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Abstract

Detailed seabed substrate maps are increasingly in demand for effective planning and management of marine ecosystems
and resources. It has become common to use remotely sensed multibeam echosounder data in the form of bathymetry and
acoustic backscatter in conjunction with ground-truth sampling data to inform the mapping of seabed substrates. Whilst,
until recently, such data sets have typically been classified by expert interpretation, it is now obvious that more objective,
faster and repeatable methods of seabed classification are required. This study compares the performances of a range of
supervised classification techniques for predicting substrate type from multibeam echosounder data. The study area is
located in the North Sea, off the north-east coast of England. A total of 258 ground-truth samples were classified into four
substrate classes. Multibeam bathymetry and backscatter data, and a range of secondary features derived from these
datasets were used in this study. Six supervised classification techniques were tested: Classification Trees, Support Vector
Machines, k-Nearest Neighbour, Neural Networks, Random Forest and Naive Bayes. Each classifier was trained multiple times
using different input features, including i) the two primary features of bathymetry and backscatter, ii) a subset of the
features chosen by a feature selection process and iii) all of the input features. The predictive performances of the models
were validated using a separate test set of ground-truth samples. The statistical significance of model performances relative
to a simple baseline model (Nearest Neighbour predictions on bathymetry and backscatter) were tested to assess the
benefits of using more sophisticated approaches. The best performing models were tree based methods and Naive Bayes
which achieved accuracies of around 0.8 and kappa coefficients of up to 0.5 on the test set. The models that used all input
features didn’t generally perform well, highlighting the need for some means of feature selection.
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Introduction

High resolution maps of benthic substrate and habitat are in

increasing demand both to underpin environmental and socio-

economic impact assessments and to help in the development of

effective management measures. The advent of swath acoustic

techniques has revolutionised seabed mapping science, as we are

now able to map the seabed at high spatial resolution and

accuracy. The availability of multibeam echosounder (MBES) data

was limited until recently, due to the high costs involved. The

situation is about to change however, with some countries (Ireland

and Norway) executing dedicated large-scale seabed mapping

programmes while, in others, MBES data are routinely collected

for specific purposes (e.g. hydrographic charting), but are also

made available for seabed mapping. In the United Kingdom, the

amount of MBES data has significantly increased in recent years

to 200,000 km2, approximately 26% of the Exclusive Economic

Zone [1], mainly driven by the Civil Hydrography Programme

(CHP) run by the Marine and Coastguard Agency (MCA). The

improvement in quality of MBES data, as well as the increase in

volume of data and the demand for mapping products, has driven

the desire for validated, repeatable and applicable approaches to

creating maps of the physical properties of the seabed, analogous

to the automated classification of satellite imagery in terrestrial

remote sensing. Despite this, the science of acoustic seabed

classification based on objective, statistical classification proce-

dures is still in its infancy [2].

Traditionally, acoustic data were classified into different

acoustic facies by expert interpretation [3], a process that is highly

subjective, time-consuming and lacking repeatability. Studies

describing automated approaches to seabed classification are still

limited and do not extend back in time beyond the last ten years.

Such approaches can generally be divided into two groups:

unsupervised and supervised classification. Unsupervised classifi-

cation attempts to find regularities in unclassified data. In remote-

sensing applications, an image is classified based on natural

groupings of the spectral properties of the pixels. Typical

unsupervised procedures are clustering techniques, e.g. k-Means

and hierarchical agglomerative clustering. Seabed mapping studies

that employed unsupervised classification have been presented by

several authors [4–8]. One common problem associated with

unsupervised classification is the determination of the ‘correct’ or

‘optimum’ number of clusters. A large number of criteria for
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determining the ‘optimum’ number of clusters exist. For example,

Milligan and Cooper [9] tested 30 criteria for their ability to

predict the ‘correct’ number of clusters in a data set. Another

potential drawback is that the resultant classification rarely shows a

1-to-1 relationship with classes derived from ground-truth data

[6,10]. If the aim is to map substrates or habitats according to a

classification scheme, then cross-tabulation and aggregation needs

to be carried out so that the classified acoustic data reflect the

classes found in the ground-truth data.

Supervised classification techniques are algorithms that ‘learn’

patterns in data to predict an associated discrete class. They are

flexible statistical prediction techniques collectively referred to as

machine learning techniques. Machine learning is defined as

‘‘programming computers to optimise a performance criterion

using example data or past experience’’ [11]. Terrestrial remote

sensing has successfully employed these techniques for optical data

for several years and they are being used more regularly in seabed

mapping using acoustic data. Supervised machine learning

techniques that have been trialled include Maximum Likelihood

Estimation [12–14], k-Nearest Neighbour [15], various decision

trees [13,14,16–19], Random Forest [14,15], Artificial Neural

Networks [20,21], Support Vector Machines [14] and Bayesian

Decision Rules [22]. It is apparent from the above that a large

number of supervised classification methods are available for

seabed mapping. However, it is often difficult to make an informed

decision regarding the most appropriate method for a specific task

and it appears that the choice of machine learning techniques is

often based on personal preferences.

The aims of this study were to test and compare six of the

above-mentioned supervised classification algorithms for their

ability to predict substrate type using MBES data and legacy

sediment samples. A set of 15 input features (predictor variables)

were created from acoustic mosaics of bathymetry and backscatter

data. Each classifier was trained three times using different sets of

the input features. The classifiers were trained using i) the two

primary acoustic features of bathymetry and backscatter, ii) a

subset of the features chosen by a feature selection process and iii)

all of the input features. The aim of this was to test how much, if

any, predictive power is gained from incorporating more

secondary features. This resulted in a total of 18 models being

trained.

As well as the model performance relative to one another it is of

interest to investigate how well models performed relative to a

baseline. The aim was to determine whether a significant

improvement in predictive performance was achieved by using

more complex classification algorithms and incorporating more

input features, both of which take computational effort to

implement. We selected a simple baseline model which predicts

substrate class using the ‘nearest’ (i.e. most similar) training sample

neighbour based on bathymetry and backscatter. All models were

compared against this baseline prediction to assess the statistical

significance of improvements in predictive power. The perfor-

mance of different classification methods was tested using an

independent test set of sediment samples.

Methods

Study area
The study area is located in the North Sea lying off the north-

east coast of England (Figure 1). The water depth of the site ranges

from 55 to 100 m and it is dominated by sandy substrate types.

The size of the area is approximately 5,272 km2.

