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Abstract

Understanding how changing climate, nutrient regimes, and invasive species shift food web structure is critically important
in ecology. Most analytical approaches, however, assume static species interactions and environmental effects across time.
Therefore, we applied multivariate autoregressive (MAR) models in a moving window context to test for shifting plankton
community interactions and effects of environmental variables on plankton abundance in Lake Washington, U.S.A. from
1962–1994, following reduced nutrient loading in the 1960s and the rise of Daphnia in the 1970s. The moving-window MAR
(mwMAR) approach showed shifts in the strengths of interactions between Daphnia, a dominant grazer, and other plankton
taxa between a high nutrient, Oscillatoria-dominated regime and a low nutrient, Daphnia-dominated regime. The approach
also highlighted the inhibiting influence of the cyanobacterium Oscillatoria on other plankton taxa in the community.
Overall community stability was lowest during the period of elevated nutrient loading and Oscillatoria dominance. Despite
recent warming of the lake, we found no evidence that anomalous temperatures impacted plankton abundance. Our results
suggest mwMAR modeling is a useful approach that can be applied across diverse ecosystems, when questions involve
shifting relationships within food webs, and among species and abiotic drivers.
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Introduction

One of the most important challenges facing ecologists is

specifying how global change will affect community stability and

the production of associated critical ecosystem services. Commu-

nity stability is mediated by species interactions, which are

sensitive to changing environmental conditions [1,2], and there-

fore estimating the effects of environmental drivers on food web

dynamics is critical for understanding how anthropogenic forces

have altered ecosystems and for anticipating further change [3,4].

Analyzing food web dynamics is complicated in part because the

communities we observe are likely not in ‘‘equilibrium’’ as we

might have once expected [5]. There is increasing evidence that

the structure of communities and the nature of species’ responses

to each other and to their environments are not static, but rather

shift over time. In particular, anthropogenic pressures may be

pushing communities further from equilibrium [6], with commu-

nities exhibiting a variety of non-equilibrium dynamics from

smooth trends to abrupt step changes [7]. Changes in abiotic

conditions of ecosystems can directly and indirectly affect food web

structure [8]. Thus, food web models must account for diverse

temporal changes in community dynamics. In some systems, while

we may have a good understanding of average species interactions

or effects of the environment on food web dynamics over key time

periods, we may still lack important information about whether
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and how such dynamics changed over time in response to large

shifts in the ecosystem.

Lake Washington, U.S.A., is an example of an aquatic

ecosystem that experienced a series of well-described dramatic

changes in its environmental conditions and plankton community

in the mid-20th Century. This time period included a regime shift

from one of high nutrient loading from sewage inputs to one of

increased water clarity, as well as temperature and species

abundance changes [9–11]. The lake also experienced shifting

regimes in terms of plankton community dominance. During the

era of high sewage inputs, the lake experienced extensive nuisance

algal blooms, especially of the cyanobacterium, Oscillatoria
rubescens. Following sewage diversion, water clarity increased

substantially [12]; subsequently, the influential grazer Daphnia
established in the lake [11] and Oscillatoria effectively disappeared

from the record. In more recent years, warming temperatures

have caused phenological changes in phytoplankton and zoo-

plankton [10,13,14]. What is unclear is how these changes in the

plankton community and abiotic conditions affected interactions

within the food web concomitant with the changing environment.

Such shifts in plankton community interactions – such as

weakening of grazer effects on phytoplankton, or increased

competition among grazing zooplankton guilds – would have

consequences for higher trophic levels in lakes, as plankton

provides an important component of the energetic support for

some lacustrine fish [15], including in Lake Washington [16].

Moreover, plankton community structure and indirect effects of

herbivore-plant interactions can influence fundamental lake

characteristics such as light, temperature and water clarity

[17,18]. In this paper, we introduce an extension of a well-used

static food web model – a multivariate autoregressive (MAR)

model [19–21] – to study Lake Washington’s dynamically

changing food web and ecosystem.

Over the last several decades, multivariate time-series methods

have been used to estimate the strength and pattern of species

interactions and the effect of abiotic drivers on communities

[20,22]. MAR models provide a locally linear approximation of

non-linear stochastic multispecies processes. They have been

particularly useful in aquatic ecosystems and for understanding

plankton dynamics in part because of the tight coupling between

plankton and their environment. MAR models have also become

useful in broader aquatic food web analyses [23,24], as they can

incorporate multiple trophic levels and environmental drivers.

