) 1.6 (60.4) -

Macroalgae cover (%) 5.3 (61.4) 7.8 (61.7) 0.7 (60.2) 9.9 (61.4) 12.7 (62.5) Rib , Davies, John Brewer, Trunk,
Wheeler

Fish species richness per site 51.3 (62.3) 50.4 (62.3) 55.5 (64.0) 52.2 (63.2) 47.7 (62.7) -

CCA cover (%) 9.7 (61.4) 14.9 (61.6) 12.2 (61.0) 12.0 (61.3) 10.7 (61.6) -

The values are means per site 6 standard error. The last column highlights significant differences among the reefs.
doi:10.1371/journal.pone.0101204.t003
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contrasts with the trajectory of the competitive life history group

through a major disturbance event in Kenya, where recovery rates

were slow, particularly in heavily fished sites [28]. In our data, the

cover of competitive corals on reef slope habitats of the recovered

reef exceeded the cover recorded on the undisturbed reef, which

may reflect the space available for rapid colonisation and growth

following a large disturbance. Indeed, Graham et al. [18] found

that coral recovery rates were fastest when coral cover had been

reduced the most, and hence more space was available. The

undisturbed reefs had higher cover of the non-competitive life

history strategy coral groups, reflective of the higher diversity on

these reefs. Interestingly, stress-tolerant groups of corals had

substantially lower cover on both the unrecovered reefs and

recovered reef, than the undisturbed reefs, aside for on reef flat

habitats. Darling et al. [28] found that the stress-tolerant group of

corals fared well in response to coral bleaching and fishing impacts

in Kenya. COTS are known to be fairly selective in their feeding

on different genera of corals, and some of the corals they actively

select (such as Favites and Montipora) are in the stress-tolerant group

[22], indicating that this type of disturbance has the potential to

greatly reduce cover of even the corals that are thought to be

tolerant to other stressors. Similar to the findings of Darling et al.

[28], we found that weedy coral taxa were fairly well represented

on the recovered reef, for example in the exposed crest and

sheltered slope habitats. Repeating the analysis with the coral

genera community data produced a very similar ordination,

indicating that the life history groupings provided a useful

representation of the community response to disturbance. As

mentioned above, it is hard to say whether our reefs with different

recent disturbance histories would have had similar coral

compositions prior to disturbance. Although the size, latitude

and shelf position of the reefs was held as consistent as possible in

our design, other factors such as hydrological and geographic

variables may be important.

Our BEST BIO-ENV and RDA results highlighted strong

associations between sub-sets of our predictor variables and

patterns in coral community structure in our study. While the

predictor variables included were selected as they are known to be

potential drivers of reef community dynamics, it should be noted

that our predictor variables could be both causes and conse-

quences of the observed differences in coral communities. When

all the reefs were included, the most important variables were

herbivore biomass and fish species richness, which were higher on

undisturbed and recovered reefs, and macroalgae cover, which

was generally higher on unrecovered reefs. Higher herbivore

biomass is known to negatively influence macroalgae cover

[68,69], and grazing should be beneficial to coral recruitment

and survival [70]. Similarly, fish species richness, can be an

important determinant of ecosystem function on coral reefs [71]

and was found to be one of the key factors influencing why some

GBR reefs enter a phase shift to algae and fail to recover, whereas

others do not [42,72]. However, fish species richness is also

responsive to changes to benthic condition [8,9,15], making it

hard to tease out cause and effect in these data. When solely

assessing undisturbed reefs, macroalgae cover alone was strongly

correlated with coral community patterns. Competition between

macroalgae and corals is known to influence benthic community

dynamics on coral reefs [73], and in the absence of disturbance

may be one of the dominant processes shaping community

composition. Interestingly, the strongest correlation was for the

reef that had recovered it’s coral cover, with fish biomass, coral

juvenile density and fish species richness, all important variables.