Ground-truth data
The ground-truth data are a subset of a legacy dataset of the

British Geological Survey (BGS Legacy Particle Size Analysis

uncontrolled data export (2011), British Geological Survey, www.

bgs.ac.uk), comprising 258 samples (Figure 1). The samples were

collected prior to the introduction of the Global Positioning

System (GPS) using the Decca Main Chain system and substantial

positional errors are to be expected. The samples were collected

using a Shipek type sediment grab. The substrate types were

classified according to a modified version of the Folk classification

[23], based on the relative proportions of the three size fractions

Mud (grain diameter d,63 mm), Sand (63 mm,d,2 mm) and

Gravel (d.2 mm). Four textural classes were present in the

dataset; Muddy Sand (mS; ,5% gravel and sand:mud ratio of

between 1:1 and 9:1), Sand (S; ,5% gravel and sand:mud ratio of

at least 9:1), Gravelly Sand (gS; 5–30% gravel and sand:mud ratio

of at least 9:1) and Sandy Gravel (sG; 30–80% gravel and

sand:mud ratio of at least 9:1). The class frequencies were

unbalanced, with approximately 80% of the samples being

labelled as S. Twenty-five percent of the samples were removed

from the dataset to use as a test dataset to validate the final models.

The sub sampling was done in a randomized stratified way (based

on substrate class) so that the test set contained approximately the

same class frequencies as the training set (see Table 1).

Acoustic data sets
Primary features. MBES bathymetry and backscatter data were

obtained for an area called ‘Bayman’s Hole to Dunbar’ collected

as part of the United Kingdom’s CHP. The data were acquired

from 1st May to 17th December 2008 in accordance with IHO S44

ed. 4 Order 1 employing a Kongsberg EM710 system (frequency

range 70–100 kHz). The acoustic data can be downloaded from

the UK Hydrographic Office INSPIRE Portal and MEDIN

Bathymetry Data Archive Centre (http://www.ukho.gov.uk/

inspire/Pages/home.aspx). The acoustic data were received in

raw (*.all) and generic sensor format (*.gsf). Backscatter processing

was carried out using the raw data and software Fledermaus

Geocoder Toolbox (FMGT). Generic sensor format files were

processed in software Fledermaus yielding a bathymetric surface.

Bathymetry and backscatter raster grids were exported and

resampled to a uniform grid at 10 m resolution. A Gaussian filter

(kernel size 565) was applied to both datasets prior to analysis in

order to reduce the effect of noise.

As we are using legacy data in this study, we performed a

preliminary investigation into the training data to explore how well

the acoustic data had been sampled. The ground-truth samples

were collected prior to the acoustic survey and therefore not

targeted to sample the acoustic data in a representative way. By

plotting the density estimations of the raster grids against the

sampling data, we were able to visually compare the distributions

and assess how representatively the sampling of the acoustic

bathymetry and backscatter values were captured in the training

data.

Derived secondary features. A range of secondary features

were calculated from the bathymetry and backscatter datasets.

These are intended to contextualise each individual pixel by

describing how it is situated in relation to its local neighbourhood.

The choice of secondary features was informed by experience

gained in previous studies [6,12,13,17,24,25].The selection of

derived features was also influenced by their expected relationships

with seabed substrate classes: Previous trials had indicated that

roughness of backscatter aids in separating coarse substrates from

finer ones. This could be expected as coarse substrates are not only

characterised by high backscatter but also an increased local
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variability in the backscatter response. Likewise, it could be

expected that the bathymetric roughness in such areas is higher

than in areas characterised by relatively smooth sandy or muddy

seabed. Seabed curvature and the bathymetric position index (BPI)

are deemed to be important for sedimentation in terms of

exposure to waves and currents. Moran’s I is a measure of spatial-

correlation. It is related to structure or texture of the seabed. A

high Moran index would indicate highly structured bathymetry/

backscatter values (i.e. high values are associated with high and

low values with low), conversely a lower Moran index indicates a

more random spatial distribution of values. It is conceivable that

certain types of seabed (such as subaqueous dunes) have a

particular signal of spatial structure/texture associated with them

and this may be captured by Moran’s I. The Sobel filter identifies

image gradient (i.e. slope) in a local neighbourhood. It can be used

to identify gradient in a particular direction as opposed to

maximum rate of change which is directionless. The Sobel filter

was calculated for bathymetry to highlight areas of high gradient

in both the north-south and east-west directions. A wide array of

features was initially created and inspected. However, some

features (e.g. rugosity) were subsequently removed as they were

strongly correlated with other features. BPIs were calculated over a

range of neighbourhood sizes ranging from 100 m to 700 m with a

step size of 100 m. The resulting raster layers were closely

inspected and BPIs with neighbourhood sizes of 200 m and 600 m

Figure 1. Study area, acoustic data and ground-truth samples. A: Bathymetry data with ground-truth samples overlaid, colours indicating the
test and validation sets. B: Backscatter data with ground-truth samples overlaid, colours indicating the substrate class.
doi:10.1371/journal.pone.0093950.g001

Table 1. Ground-truth data.

Class Training set Test set Total

mS 16 2 18

S 144 50 194

gS 29 10 39

sG 5 2 7

Total 194 64 258

doi:10.1371/journal.pone.0093950.t001
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were selected due to their ability to highlight certain terrain

features, namely subaqueous dunes (200 m) and channels (600 m).

These terrain features were found to be widespread and expected

to be associated with specific seabed substrates, namely sand on

dunes and muddy sand in channels. Thirteen secondary derived

features were ultimately selected for further analysis (Table 2). An

inspection of the linear correlation between all input features

(Table 3) was made to ensure that there were no redundant

features being included.

Classification methods
Initially, we carried out a literature review on supervised

classifiers employed in seabed mapping [12–22]. Of the seven

different classes of classifiers used, decision tree learning was by far

most popular. With the exception of Maximum Likelihood

Estimation, which showed poor performance in previous compar-

ative studies [13,14], we included all the supervised classifiers

applied in the above mentioned publications in the present study.