Prior implementations of MAR models have assumed that the

interactions in the study system were unchanging over the time

period encompassed by the data. This approach maximized the

performance of parameter estimation given the properties of

monitoring data, but only estimated the average interaction

strengths over a time series. In contrast, if food web dynamics shift

in response to changing drivers [25], then a better analytical

approach would accommodate and capture this non-stationarity in

modeling the food web. A suite of statistical methods can be

applied to ecological time series to examine non-stationarity – such

as shifts in abiotic conditions or periodicities – through time.

Methods such as wavelets [26,27], single-spectrum [28] and

breakpoint analyses have been used in climatology and paleocli-

matology, and have also recently been applied to ecological data

[29,30]. Such methods allow ecologists to see how abundances

may be shifting [30] or how interactions among species may

change over time in simple lab systems [29], but they do not

provide a cohesive ecosystem approach to examining how

integrated abiotic and biotic forces may change through time. In

particular, food web responses to changes in the strength or nature

of abiotic drivers would be predicted to cause cascading shifts in

the interactions among many members of a food web, and may

also feed back to how community members respond to other

environmental drivers. Examining such a suite of interactions and

drivers, however, would require a model that analyzes all the

variables at once, and that allows estimation of such shifts through

time.

A running or moving window approach is another tool that has

long been used in other disciplines, such as finance, to examine

non-stationarity in time series. In this approach, consecutive and

overlapping subsets of time series – or windows – are analyzed

individually to detect changes through time in a historical record

[31,32]. This approach has recently been used with univariate

autoregressive models to develop leading indicators of regime

change [33–35]. Here we offer an extension of the MAR model,

which we term ‘‘moving-window MAR’’ (mwMAR), and we use it

to examine a case of shifting species interactions and environ-

mental effects on species through time. Our approach blends the

community focus of the MAR model with the moving window

approach of detecting historical changes in time-series data. We

describe the mwMAR model and then apply the model to long-

term monitoring data from Lake Washington, U.S.A., to show

how interactions among dominant taxa of the plankton commu-

nity shifted following sewage diversion. Because food webs show

sensitivity to changes in their abiotic environment [6–8], we

hypothesize that changes in the nutrient status, clarity, and

dominant plankton taxa of the lake would cascade throughout the

plankton food web, resulting in shifts in the direction and strength

of community interactions, which would in turn affect community

stability.

Materials and Methods

Model configuration
We estimated interaction strengths among phytoplankton and

zooplankton guilds, environmental effects on phytoplankton and

zooplankton abundance, plankton intrinsic growth rates, and

plankton community stability in Lake Washington from 1962–

1994 using multivariate autoregressive (MAR) models. MAR

models are stochastic models describing changes in species

abundance through time as a function of species interactions

and environmental influences, while accounting for temporal

autocorrelation in species abundances [20,36,37]. MAR models

can also be used to estimate various metrics of community

stability, such as return time to a stationary state following an

ecosystem perturbation, or the distance away from a stationary

state that an ecosystem can be pushed by a perturbation. Previous

work has used MAR models to describe environmental effects on,

and interactions among, lake phytoplankton and zooplankton

[20,22,38,39], effects of climate regime shifts on interactions

among marine plankton [40], causes of estuarine fish declines [24],

and effects of fishing on marine food webs [23]. Extended

descriptions of MAR approaches to time-series data have been

given previously [19,20,37], so we provide only a brief review of

the model structure here.

MAR models are written in matrix form as:

Xt~AzBXt{1zCUtzEt ðEq:1Þ

where, for p interacting species and q environmental covariates, Xt

is a p61 vector of species abundances (here, natural log-

transformed) at time t; A is a p61 vector of constants, representing

intrinsic per-capita growth rates; B is a p6p species interaction

matrix, with off-diagonal elements describing inter-specific interac-

tions, and diagonal elements describing intra-specific interactions

Shifting Interactions in the Lake Washington Plankton Community
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(i.e., density-dependence); C is a p6q matrix with elements

describing environmental effects on species abundance; Ut is a

q61 vector of environmental covariates at time t; and Et is a p61

vector of process errors at time t, representing environmental

variation not otherwise accounted for in the model. Et is distributed

as a multivariate Normal with mean 0 and a diagonal variance

matrix g. Elements of B and C typically range from -1 to 1, with

distance from 0 representing increasing negative or positive

interaction strength. The diagonal elements of B typically range

from 0 to 1, with values closer to 0 representing higher density

dependence.

We also used MAR models to estimate community stability.

Specifically, we estimated the rate at which the system returns to

its stationary distribution following a disturbance by the maximum

eigenvalue of the B matrix (that maximum eigenvalue is

henceforth referred to as lambda, l). Systems with values of l
closer to 0 are considered to be more stable because they tend to

return to equilibrium conditions faster than systems with values of

l farther from 0 [21].