Fish biomass has recently been shown to mediate a range of

processes and ecosystem state variables in coral reefs, with very

low levels of biomass expected to retard the ability of reefs to

recover [20]. The fish biomass recorded for the GBR here is

relatively high and above the levels at which many important

ecological processes are thought to be lost [20]. The recovered reef

(Rib) had the highest densities of juvenile corals, which has been

shown to be important for reef recovery [55]. The weakest

correlation was for the unrecovered reefs, with herbivore biomass,

juvenile coral density and fish species richness selected as

important variables.

The potential for an interaction between herbivore biomass and

juvenile corals could be important for degraded reefs. Similar to

Trapon et al. [74], we found a negative correlation between

herbivore biomass and juvenile coral density across our study sites.

However, we also found a positive correlation between herbivore

biomass and adult coral cover. Similar to the Caribbean [75], the

relationships between herbivore biomass, algal cover and coral

survivorship appears to be complex in the Indo-Pacific region,

although the beneficial effects of controlling algae are likely to be

most important in influencing positive trends in live coral cover

[26].

Reef zonation is well known to influence both coral cover and

the composition of species present [11], and was responsible for a

substantial amount of the variation in our data, whereas wave

exposure was only responsible for a small amount of variation.

The highest coral cover for the undisturbed and recovered reefs

was on the reef slope and crest, with the sheltered slope

environment appearing to have the lower cover. Reef flat

environments had the lowest cover overall. Structural complexity

and coral genera richness were generally highest on the slope, then

the crest and lowest on the flat. The reef flat environment, which

had the lowest level of coral cover, likely has high wave energy and

water motion, factors that are known to influence coral growth

form and species composition [76]. Structural complexity was

collinear with live coral cover in our data, so could not be used as a

Table 4. BEST BIO-ENV results for all reefs combined and the three disturbance categories separately.

Sites Rho p-value Variables selected

All 0.315 ,0.001 herbivore biomass, fish species richness, macroalgae cover

Undisturbed 0.515 ,0.001 macroalgae cover

Recovered 0.599 ,0.001 fish biomass, coral juveniles, fish species richness

Unrecovered 0.288 ,0.001 herbivore biomass, coral juveniles, fish species richness

Potential predictor variables included were fish biomass, herbivore biomass, number of coral juveniles, number of coral recruits, macroalgae cover, fish species richness
and CCA cover. Rho value is the spearman rank correlation, or amount of variation in coral composition/cover associated with the selected predictor variables. P-value is
calculated from a permutation test.
doi:10.1371/journal.pone.0101204.t004
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predictor variable. Live coral does contribute directly to structural

complexity, but complexity is also provided by the structure in the

underlying matrix of the reef [77]. Structural complexity is known

to be important to a range of ecological groups and processes on

coral reefs [17,78], and the reduced complexity observed on wave

sheltered reef slope and crest sites of the unrecovered reefs may

slow rates of eventual recovery on those reefs.

Shortly after the surveys reported here were conducted, cyclone

Yasi, a very large category 5 storm passed over the study reefs and

caused extensive damage to both coral cover and the structural

complexity of the reefs [80]. Another category 5 cyclone (cyclone

Hamish) had damaged a 500 km section of the southern GBR in

2009 [79]. Furthermore, a new COTS outbreak has been

developing in the northern GBR [41]. The frequency of these

acute impacts and the effects of coral bleaching and disease, are

major concerns for the condition of the GBR, and the longer-term

trajectories for coral cover indicate ongoing loss [29,30,31]. Many of

these impacts, such as cyclones and bleaching, are difficult to

manage locally, but policies to mitigate local threats should give the

reefs the best chance possible of being resilient and bouncing back

from increasing disturbance regimes [19,80]. Fishing is already well

managed on the GBR [81]. Improving water quality, including

terrestrial pollutants, sediments and nutrients, should be a priority

given evidence of inshore reef degradation and links between water

quality and COTS outbreaks [82]. Furthermore, water quality can

influence macroalgae cover [83] and coral recruitment and

survivorship [84], two of the key variables we identified as related

to patterns of coral community structure in this study.
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