Each classifier was trained three times using different input

features. Each model is referred to by its abbreviation (such as CT

for classification tree) with an appended number. The number

refers to the level of input features used in the model. 1 – indicates

only primary features (bathymetry and backscatter) used; 2 –

indicates a subset of features chosen by a selection algorithm

(described below) and 3 – indicates all features were used. So for

example CT1 is a classification tree model trained using primary

features. Following is a brief description of each classification

method.

k-Nearest Neighbour (k-NN)
k-NN is one of simplest algorithms tested here and computa-

tionally the quickest to implement. The classification is based on a

majority vote of the k-nearest neighbours, based on Euclidean

distance in feature space, whereby k specifies the number of

neighbours to be used. It does not require a training step to be

performed but can be tuned to determine the optimum value of k

on which to base the classification. The k-NN algorithm is

implemented using the class package [26] in R [27]. The training

data were scaled so that they had a mean of 0 and standard

deviation of 1. This was necessary so that each feature was

considered as equally important in the classification.

Support Vector Machine (SVM)
SVMs aim to define the optimal boundary separating classes in

feature space. This decision boundary is called the optimal

separation hyperplane. The classification of new data is based on

which side of the decision boundary the data point falls. The

‘optimal’ hyperplane is chosen based on the maximum margin

principle, by choosing the boundary which maximises the distance

between classes. SVMs are able to handle problems where classes

are not linearly separable by transforming the data using a kernel

function such as the radial basis function (RBF) kernel. The RBF

kernel is the most common choice for classification tasks [28,29]

and was used here. While most other algorithms tested here deal

with the classification problem using a multiclass approach i.e.

considering all classes simultaneously, the SVM classifier used here

does not handle multiclass problems directly. It breaks the

problem down into a series of binary classification problems using

a one-against-one approach so that (c-1)/2 binary classifiers are

trained (where c is number of classes). A majority vote is used to

decide the final classification. The SVM was implemented using

the e1071 R package [29].

Classification tree (CT)
The rpart algorithm [30] is a classification tree-based method

which makes classification rules by recursively partitioning the

data into increasingly homogenous groups. The data is split into

smaller and more homogeneous subsets (called nodes) based on

thresholds in the predictor features. Homogeneity at each node is

measured using the Gini impurity criterion [30]. At each

consecutive split, the threshold chosen is based on the split which

most reduces overall node impurity. To avoid over-fitting, an

internal cross-validation was performed to remove splits which

increase cross-validated error, referred to as pruning.

Random Forest (RF)
The RF algorithm [31] is an ensemble technique which

aggregates the results of many randomly constructed classification

trees. The trees differ from those produced by rpart because they

are not subsequently pruned. Two components of randomness are

introduced into the construction of the individual trees. Firstly,

each tree is constructed using a random bootstrapped sample of

the training data. Secondly, rather than testing all features for the

best split, a random subset of variables is tested at each split in

Table 2. Secondary acoustic features generated from bathymetry and backscatter.

Derivative Description Layer names

Bathymetric
position index (BPI)

The vertical difference between a cell and the mean of the local neighbourhood [53]. BPIs were
calculated using 200 m and 600 m radii.

BPI_600m; BPI_200m

Roughness The difference between the minimum and maximum of cell and its 8 neighbours [24]. Roughness
was calculated for bathymetry and backscatter.

backscatter_roughness,
bathymetry_roughness

Curvature Curvature describes the rate of change of the slope. [24]. Profile curvature is measured in the
parallel to direction of maximum slope. Plan curvature is measured in the perpendicular to direction
of maximum slope.

curvature, curvature_planar,
curvature_profile

Northness Equals the cosine of the aspect, which is the direction of the steepest slope measured in clockwise
degrees from north.

northness

Eastness Equals the sine of the aspect. eastness

Moran’s I Spatial auto-correlation in a 565 neighbourhood [54]. Moran’s I was calculated for bathymetry
and backscatter.

bathymetry_moran,
backscatter_moran

Sobel filter A directional filter that emphasises areas of large spatial frequency (edges) running horizontally (X)
or vertically (Y) across the image.

bathy_sobelY, bathy_sobelX

doi:10.1371/journal.pone.0093950.t002
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each tree. The idea behind introducing the randomness into the

construction of the trees and averaging the result over many trees

is that the final outcome will be less subject to any random

fluctuations in the training dataset and will have an increased

capacity for generalising patterns. The prediction is made for

unobserved data by taking a majority vote of the individual trees.

The samples not part of the bootstrapped sample for each tree,

referred to as ‘out-of-bag’ (OOB) samples, are used to create a

cross-validated prediction error for the forest. Also, as part of the

construction of the random forest, the OOB samples are used to

formulate a measure of feature importance. This is done by

randomly shuffling the values of each input feature in turn and

observing how much the prediction error of the OOB samples

increases. The randomForest package in R was used for the

implementation [32].

Artificial Neural Networks (NN)
A single hidden layer neural network classifier was also trained.

The construction of this type of model is referred to as network

because it can be viewed as three layers of connected nodes. The

input layer with a node representing each input feature. The

output layer contains a node for each class to be predicted. In

between input and output layers is a ‘hidden’ layer of nodes. The

number of nodes in the hidden layer is decided during the tuning

phase. There are connections between every input node and each

node in the hidden layer and subsequent connections between

every node in the hidden layer and each of the output nodes. The

model is parameterised by weights assigned to each connection.

These weights are ‘learnt’ during the training phase. The input to

each node of the hidden layer is the sum of weighted values from

the input layer (plus a constant bias). This value is then fed into the

‘activation’ function (logistic/sigmoid function). Outputs of the

network are interpreted as class probabilities and sum to 1. The

training data were scaled so that they had a standard deviation of 1

and mean of 0; this is so they are considered equally in the training

process. The final outcome is somewhat dependent on the starting

weights, which are chosen at random, and it is recommended that

predictions are made using the aggregated results of many trained

networks [33]. The outputs of 100 networks were aggregated and

used for the final prediction; this choice was based on what was

both computationally reasonable and most likely to achieve a

stable estimate. The nnet package in R is used for applying the

neural network [26].

Naive Bayes (NB)
The NB classifier calculates class probabilities based on Bayes’

rule [34]. It assumes that each input feature is independent and

that the probability distribution of each class for each feature is

Gaussian and so is the only parametric technique tested here. It

does not require tuning or training, so is computationally easy to

implement. NB is implemented in the e1071 package in R.

Feature Selection
In order to identify and remove irrelevant features from the 15

inputs a feature selection algorithm was used. The Boruta

algorithm [35] is a wrapper function based on the RF classifier.