MAR models estimate mean intrinsic growth rates (captured by

the A vector), community interactions (captured by the B matrix),

environmental effects (captured by the C matrix), and community

stability (captured by l) across a given time series [20]. Here we

use MAR models to quantify changes in interactions through time,

by modeling community interactions for overlapping subsets of a

time series, or moving ‘‘windows’’ of time, thereby estimating

trends in MAR parameters. For a p6n matrix X of time series

observations consisting of successive p61 vectors X1, X2,…, Xn,

and a moving window of size W,n, we estimated MAR

parameters within n-W-1 successive windows. These windows

contained data from X2:XW+1, X3:XW+2,…, Xn-W+1:Xn. Note that

the time series starts at t = 2 to allow for the lag-1 effect in Eq. 1.

The output of the mwMAR analysis is a new time series of

estimated MAR parameters.

Lake Washington data and analysis
To investigate changes in interactions among zooplankton and

phytoplankton guilds and the effects of environmental covariates

in Lake Washington through time, we implemented the mwMAR

approach using monthly plankton and environmental data from

Lake Washington (Washington, U.S.A.) spanning 1962 to 1994

(396 timesteps; see Figure S1 for plankton time series). Our 33-

year time series begins in the year of maximum sewage input

(1962) when the lake experienced extensive nuisance algal blooms,

especially of the cyanobacterium, Oscillatoria rubescens. Sewage

diversion began the following year (1963), and was completed in

1968. Water clarity increased substantially by 1971 [12] and

continued to improve through 1976, when the influential grazer

Daphnia established in the lake [11] and Oscillatoria abundance

decreased dramatically. Despite low abundances at times, and

periods when they were not observe in samples, neither Daphnia
nor Oscillatoria ever technically went extinct in Lake Washington.

Before they begun to be observed at high abundances in 1973,

Daphnia were observed every year but one (1971). Likewise, after

their period of dominance ended in 1980, Oscillatoria continued

(and continue) to appear in plankton samples, appearing in all but

3 years between 1980–1994.

The lake has additionally undergone significant warming

throughout the historical record [10], which has altered the

timing of zooplankton abundance cycles [14,41]. Recent work,

however, suggests species and nutrient (phosphorus) shifts related

to the sewage effluent have had a stronger influence on the lake

than shifts associated with warming [42]. These well-documented

shifts in environmental drivers and plankton dynamics make Lake

Washington an ideal ecosystem for evaluating the mwMAR

model’s sensitivity to non-stationary process. Indeed, the dominant

environmental drivers and species interactions in Lake Washing-

ton are well-studied via observational [9,12], experimental [43,44]

and traditional MAR approaches [39,45], offering the necessary

background to build informed community and environmental

interaction matrices (B and C matrices, respectively).

For our analyses we aggregated physical, chemical and plankton

community data, which were collected at various intervals, into

monthly means. Previous analyses of the Lake Washington

plankton community interactions identified a simplified food web

containing species that demonstrated strong roles in structuring

the community [39,45]. We targeted the most strongly-interacting

taxa of this simplified food web with the present analysis, to

determine how the dominant interactions changed through time.

While weak species interactions can be important in structuring

food webs, we chose to focus on the dominant taxa and

interactions as a first test of this new method. These taxa were

pooled into four taxonomic groups: diatoms and green algae –

‘‘DG,’’ both palatable food for grazing zooplankton; Oscillatoria –

known to suppress Daphnia [44]; Daphnia; and non-daphnid and

non-cladoceran crustaceans – ‘‘NDC,’’ comprised of non-daphnid

cladocerans, Cyclops, and Diaptomus. Group abundance data were

log-transformed to better capture non-linearities [20]. A more

complete description of the data is available in Hampton et al.

[39], and the raw data are available in Appendix S1.

We included as covariates in the mwMAR model surface

temperature and total phosphorus, because they were previously

identified as the strongest environmental drivers of plankton

abundance in the lake [39,45]. However, rather than simply use

temperature as a covariate by itself, we instead used the data to

estimate (1) a mean monthly signal indicative of long-term seasonal

forcing, and (2) monthly deviations from the mean to capture

short-term anomalies (e.g., a particularly warm July) or long-term

trends (e.g., an overall increase). To ease comparison of effect sizes

across all environmental covariates, we standardized all covariate

data to a mean of 0 and a standard deviation of 1.