Table 3. Correlation matrix of input features.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

f1 1 0.24 0.33 20.67 20.26 0.01 0.14 0.03 0.15 20.14 20.12 0.03 0.52 0.28 0.29

f2 0.24 1 0.8 20.21 20.05 0.02 0.13 0.05 0.01 20.43 0.4 0.52 0.2 0.15 0.12

f3 0.33 0.8 1 20.3 20.11 0.04 0.05 0.06 20.01 20.29 0.17 0.3 0.3 0.24 0.17

f4 20.67 20.21 20.3 1 0.14 0.02 20.05 0.02 20.07 0.15 0.05 20.07 20.23 20.01 20.24

f5 20.26 20.05 20.11 0.14 1 20.31 20.36 20.16 20.13 0.03 20.06 20.06 0.1 0.1 0.13

f6 0.01 0.02 0.04 0.02 20.31 1 20.03 0.7 0.03 0.02 20.02 20.02 20.01 20.08 20.09

f7 0.14 0.13 0.05 20.05 20.36 20.03 1 0.05 0.69 20.11 0.23 0.21 0.02 20.02 0.06

f8 0.03 0.05 0.06 0.02 20.16 0.7 0.05 1 0.09 20.02 0.04 0.04 0.14 0.05 20.07

f9 0.15 0.01 20.01 20.07 20.13 0.03 0.69 0.09 1 0.02 0.06 0.02 0.07 0.07 0.02

f10 20.14 20.43 20.29 0.15 0.03 0.02 20.11 20.02 0.02 1 20.27 20.84 20.03 20.02 20.03

f11 20.12 0.4 0.17 0.05 20.06 20.02 0.23 0.04 0.06 20.27 1 0.75 0.01 20.06 20.02

f12 0.03 0.52 0.3 20.07 20.06 20.02 0.21 0.04 0.02 20.84 0.75 1 0.03 20.02 0.01

f13 0.52 0.2 0.3 20.23 0.1 20.01 0.02 0.14 0.07 20.03 0.01 0.03 1 0.62 0.26

f14 0.28 0.15 0.24 20.01 0.1 20.08 20.02 0.05 0.07 20.02 20.06 20.02 0.62 1 20.07

f15 0.29 0.12 0.17 20.24 0.13 20.09 0.06 20.07 0.02 20.03 20.02 0.01 0.26 20.07 1

f1 = bathymetry, f2 = BPI200, f3 = BPI600, f4 = bathymetry_moran, f5 = bathymetry_roughness, f6 = bathy_sobely, f7 = bathy_sobelx, f8 = Northness, f9 = Eastness,
f10 = Curvature_profile, f11 = Curvature_planar, f12 = Curvature, f13 = backscatter, f14 = backscatter_moran, f15 = backscatter_roughness.
doi:10.1371/journal.pone.0093950.t003
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Wrapper functions [36] identify relevant features by performing

multiple runs of the classifier testing the performance of different

subsets of input features. The RF algorithm is a suitable choice for

this process as it can be used without extensive parameter tuning

and returns an estimate of feature importance (Z score). For

example, it is possible that a random noise feature could by chance

explain some of the variability in the target variable and therefore

obtain a positive Z score by a single run of the random forest

classifier. To test whether features are significantly important, the

Boruta algorithm incorporates random noise features into the

classification. The importance scores of the original features are

tested against these random features and only features with a

significantly higher mean Z score are retained as being relevant.

Parameter tuning and cross validation
It is an important step to tune the parameters of the models to

the training data. The aim is to find a balance between building a

model that can classify the training data effectively without over-

fitting to the random fluctuations in the training data. Some

models are more sensitive than others to the parameters chosen.

The RF classifier is usually insensitive to the parameters used

(hence its use in the feature selection algorithm), although it can

still benefit from some fine tuning. On the other hand, it is not

recommended to use SVM without tuning of the input parameters

[28].

Model tuning was carried out using a grid search approach in

the R package e1071. This involved providing a range of values for

each parameter to be tested. A leave-one-out cross validation

(LOOcv) was performed on every combination of parameters in

the ranges specified. The model parameters that obtained the

lowest cross-validated error score were retained for the final

predictions. Although this is computationally arduous, cross-

validation is still the preferred method of finding optimal

parameters [28,33]. The ranges over which to perform tuning

were decided by values recommended in the literature and general

‘rules of thumb’ (see Table 4).

The error criterion being tested during the tuning process was

the balanced error rate (BER), which is the average of the

proportion of wrong classifications in each class. This was chosen

in preference to overall classification error due to the unbalanced

class frequencies in the training data [28]. Using BER effectively

gives rarer classes a higher weighting so that the model is penalised

more heavily for misclassifying a rare class.

Model Validation
After the grid search model tuning had selected the optimal

model parameters, predictions were made on the test set using the

chosen models from the tuning process. BER and the Kappa

coefficient of agreement [37] were calculated to compare the

performance of the models. Kappa is used to compare the

performance of classifiers as it provides a more robust measure of

agreement than accuracy, because it takes into account the

expected agreement by random chance. Classification accuracy

(proportion of samples that were correctly classified) was also

calculated. If the training and tuning of models has been

performed effectively, the error of the test set should reflect the

error indicated by LOOcv. This would imply that the model has a

capacity to generalise patterns and has not been over-fitted to the

training data.

Each model was tested against the baseline model (1-NN) to

determine the statistical significance of differences in the error

measures. Our baseline represents a very simple model and, by

using more ‘sophisticated’ classifiers and incorporating more input

features, we would expect an increase in predictive performance.

Thus we wanted to test whether the error was significantly larger

and we used a one-sided test of significance. Monte Carlo type re-

sampling illustrated by [38] was used to generate p-values. The test

involves performing a large number of permutations (random

shuffling) of the class labels in the test set. To calculate the

significance of the difference between kappa statistics the following

steps were performed: i) For n permutations of the test set, kappa

statistics for both classifiers were recalculated on the permuted test

set and the difference between these two kappa values was

calculated. ii) If the difference exceeded the original difference, a

counter (c) was incremented by 1. iii) The difference in kappa

statistics is considered significant (at the 5% level) if the proportion

of differences exceeding the original difference (plus 1) is less than

0.05: (c+1)/(n+1)#0.05. The same procedure was used to test the

significance of the BER. Approximately 1000 permutations are

adequate for significance testing at the 5% level [38,39].

Results

Data exploration
Visual inspection of the training samples showed that the

distribution of the sampling seemed to approximate the distribu-

tion of bathymetry values from the raster grid, although there was

a slight under representation of shallower areas.265 m

Table 4. Model Parameters.

Model Parameters Parameter Description Tuning Range

k-NN k The number of neighbours considered in the classification 1:20

SVM C The cost parameter determining how much data is included in creating the decision boundary, a small value
will consider more observations

2-5:15

c The kernel smoothing parameter which defines the shape and complexity of the resulting decision boundary2215:5

RF nodesize The minimum number of cases allowed in each of the terminal nodes of each tree 1:10

mtry The number of features tested at each split 2:15

CT cp The complexity parameter, it specifies the minimum amount of improvement that must be made in order for
a split to take place

2210:21

minsplit Nodes of this size or smaller are no longer split 1:10

ANN size The number of units in the hidden layer 21:6

decay The weight decay parameter is used in the training to avoid overfitting 1025:21

doi:10.1371/journal.pone.0093950.t004
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(Figure 2a). The backscatter data revealed an over sampling of

values between 215 and 220 dB and under sampling around

225 dB (Figure 2b). This visual comparison suggested that the

sampling appeared to reflect the underlying distribution of the

primary acoustic features fairly well.

Further exploration of the substrate types of training data

showed that, in general, coarser sediments were associated with

higher backscatter and shallower water depths (Figure 2 c and d).

However, this generalisation doesn’t apply to the mS class where

the mean backscatter values were slightly higher than that of S.

The mS class had the largest variability in both bathymetry and

backscatter values.

Feature Selection
The Boruta algorithm performed 230 runs of the RF classifier to

identify relevant features. From the initial fifteen features,

including bathymetry and backscatter, nine were retained as

being considered to be significantly important by their mean Z-

score (Table 5). The relative importance indicated by the

algorithm shows that backscatter is by far the most important

feature. Bathymetry and Moran’s I of backscatter are also

indicated as being important. Features that were not considered

significant and dropped included BPI’s, eastness and roughness.

Model performance
A total of 18 models were trained and their performances

measured using the test data set (Table 6 and Figure 3). Predictions

for the test set were also made using 1-NN baseline model. The

results show the 1-NN model scored a BER of 0.54; it had an

accuracy score of 0.77 and a kappa coefficient of 0.33. In total

eight models (NB2, RF2, CT1, RF1, NB3, CT3, NN1 and SVM1)

performed better than the baseline for all three performance

measures.

Figure 2. Exploration of training data. A: Comparing the distributions of bathymetry values between training samples (dashed) and raster grid
(solid). B: Comparing the distributions of backscatter values between training samples (dashed) and raster grid (solid). C: Comparing the distribution
of bathymetry values between substrate classes. D: Comparing the distribution of backscatter values between substrate classes.
doi:10.1371/journal.pone.0093950.g002

Table 5. Output from Boruta feature selection algorithm.

Feature Z-score

backscatter 34.13

bathymetry 15.34

backscatter_moran 12.31

curvature 12.01

curvature_planar 10.79

bathymetry_moran 8.67

curvature_profile 8.21

backscatter_roughness 7.74

northness 5.77

BPI_200m 4.97

BPI_600m 4.93

bathy_sobelY 3.25

bathy_sobelX 1.45

eastness 1.11

bathymetry_roughness 0.79

Scores that were significantly higher (p,0.001) than scores of random features
are indicated in bold.
doi:10.1371/journal.pone.0093950.t005
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The NB2 model was the best performing model in terms of

BER followed by the RF2 model; the CT1 and RF1 models were

in joint third place (Table 7 shows error matrices for these models).

According to the kappa statistic, the NB2 model was also indicated

as being the best performer. This was followed by the CT1 and

then three models sharing the same kappa score (RF2, RF1 and

NN1). RF2 had the highest accuracy score followed by NB2, CT1

and RF1 sharing the same accuracy scores.

Of the eight models outperforming the baseline in all three

measures, four were models using only primary features (RF1,

CT1, NN1 and SVM1), two models used the subset of features

(NB2 and RF2) and two were using all features (RF3 and CT3).

Three of the eight were RF models, two were NB models and

there was one each of the CT, SVM and NN models. The k-NN

model was the only method that did not have any of its models

outperforming the baseline. RF was the only method which all

three models outperformed the baseline in all three measures. RF

and NB were the only methods that using all features

outperformed 1-NN.

Conversely, of the methods performing worse than the baseline

according to kappa and BER, three were using all features and

three were using the subset of features, indicating that perfor-

mance of these may have suffered due to the presence of irrelevant

features.

The significance testing of the BER and kappa statistics indicate

there were a number of models performing significantly better (at

the 5% level) than the 1-NN model. Six models performed

significantly better in terms of the BER statistic and two models

had p values for the kappa statistic which indicated significance.

Interestingly, the highest scoring kappa value of the NB2 model

was not considered significant, while the lower scoring NN2 model

was indicated as significant. Equally for the BER statistic, the NN1

model was indicated as being significant but the lower BER scores

of the NB3 and CT2 models were not.

Figure 3. Comparing model performance on the test data. The dashed lines represent the performance of the baseline model. The best
performing models are to the top-right.
doi:10.1371/journal.pone.0093950.g003

Table 6. Model Performance Comparison.

Model BER Accuracy Kappa

NB2 0.37 0.80 0.50

RF2 0.40 0.81 0.45

RF1 0.41 0.80 0.45

CT1 0.41 0.80 0.48

RF3 0.43 0.78 0.36

NB3 0.43 0.78 0.38

CT3 0.48 0.69 0.21

CT2 0.48 0.69 0.27

NN1 0.49 0.80 0.45

SVM1 0.53 0.78 0.39

1-NN 0.54 0.77 0.33

k-NN2 0.61 0.72 0.19

NB1 0.64 0.75 0.34

SVM2 0.67 0.78 0.27

NN3 0.69 0.78 0.21

k-NN3 0.69 0.78 0.22

SVM3 0.70 0.77 0.20

NN2 0.77 0.73 20.07

BER, Kappa coefficients and Accuracy statistics calculated on the test set. Values
indicated as being significantly better than the baseline (p#0.05) are indicated
in bold. Model numbers indicate the input features used; 1 indicates primary
features; 2 indicates subset of features chosen by Boruta; 3 indicates all input
features were used. K-NN1 is not included as the LOOcv indicated that 1 nearest
neighbour gave the best performance making it the same as the baseline 1-NN
model. (NB = Naive Bayes; RF = Random Forest; CT = Classification Tree; NN
= Neural Network; SVM = Support Vector Machine; k-NN = k-nearest
neighbour).
doi:10.1371/journal.pone.0093950.t006
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Predictions of the top three performing models NB2, RF2 and

CT1 were output to visualise the differences in model predictions

in terms of variability in the spatial extents of different classes and

to assess agreement between them. All three models predict the

same class for 70% of the area, at least two of the models agree on

another 27% of the area (Figure 4). In the remaining 2.7% of area

there was disagreement between all three models. There are some

clear differences in the area predicted for each class between the

models. CT1 for example indicates a larger proportion of sG than

the other models, with RF2 having very little of the area being

predicted as sG. Likewise, RF2 seems to predict lesser extent for

the mS class. The mS and sG classes represent the extremes of

the ground-truth classes, being the finest and coarsest classes, so

this suggests that the RF2 model is more ‘conservative’, its

estimates being more likely to predict the moderate and more

common classes. This is likely a result of the ensemble nature of

the RF2 model.