For our environmental covariate matrix (C) we included a priori
only biologically meaningful interactions based on established

environmental relationships: we assumed total phosphorus could

not directly affect Daphnia or other zooplankton taxa. We

expected shifts in mwMAR coefficients to lag behind known dates

of change in the biotic community, sewage diversion and water

clarity because our moving window size (7 years) is much larger

than the timescale of most known changes. We graphically present

all data at the end year of the moving window; thus, in our figures,

results based on data from 1963–1970 would appear on the x-axis

at year 1970.

Sensitivity analysis
The accuracy and precision of parameter estimates by the

mwMAR model, as with other statistical methods, are sensitive to

and affected by multiple factors, including food web configuration

(i.e., the number of interacting species and covariates), window

size, the variance structure of the process errors, and outliers in the

data (see Appendix S2 for discussion and additional model

validation). We conducted several sensitivity analyses to ensure

such factors were not influencing the mwMAR model estimates.

For example, the Lake Washington dataset is of high quality, and

our outlier inspection showed no influence of outliers on the final

results. In addition, because there is a tradeoff between precision

of parameter estimates and accuracy of those estimates that is

defined by window size, we conducted tests using simulated time

series based on the Lake Washington food web configuration, to

Shifting Interactions in the Lake Washington Plankton Community
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determine the appropriate window size for analysis of the Lake

Washington dataset. In those simulations, the parameter estima-

tion accuracy decreased sharply at window sizes smaller than 75

time steps (see Figure S1), and therefore we use a window size of

84 (the next factor of 12 larger than 75, given the monthly time

step in the Lake Washington data). We also conducted simulations

to determine what bias, if any, exist in parameter estimates during

periods when a system is undergoing transition between states, for

example between a eutrophic and clear-water state as was the case

with Lake Washington. Last, to ensure that the mwMAR model

was capable of capturing shifts in species interactions and

environmental conditions outside of the Lake Washington case

study, we fit mwMAR models to simulated time series with known

interactions (see Appendix S2).

Statistical programming
MAR and mwMAR modeling was done in MATLAB (2007,

The MathWorks), using the open-source program LAMBDA

([46]; freely available from http://conserver.iugo-cafe.org/user/

e2holmes/LAMBDA) with additional programming by the

authors. The coefficients of the A, B and C matrices were

estimated using conditional least squares (CLS), and confidence

intervals around each coefficient were established using 2,000

bootstrapped data sets. Each bootstrapped data set was generated

by creating random E matrices and fitting the rest of the

parameters using CLS (see [21] for details).

Results

The mwMAR approach revealed changes in interaction

strengths in the Lake Washington plankton community between

1962 and 1994 (Figures 1–5; Figures S2–S3). For example, there

were changes in the effects of Oscillatoria on Daphnia and diatoms

and green algae (DG) coincident with the community composition

shift during which Oscillatoria abundance decreased and Daphnia
appeared (Figure 1, Table 1). In the period following the first

appearance of Daphnia in Lake Washington, the effect of

Oscillatoria on Daphnia became increasingly negative and was

strongest in 1976 (Figure 1A). Following the decrease in

Oscillatoria abundance, the negative effect of Oscillatoria on

Daphnia weakened, and there was no significant effect of

Oscillatoria on Daphnia from late in 1982 until the end of the

time series. There was no effect of Daphnia on Oscillatoria
(Figure 1B) until after the decline in Oscillatoria and increase in

Daphnia. By 1980, the interaction coefficient became negative,

weakened in the late 1980s, and returned to neutral after 1990.

Oscillatoria also had a negative effect on DG in the beginning of

the time series, and this effect disappeared by the mid-1970s

(Figure 1C).

The effects of Daphnia on other plankton groups in Lake

Washington also varied through time (Figure 2). Daphnia had a

negative effect on its main food source, DG, starting in the early

1980s, and the effect strengthened until the mid-1980s (Fig-

ure 2A). The effect remained negative, though slightly weaker,

until the end of the time series. The effect of Daphnia on other

zooplankton (NDC) also varied through time (Figure 2B). Similar

to the Daphnia-DG interaction, after Daphnia established in Lake

Washington, the effect of Daphnia on NDC became increasingly

negative, reached its peak in the mid-1980s, then remained

negative but weakened to the end of the time series.

Density dependence also varied through time for all plankton

groups. Density dependence in DG decreased (i.e., the diagonal B
matrix coefficient associated with DG increased) until after

Daphnia established in the lake, after which density dependence

Figure 1. Shifting impacts of Oscillatoria on the Lake Washing-
ton plankton community. Effects of Oscillatoria on Daphnia (A);
Daphnia on Oscillatoria (B); and Oscillatoria on diatoms/green algae, DG,
(C) estimated by a mwMAR model using an 84-timestep window
(indicated by solid red horizontal line shown in A). The mwMAR-
estimated effect of Oscillatoria on NDC was non-significant. Estimates
are shown with 95% upper and lower CIs. Grey dotted lines indicate a
neutral interaction; solid black lines indicate the average interaction
across the full time series, as estimated by a traditional MAR model. The
raw time-series data are given in (D), with years of significant known
changes shown in shaded vertical bars. All results are presented at the
end year of the moving window.
doi:10.1371/journal.pone.0110363.g001
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increased (Figure 3A). Density dependence in the grazer group

NDC increased steadily from the early 1970s until the late 1980s,

after which it weakened until the end of the time series (Figure 3B).

Daphnia density dependence increased from the time it established

in Lake Washington until the end of the time series (Figure 3C).

Oscillatoria density dependence weakened until its decline in

abundance in the late 1970s, at which point it increased and held

more or less steady from the early 1980s until the end of the time

series (Figure 3D).

The MAR model also estimates density-independent intrinsic

population growth (the A vector), and while many of the

confidence intervals surrounding the A estimates overlapped zero

for a portion of the time series, there were consistent trends in the

estimates among different plankton groups (Figure 4). For all four

plankton groups, there were three distinct periods of intrinsic

growth rate estimates: (1) before regular appearances of Daphnia

Figure 2. Shifting effects of Daphnia on the Lake Washington
plankton community. Effects of Daphnia on diatoms and green
algae, DG, (A) and non-daphnid cladocerans and non-cladoceran
crustaceans, NDC, (B) through time as estimated by a mwMAR model
with an 84-timestep window (indicated by solid red horizontal line in A).
Estimates are shown with 95% upper and lower CIs. Grey dotted lines
indicate coefficient values of 0; solid black lines indicate the average
interaction across the full time series, as estimated by a traditional MAR
model. The raw time-series data are given in (C), with years of influential
known changes shown in shaded vertical bars. All results are presented
at the end year of the moving window.
doi:10.1371/journal.pone.0110363.g002

Figure 3. Shifting density-dependent effects of all plankton
groups. Coefficients are estimated by a mwMAR model with an 84-
timestep window (indicated by solid red horizontal line in A). Estimates
are shown with 95% upper and lower CIs. DG = diatoms and green
algae; NDC = non-daphnid cladocerans and non-cladoceran crusta-
ceans. Grey dotted lines indicate coefficient values of 0; solid black lines
indicate the average effect across the full time series, as estimated by a
traditional MAR model. All results are presented at the end year of the
moving window.
doi:10.1371/journal.pone.0110363.g003
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in Lake Washington (pre-summer 1973); (2) between when

Daphnia began to make regular appearances, and when Daphnia
established in the lake and Oscillatoria declined dramatically

(summer 1973 – spring 1976); and (3) after the rise of Daphnia and

decline of Oscillatoria (summer 1976 onward). During the first

period, there was high variability and negative trends in all A
estimates. During the second period, the DG growth rate was

mostly constant (Figure 4A), both grazer groups growth rates

increased (though some CIs overlapped 0; Figure 4B, C), and the

Oscillatoria growth rate decreased (Figure 4D). During the final

period, from the mid-1970s to the end of the time series, the

growth rates of most groups were constant, except for an increase

in the DG growth rate. Both Oscillatoria and NDC had growth

rates equal to zero during this period.

Stability (l) decreased sharply from the beginning of the time

series, and the system was least stable (i.e., l was at its maximum

value) in the early 1970s (Figure 5). Following this nadir,

community stability increased and reached maximum stability

(i.e., the lowest l value) at the end of the time series. Following

bootstrapping, mean temperature had significant effects on all

plankton groups. In contrast, very few effects of temperature

anomalies or total phosphorus on plankton groups in Lake

Washington were retained in the final mwMAR model (Table 1;

Figure S3).

We assessed the fit of the best mwMAR model to the Lake

Washington data, and found that fewer than 1% of correlations

between model residuals and data were significant. We also tested

the model assumption of normally-distributed errors by applying

the Shapiro-Wilk test [47] to the residuals of the MAR fit to each

data window (E, from Equation 1), with a Bonferroni-corrected

alpha [48] to account for multiple null hypotheses. We rejected the

null hypothesis of normally distributed errors in 65/312 windows

for Daphnia, and in 217/312 windows for Oscillatoria (and in 0

windows for DG and NDC; Figure S4). These data windows for

which the null hypothesis was rejected corresponded to periods in

the time series when the abundance of each species was zero, i.e.,

the long one-sided tails in the data.