Discussion

In this study we compared supervised classification methods for

the prediction of substrate type using MBES and grain-size data.

We compared the performance of six machine learning tech-

niques, as well as the effect of the selection of input features on

model performance. The algorithms tested here were chosen

based on good performance as indicated in previous studies.

Only two studies have systematically compared supervised

classification techniques in the context of classifying MBES data.

Ierodiaconou et al. [13] compared two decision tree techniques,

QUEST (Quick, Unbiased, Efficient Statistical Tree) and

CRUISE (Classification Rule with Unbiased Interaction Selection

and Estimation), with Maximum Likelihood Estimation (MLE).

The authors evaluated the performances of the three classifiers in

predicting benthic biological communities. They found that

QUEST was outperforming the other classifiers with the highest

thematic accuracy and kappa statistic. QUEST was also providing

consistently better results across six of the eight habitat categories.

Che Hasan et al. [14] compared four different supervised

classification methods: MLE, QUEST, RF and SVM were

evaluated to classify angular backscatter response into habitat

classes using training data acquired from underwater video

observations. Results for substrate classifications indicated that

RF and SVM produced the highest accuracies, followed by

QUEST and MLE, respectively.

SVMs have been used in various studies and have often

performed well [14,40]. However, Li et al. [41] reported them as

not performing as well as other methods, and that was the case in

our study, with none of the SVM models performing significantly

better than the baseline. One reason for the poor performance of

SVMs might be due to insufficient tuning of the free parameters.

RF has been used previously for mapping benthic substrates and

habitats. Generally, the good performance by the RF classifier

indicated in this study is in keeping with previous studies that have

shown similar good performances [14,15,41]. The RF algorithm is

not severely affected by the inclusion of many input features, even

if some are noisy or redundant [41]. This was also apparent in this

study, as the RF3 model was the only model using all input

features that performed significantly better than the baseline.

Classification trees also performed well in this study, which is

consistent with previously reported results [13,14,41].

NB is the only parametric model used in this study and it

achieved the highest accuracy scores, performing significantly

better than the baseline. In a similar study, Lüdtke et al. [40]

reported the NB classifier not performing as well as other tested

methods including SVM, CT and k-NN. Likewise, Che Hasan et

al. [14] tested a parametric MLE against non-parametric models

RF, SVM and classification trees, with the non-parametric

techniques performing better. However, despite the ‘naive’

assumptions made by the model, it has been shown that, given

real world applications, this simple classifier often performs well

[33]; a finding that was confirmed by this study. John and Langley

[34] recommended that a kernel density estimation should be used

to approximate the probability distributions of features, rather

than assuming the distributions are Gaussian, as was the case here.

This could further improve results of the NB classifier in this study.

Table 7. Error matrices for the three best performing models.

CT1 mS S gS sG Error

mS 2 0 0 0 0.00

S 1 44 3 2 0.12

gS 1 3 5 1 0.50

sG 0 1 1 0 1.00

RF2 mS S gS sG Error

mS 2 0 0 0 0.00

S 1 45 4 0 0.10

gS 0 5 5 0 0.50

sG 0 2 0 0 1.00

NB2 mS S gS sG Error

mS 2 0 0 0 0.00

S 1 42 7 0 0.16

gS 0 3 7 0 0.30

sG 0 0 2 0 1.00

Rows show the predicted class frequencies and columns show the observed frequencies.
doi:10.1371/journal.pone.0093950.t007
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Figure 4. Output predictions from top three models and agreement between them. A: NB2, B: RF2, C:CT1, D: Agreement.
doi:10.1371/journal.pone.0093950.g004
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The feature selection algorithm is based on the RF classifier.

This may give the RF2 model an unfair advantage, as it is using

features that were selected based on its own feature importance

scores. Generally, there are two possible options for feature

selection. The first option is to use a technique that does not rely

on any particular classifier but removes irrelevant/redundant

features in a pre-processing step; this is referred to as a filter

approach. Such an approach may be more valid for model

comparison purposes as it is independent of information from the

classifiers used [42] However, one significant problem with filter

approaches is that seemingly irrelevant features are disregarded,

when in fact they might be relevant when used in combination

with other features. Methods that score variables individually and

independently cannot determine which combination of features

gives the best performance [43]. The crucial aspect about using

RF as a basis for feature selection is that feature interactions are

taken into account. Another, perhaps preferable option would be

to apply a feature selection wrapper for each specific classifier

[28,44]. This would involve using each classifier as a ‘black box’

and assess performance on subsets of features. The problem with

this approach is basically computational. The classifier used in this

process should be simple, efficient and crucially, be usable without

user defined parameters [43]. Other classifiers tested here,

particularly NNs and SVMs generally require parameter tuning

in order to perform effectively. This would mean using them for a

feature selection process of tuning parameters over every subset of

features, which becomes unfeasible with anything more than a few

features. The Boruta feature selection algorithm was used here as a

general way to reduce the number of features to a set that is likely

to be relevant. Most of the models using all features performed

poorly, highlighting the importance of some form of feature

selection. The fact that the best model was NB2, performing better

than RF2, suggests that the features selected by the Boruta

algorithm were in some way relevant to other methods, however,

further development should incorporate model specific feature

selection procedures.