Figure 4. Intrinsic growth rates of Lake Washington plankton
groups. Growth rates are estimated by a mwMAR model with an 84-
timestep window (indicated by solid red horizontal line in A). Estimates
are shown with 95% upper and lower CIs. Grey dotted lines indicate
coefficient values of 0; solid black lines indicate the average rate across
the full time series, as estimated by a traditional MAR model. DG =
diatoms and green algae; NDC = non-daphnid cladocerans and non-
cladoceran crustaceans. All results are presented at the end year of the
moving window.
doi:10.1371/journal.pone.0110363.g004

Figure 5. Shifting community stability. Stability is given by l, the
maximum eigenvalue of the community interaction matrix, as
estimated by a mwMAR model using an 84-timestep window (indicated
by solid red horizontal line). Estimates are shown with 95% upper and
lower CIs. The grey dotted line indicates coefficient value of 0; the solid
black line indicates the average stability across the full time series, as
estimated by a traditional MAR model. Results are presented at the end
year of the moving window.
doi:10.1371/journal.pone.0110363.g005
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Discussion

Shifting plankton dynamics in Lake Washington
We hypothesized that the mwMAR would show shifts in the

interactions among the major taxa corresponding roughly with

known periods of change in Lake Washington (e.g., years of and

around 1968–1971, and 1976). For example, it has long been

hypothesized that the highly-abundant Oscillatoria, owing to its

low palatability, inhibited Daphnia before Daphnia’s increase in

Lake Washington in 1976 [11], during the period of time when the

two species overlapped but Oscillatoria abundance was decreasing.

These dynamics have been demonstrated experimentally [44], but

our results are the first to corroborate this hypothesis using

historical data. During the period of time between the peak in

water quality (1971) and the dramatic increase in Daphnia
abundance (1976) – the period of overlap between Oscillatoria and

Daphnia and hypothesized inhibition of Daphnia by Oscillatoria –

we found an increasingly negative effect of Oscillatoria on

Daphnia. Once the mwMAR window included only dates

following the large increase in Daphnia (i.e., 1976 and later),

there was no detectable effect of Oscillatoria on Daphnia. The

long, filamentous shape of Oscillatoria generally makes it inedible

for Daphnia, which is one likely source of the negative per-capita

effect estimated here during their period of overlap.

Oscillatoria also had a negative effect on diatoms and edible

green algae, the main food source for Daphnia and other grazers

in the lake. High intrinsic growth rates in edible phytoplankton

estimated at the start of the time series decreased during the period

when Oscillatoria was dominant. At the same time, density

dependence in diatoms and green algae also decreased, suggesting

inhibition in growth, possibly resulting from competition for

limiting nutrients, or physical shading or toxic effects of excretions

by Oscillatoria. Such inhibition of algae by Oscillatoria has also

been demonstrated experimentally [44]. This apparent inhibition

of phytoplankton by Oscillatoria rapidly decreased following an

abrupt transition in the mid-1970s when the negative effect of

Oscillatoria on DG decreased and disappeared (Figure 1).

Coincident with these dynamics, the effect of Oscillatoria on

Daphnia also weakened and the intrinsic growth rate of Daphnia
increased from its minimum in 1972 to its peak in 1976

(Figure 4C). After 1976, Daphnia’s intrinsic growth rate decreased

and density dependence increased (Figure 3C) as the Daphnia
population increased in abundance. In addition, while the result

was not significant (95% CIs overlapped zero), DG may have had

a bottom-up positive effect on Daphnia after being freed from

inhibition by Oscillatoria, in the latter half of the time series

(Figure S2). Taken together, these results corroborate the

hypothesis that the establishment of Daphnia following the

improvement of water quality in Lake Washington was impeded

directly and indirectly by the cyanobacterium Oscillatoria.

Grazers are known to inhibit cyanobacteria under some

environmental conditions [49], and our analysis found a negative

effect of Daphnia on Oscillatoria coincident with Oscillatoria’s

decrease in abundance. In general, the frequency of cyanobacteria

blooms is associated with the relationships between grazers and

edible phytoplankton, such that when grazers and edible phyto-

plankton dynamics are stable (i.e., abundances do not undergo

large, intrinsic oscillations), cyanobacteria are controlled by grazers

[49]. These dynamics are often associated with phosphorus inputs to

a lake. We observed a similar pattern in Lake Washington. As

phosphorus inputs decreased, the grazing effect of Daphnia on

edible phytoplankton increased concomitant with the inhibiting

effect of Daphnia on Oscillatoria (Figures 1 and 2).T
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MAR coefficients have been shown previously to reflect changes

in community dominance, when an increase in the abundance of

one species or group coincides with a decrease in another [40],

and therefore the negative effect of Daphnia on Oscillatoria may

represent shifting dominance between the two taxa. The transition

from Oscillatoria to Daphnia dominance was reflected in

interactions among other plankton groups in the community. As

the negative effect of Oscillatoria on Daphnia declined in the mid-

1970s through to the early 1980s, and as Daphnia increased in

abundance, Daphnia had stronger impacts on their main food

source (DG) and competitors (NDC; Figure 2). At the same time,

the strength of density-dependence (Figure 3) and density-

independent growth rates increased for the grazing zooplankton

groups (Figure 4), suggesting the release of the grazer community

from inhibition by Oscillatoria. No previous work has shown an

effect of Oscillatoria on other grazer groups beyond Daphnia, but

the increase in population growth rates (A matrix elements) of the

NDC group following Oscillatoria’s decline suggests a possible

negative interaction.

The negative effects of Daphnia on their food and competitors

weakened towards the end of the time series, apart from an

intensified grazing effect of Daphnia on DG at the very end. One

potential explanation for the weakened grazing effect at the end of

the time series relates indirectly to the warming of the lake during

this time. Between 1962 and 2002, the lake surface temperature

increased by 1.4uC during the stratified months, and associated

with this warming was an advance in the spring phytoplankton

bloom by 19 days [10]. Most of the warming and spring bloom

advance occurred in the period 1962-1994. The weakening of the

effect of total Daphnia on the phytoplankton group during that

period, in the present analysis, could be a reflection of shifts in

species-specific phenology and grazing characteristics [14,41].

The results presented here highlight opportunities to learn more

from time series data about how species interactions shift with

changes in the environment across ecosystem types, and how those

changing food web dynamics are liable to affect community

stability and resilience to further disturbance. Ecosystem-based

approaches to management often include a focus on food web

dynamics, but quantifying changes in species interactions, and

how those changes map onto the environmental template, proves

difficult. Linking shifts in species interactions to specific environ-

mental drivers opens opportunities to focus efforts aimed at

retaining resilience as ecosystems undergo rapid change.

Community stability and environmental covariates
The Lake Washington system has undergone major shifts in

chemistry and ecology that are reflected in community stability.

The peak of instability occurred in April 1973, (a window that

included data from May 1966 – April 1973; Figure 5). Values of l
greater than 1 indicate an unstable system [21], and here l
exceeded 1 for windows ending in November 1970 – November

1974, representing the period of time between December 1963 –

November 1974, inclusive. This is the time period that included

major ecosystem shifts: high nutrient levels, sewage diversion, and

nutrient reduction; high Oscillatoria abundance followed by its

decline; and the first rare appearances of Daphnia. By the time of

Oscillatoria’s disappearance, maximum water clarity, and estab-

lishment of Daphnia in 1976, the community stability was

increasing, and continued to increase until the end of the time

series. Thus, the period of time the lake was undergoing the most

substantial and dramatic shifts throughout the ecosystem, and

before Daphnia gained a foothold, was the least stable period in

the community as well.

We observed effects of monthly mean temperature on the

abundance of all plankton guilds (Figure S3), which agrees with

previous MAR analyses [39,45], and with the MAR model

estimated here from the whole Lake Washington time series (Table

S1). Previous work has suggested that Lake Washington plankton

phenology also responds to lake warming [10,50], and that the

relationships between temperature and plankton taxa are evidence

of the potential influence of a warming lake on food web dynamics

[39]. However, we found no significant effects of deviations from

the long-term seasonal temperature patterns, suggesting that lake-

warming effects are not detectable in the abundance of these

plankton guilds.

Caveats and considerations
Our results suggest moving-window MAR models may be useful

in systems with sufficient time-series data for understanding

shifting abiotic and biotic dynamics. As with all statistical methods,

however, practitioners must consider possible caveats and issues in

advance of and throughout analyses. The data and ecosystem

considerations applicable to prior MAR model applications also

extend to our moving-window approach. Users must have

sufficient time-series data for valid parameter estimation, which

varies depending on the time scale of interactions in the system

and frequency of observations. The moving-window MAR model

imposes the further consideration of having sufficient time-series

data for multiple windows and surrounding the event(s) of interest.