Bathymetry and backscatter were, perhaps unsurprisingly,

identified as the most important features. Previous studies have

reported local variability in backscatter as being important for

predicting substrate classes [15,45]. The inclusion of benthic

morphology features was also identified as important for substrate

predictions [18,20,41]. Our results indicate that curvature and

backscatter roughness are important features (Table 5), in line with

previous studies. Against expectations, bathymetry roughness was

not selected by the Boruta algorithm. This might be related to the

relatively coarse cell size of 10 m610 m (compared to the area of

seabed sampled by the grab), which might have reduced small-

scale variability in bathymetry by averaging. Local Moran’s I

spatial autocorrelation measure of backscatter and bathymetry was

considered among the most important features, higher than

roughness of bathymetry or backscatter, suggesting that the spatial

configuration of the variability is at least as important as the

variability itself and is related to textual analysis of acoustic data

[4]. This is a feature that, to our knowledge, has not been included

in other studies of substrate mapping but appears to be promising.

Further secondary features derived from angular range analysis

[46] or multi-scale terrain analysis [24] might also be included.

Promising results have been reported by Che Hasan et al. [14,19],

who combined angular range analysis and image segmentation

with supervised classification. We felt however that we had to limit

the number and types of input features to keep the study

manageable. A decision was made to limit the secondary features

to those that are easily derived with standard GIS software and

have been frequently applied in other studies in order to make this

study relevant for a wide audience.

This study focused solely on the prediction performance of the

classifiers. Not taken into account was the time taken in the tuning

and training stages for the classifiers. There was, however, a large

variation in the amount of time taken during those stages for the

different models. In general terms, SVMs and NNs were the most

costly in terms of time (the tuning phase took a number of hours

for each model). NB and k-NN required no tuning step and so

were computationally cheap to implement (a matter of seconds).

The tree based methods, including RF, fell somewhere between

these extremes. These observations are generally confirmed by

values reported in [40]. It is important to take computational time

into account. This is of particular significance here because the NB

model not only was the best model in terms of predictive power,

but was also among the fastest to implement, as no tuning or

training step was required. Therefore, based on classification

accuracy and computational time, our study suggests that NB, RF

and CT are the best performing methods.

Alternatives to classification accuracy were also used to assess

the performance of the models. If we consider a hypothetical

example; an overall classification error (1 - accuracy) of 0.22 would

be achieved if every sample in the test was classified as S. The BER

of this scenario would be 0.75 (3/4). The best performing model in

this study achieved an overall classification error of 0.20,

approximately a 9% relative improvement on the above scenario.

However the best performing model obtained a BER of 0.37, a

relative improvement of 51% on the above. This highlights the

value of using an alternative to classification error in assessing

performance when class frequencies are very uneven. Using

overall classification accuracy in this case added little to the

understanding of which classifiers performed best at predicting

rarer classes, as there was little variability in the overall accuracy

scores between models. The BER and kappa statistics better

reflected the variability in model performance. Models such as

SVM2, NN3 and k-NN3 obtained relatively high overall accuracy

scores above the baseline model and very close to those of the best

performing models. Nevertheless, based on the kappa statistic and

BER, they were seen as the poorest performing models.

It is encouraging to observe the consensus between the top three

models. When the predictions were output across the entire area,

at least two out of three models agreed on the classification of

97.3% of the study area. The area where all three models disagree

is spatially isolated and generally aggregated within a single patch.

This discrepancy was predicted as S by the NB2 model, gS by the

RF2 model and sG by the CT1 model. The backscatter values in

this area are in the region of 216 to 219 db and the bathymetry

values are in the vicinity of 263m. As was suggested previously,

figure 2a indicates that the shallower areas.265m are not

adequately captured in the training data and this could be a reason

for the confusion between the different model estimates.

Some general limitations of the data should be considered as we

were using a legacy dataset. Firstly, the input features are

aggregated to a particular spatial resolution. These are dictated

by technical limitations of the sampling equipment (multibeam

sampling density) and more significantly the computing power

available for processing the data. The bathymetry and backscatter

grids were aggregated to a resolution of 10 m. It is realistic to

expect considerable variability of sediment type within an area of

100 m2 of sea bed, but the sediment observations were not

sampled at the same scale. A sediment grab samples perhaps

<0.04 m2 of sea bed; this is the support size of the data and it is

different from the support size of the estimates we are making.

Averaging quantities over a large area has the effect of reducing
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their variance and making the distributions more normal [47].

The implications are that it is unrealistic to expect to account for

all the variability in our observations when the predictor variables

have a coarser resolution (larger support size) than the sampled

data. Future studies should investigate the effect of varying the cell

sizes of the acoustic data on model performance.

Secondly, the seabed is subject to hydrodynamic processes

which will cause temporal variability of substrate composition at a

particular location. An unknown amount of error can be

attributed to the fact that the observations are of varying ages

and, crucially, the fact that the acoustic data were not collected at

the same time as the sediment observations (possibly decades

afterwards). While the models have been trained to fairly

effectively predict what is observed in the data, does this reflect

what is currently the reality on the ground? A follow up survey to

validate the model predictions would be the best way to determine

this. On the other hand, water depths range between 55 m and

100 m, making the site unsusceptible to wave agitation except

during extreme and rare events. Additionally, tidally induced

bottom shear stresses are relatively weak [48]. Consequently,

remobilisation of seabed sediments is likely to occur only

episodically. There is also evidence, from a site in the North

Sea, that sediment distribution patterns with high grain-size

contrast similar to those in this study area might remain stable over

decades [49].

Lastly, and perhaps the most significant cause of error to

consider within this study, is the positional accuracy of the ground-

truth samples, which were collected before the introduction of

GPS and relied on the DECCA navigation system to determine

position. The DECCA system was based on triangulation from

land based radio transmitters. While it is difficult to estimate the

magnitude of the positional error, as the accuracy of the DECCA

system varies not only with distance from the land-based

transmitting station but is also dependant on the season and the

time of the day [50], repeatable accuracies are assumed to be

better than 400 m with 95% confidence [51]. With this positional

accuracy indicated and the raster resolution of the acoustic data

being only 10 m, it is likely that incorrect raster values will have

been extracted for the ground-truth samples. In areas of seabed

that are homogenous on length scales similar to the accuracy of the

data this may not have introduced too much error. In areas that

have a higher variability at smaller spatial scales, this will have

been more of an issue. One way to incorporate the known spatial

inaccuracies of up to 400 m may be to use a simulation approach

whereby many models were fitted to training data that used

‘jittered’ sample positions (i.e. samples are randomly relocated

based on a bivariate probability function around the original

location). Alternatively, a buffer could be applied to each sample

thereby exporting a range of possible values for each sample. This

would produce a considerably larger training set and tuning/

training times of the various algorithms would be more of an issue.

How best to validate this approach would also require consider-

ation. Dealing with these issues of positional inaccuracy including

the quantitative identification of outliers in the sampling data is an

important topic but beyond the scope of this study.