Importantly, bias in model estimates shrinks as the ratio between

window size and system transition period increases, and users are

cautioned to interpret model estimates during system transitions

with consideration of such bias. However, the window could be

configured for different purposes: made smaller to detect changes

before they occur, or sized to optimize detection of a change in a

particular state variable.

Applications of this method will benefit from a priori knowledge

of ecological interactions and drivers in the modeled system to

build a robust MAR model. In our analysis of the Lake

Washington plankton community, we simplified the plankton

community based on previous work that highlighted the strongest

food web interactions and key environmental covariates [39].

However, Hampton et al. [39] also pointed out the importance of

other plankton taxa in driving the dynamics of the dominant

species in Lake Washington, such as Cryptomonas, picoplankton

and non-colonial rotifers. Therefore, it is possible that additional

food web dynamics contribute to the interaction coefficients

observed here, which could be highlighted by future analyses.

Furthermore, if the model failed to include an influential

environmental driver of Lake Washington plankton dynamics,

the model results might be erroneously interpreted: if one plankton

guild responds negatively to an unmeasured environmental

variable, and another guild responds positively, this might

incorrectly be interpreted as a negative interaction between the

two guilds. In the Lake Washington case, years of experimental

work and field observations have identified environmental

variables that are robust driving signals. In addition, preliminary,

exploratory MAR model runs were performed to screen a broad

suite of potential drivers on plankton time series data. The analyses

here rely heavily on those two approaches to validation, and

potential users are advised to similarly behave as ecological

detectives.

Additionally, as with prior MAR approaches, users must invest

time in simulation modeling that allows them to test how the

approach is likely to work with data similar to theirs. Simulation of

data from a model with similar parameters to the study ecosystem

helps identify the appropriate moving window size and, thus,

Shifting Interactions in the Lake Washington Plankton Community
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estimate the precision associated with future predictions of system

change. Because much of the MAR approach is based on iterative

fitting approaches, creating and testing simulation data sets from

known parameter values with similar lengths, covariate and taxa

numbers, and variance, is critical to interpreting knowledge gained

from MAR models. For the moving-window approach, users

should carefully examine the effect of window size on their

simulation datasets (see Appendix S2 for an example analysis using

simulated datasets). A priori knowledge or hypotheses related to

the resolution of data and interactions as well as the strength and

timing of the predicted shift should be considered during the

process of simulation modeling. Comparison of the mwMAR

output with whole time-series MAR estimates is useful in assessing

when the broad confidence intervals estimated with the mwMAR

model are potentially masking significant interactions.

Conclusions

Ecologists have recently gained an appreciation for the need to

develop methods based on the underlying hypothesis that many

systems are rarely, if ever, stationary. Here we present a method that

allows researchers and managers alike to examine long-term

monitoring data and develop a dynamic record of shifting

interactions and drivers. By calculating indirect and direct effects

over time, and their changes, mwMAR allows researchers to

understand how species invasions and extinctions, shifts in temper-

ature and nutrient loadings, and other anthropogenic perturbations

may cascade and feedback through food webs and ecosystems.

Supporting Information

Figure S1 Lake Washington plankton densities from
1962–1994. Monthly means of densities for aggregated plankton

groups used in mwMAR analyses. NDC = non-daphnid

cladocerans; DG = diatoms and green algae.

(DOCX)

Figure S2 Time series of all community interactions.
Interaction coefficients estimated for the Lake Washington time

series with a mwMAR model, using an 84-month window. Figures

show per-capita effects of plankton guilds in columns on plankton

guilds in rows. Diagonal figures represent self-effects, or density-

dependent effects on abundance.

(DOCX)

Figure S3 Time series of environmental covariate
effects. Interaction coefficients estimated for the Lake Washing-

ton time series with a mwMAR model, using an 84-month

window. Figures show the effects of covariates in columns on

plankton guilds in rows.

(DOCX)

Figure S4 Quantile-quantile plots of residuals for the
Daphnia and Oscillatoria time series. Shown are theoretical

versus observed distributions of mwMAR model residuals for all

windows where the Shapiro-Wilk test statistic was below the alpha

value required to reject the null hypothesis of normally-distributed

errors (61/1248 for Daphnia, 175/1248 for Oscillatoria, 0 for DG

and 0 for NDC).

(DOCX)

Table S1 Community and covariate matrix coefficients
estimated by a MAR model for the full Lake Washington
time series.

(DOCX)

Appendix S1 Lake Washington plankton and covariate
data, 1962–1994.

(CSV)

Appendix S2 Moving-window MAR Model Testing.
Validation of the moving window MAR model approach,

including accuracy of parameter estimation and estimation of

bias during system transition.

(DOC)
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