A further limitation is the unavoidably restricted range of

substrate types encountered in the study site. We attempted to

select a site with reasonable variability in seabed substrates, their

associated backscatter response and water depths. The substrates

ranged from muddy sand to sandy gravel. Finer sediments such as

mud and sandy mud, mixed sediments, exposed bedrock, biogenic

reef, and macrophyte-dominated sediment etc. were not encoun-

tered. The insights gained from this study might therefore be

limited to the observed substrate types. It is obviously not possible

to address all potential issues regarding classification approaches,

accuracy of input data, effect of support size, range of substrate

types and many more in one single study. Rather, we see this work

as a contribution towards building a body of evidence that will

eventually guide researchers in selecting appropriate classification

methods for specific mapping tasks. With only two comparable

studies published [13,14], we are still at the beginning of this

process and would urge other researchers to carry out similar

comparative studies. We would also strongly suggest that

researchers make their input data sets, i.e. at least seabed substrate

class or composition and associated extracted feature values for all

sample stations, freely available. This will facilitate seabed

mapping research and eventually might give us the opportunity

to carry out meta-analyses, once the body of evidence has gained a

critical mass. Respective data from this study will be made

accessible as supplementary material.

Despite all these limitations, the best performing models (NB2,

RF2 and CT1) yielded satisfactory results with overall classification

accuracies around 0.8, BERs of 0.37 to 0.41 and kappa statistics of

up to 0.5. This indicates that legacy grain-size data can be

successfully employed to ground-truth MBES data when spatially

predicting seabed substrate distributions. Future work should be

directed towards a better quantification of positional errors

introduced by the use of the DECCA navigation system, the

effect of positional errors on classification accuracy and the

applicability of a multi-model ensemble approach to seabed

substrate predictions. The results of several models could be

combined using a simple voting procedure to determine class

allocation. Although this might not necessarily lead to improved

overall classification accuracy when compared with the best

performing model, this approach has advantages, as it is difficult to

specify the most appropriate classifier in advance. In addition, the

ensemble approach yields class-allocation uncertainty information

[52].

Conclusions

The aims of this study were to test and compare six supervised

classification algorithms for their ability to predict substrate type

using MBES and ground-truth data. While the ideal solution

would be to undertake a dedicated survey, collecting acoustic data

first and basing a subsequent ground-truth survey on these data to

ensure the acoustic areas are representatively sampled, this is not

always achievable and that is why we looked at the potential for

using legacy grain-size data with existing MBES data. We have

shown that satisfactory results can be obtained from using legacy

data.

Comparing the models tested here against a simple baseline

model showed that incorporating secondary derived features

increased predictive power, although, while the best performing

models included features derived from bathymetry and backscat-

ter, models that used all the input features did not perform well,

indicating the need for some form of feature selection to remove

irrelevant features. The best performing model indicated in this

study (NB2) is theoretically simple and computationally cheap to

implement. This suggests that simpler, lightweight models should

be tested first and, if they prove to be of sufficient accuracy, then

using more sophisticated techniques which take more time to

implement will not be necessary. The unbalanced class frequencies

in the ground-truth data have implications for the accuracy

assessment of the models. Use of accuracy or classification error

added little to our understanding of which models performed well

and alternatives such as BER or kappa coefficient were found to be

preferable.
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40. Lüdtke A, Jerosch K, Herzog O, Schlüter M (2012) Development of a machine

learning technique for automatic analysis of seafloor image data: Case example,

Pogonophora coverage at mud volcanoes. Computers & Geosciences 39: 120–

128.

41. Li J, Heap AD, Potter A, Huang Z, Daniell JJ (2011) Can we improve the spatial

predictions of seabed sediments? A case study of spatial interpolation of mud

content across the southwest Australian margin. Continental Shelf Research 31:

1365–1376.

42. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artificial

Intelligence 97: 273–324.

43. Guyon I, Elisseeff A (2003) An Introduction to Variable and Feature Selection.

Journal ofMachine Learning Research 3: 1157–1182.

44. Harrison R, Birchall R, Mann D, Wang W (2012) Novel consensus approaches

to the reliable ranking of features for seabed imagery classification. International

Journal of Neural Systems 22: 1250026.

45. Collier JS, Brown CJ (2005) Correlation of sidescan backscatter with grain size

distribution of surficial seabed sediments. Marine Geology 214: 431–449.

46. Fonseca L, Brown C, Calder B, Mayer L, Rzhanov Y (2009) Angular range

analysis of acoustic themes from Stanton Banks Ireland: A link between visual

interpretation and multibeam echosounder angular signatures. Applied

Acoustics 70: 1298–1304.

47. Isaaks E, Srivastava R (1989) An introduction to applied geostatisitics. New

York, Oxford: Oxford University Press. 561 p.

Comparing Classifiers for Substrate Prediction

PLOS ONE | www.plosone.org 13 April 2014 | Volume 9 | Issue 4 | e93950

www.bgs.ac.uk


48. Pingree RD, Griffiths DK (1979) Sand transport paths around the British Isles

resulting from M2 and M4 tidal interactions. Journal of the Marine Biological

Association of the United Kingdom 59: 497–513.

49. Diesing M, Kubicki A, Winter C, Schwarzer K (2006) Decadal scale stability of

sorted bedforms, German Bight, southeastern North Sea. Continental Shelf

Research 26: 902–916.

50. Kubicki A, Diesing M (2006) Can old analogue sidescan sonar data still be

useful? An example of a sonograph mosaic geo-coded by the DECCA navigation

system. Continental Shelf Research 26: 1858–1867.

51. Last D (1992) The Accuracy and Coverage of Loran-C and of the Decca

Navigator System - and the Fallacy of Fixed Errors. The Journal of Navigation
45: 36–51.

52. Foody GM, Boyd DS, Sanchez-Hernandez C (2007) Mapping a specific class

with an ensemble of classifiers. International Journal of Remote Sensing 28:
1733–1746.

53. Lundblad ER, Wright DJ, Miller J, Larkin EM, Rinehart R, et al. (2006) A
Benthic Terrain Classification Scheme for American Samoa. Marine Geodesy

29: 89–111.

54. Moran P (1950) Notes on continuous stochastic phenomena. Biometrika 37: 17–
23.

Comparing Classifiers for Substrate Prediction

PLOS ONE | www.plosone.org 14 April 2014 | Volume 9 | Issue 4 | e93950


