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Abstract

The main goal of this study is to compare the effects of pH, uranium concentration, and background electrolyte (seawater
and NaClO4 solution) on the speciation of uranium(VI) associated with the marine bacterium Idiomarina loihiensis MAH1.
This was done at the molecular level using a multidisciplinary approach combining X-ray Absorption Spectroscopy (XAS),
Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), and High Resolution Transmission Electron Microscopy
(HRTEM). We showed that the U(VI)/bacterium interaction mechanism is highly dependent upon pH but also the nature of
the used background electrolyte played a role. At neutral conditions and a U concentration ranging from 5?1024 to 1025 M
(environmentally relevant concentrations), XAS analysis revealed that uranyl phosphate mineral phases, structurally
resembling meta-autunite [Ca(UO2)2(PO4)2 2–6H2O] are precipitated at the cell surfaces of the strain MAH1. The formation of
this mineral phase is independent of the background solution but U(VI) luminescence lifetime analyses demonstrated that
the U(VI) speciation in seawater samples is more intricate, i.e., different complexes were formed under natural conditions. At
acidic conditions, pH 2, 3 and 4.3 ([U] = 5?1024 M, background electrolyte = 0.1 M NaClO4), the removal of U from solution
was due to biosorption to Extracellular Polysaccharides (EPS) and cell wall components as evident from TEM analysis. The
LIII-edge XAS and TRLFS studies showed that the biosorption process observed is dependent of pH. The bacterial cell forms
a complex with U through organic phosphate groups at pH 2 and via phosphate and carboxyl groups at pH 3 and 4.3,
respectively. The differences in the complexes formed between uranium and bacteria on seawater compared to NaClO4

solution demonstrates that the actinide/microbe interactions are influenced by the three studied factors, i.e., the pH, the
uranium concentration and the chemical composition of the solution.
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Introduction

Natural concentrations of uranium in seawater are estimated to

be 3 mg/L [1]. The oceans hold billions of tonnes of this

radionuclide, almost 1000 times more than is present in terrestrial

environments [2]. During the last four decades approximately 34

MCi of uranium has been introduced into the atmosphere by

nuclear detonations, the larger fraction of it entering into the sea

[3]. In addition, uranium is delivered to the oceans via rivers and

dust, and is removed by uptake into marine sediments and oceanic

basalts [4]. The biogeochemistry of uranium of terrestrial

environments has been well studied [5–7]. Both abiotic (e.g.

minerals, ions, etc.) [8–9], and biotic components (microbes,

organic matter, etc.) of the terrestrial environment have been

shown to mobilize and/or immobilize uranium through different

mechanisms including precipitation [10–11], biosorption [6], [12],

and intracellular accumulation, biotransformation, and chelation

[5].

In the case of marine environments, several studies were

performed on macroscopic characterization of heavy metal uptake

and concentration, and the retention and release of radioactive

materials by aquatic organisms [13–14]. For instance, the

exopolysaccharide produced by the marine bacterium Enterobacter

cloaceae was reported to have excellent chelating properties with

respect to cadmium, copper, and cobalt [13]. Sakamoto et al. [14]

determined the concentrations of REEs and U in algal samples

taken on the coast of Niigata Prefecture, and suggested that the

accumulation mechanism of REEs in brown algae may be

different from that of U due to the chemical behavior of the

element. However, studies at the molecular level to investigate

how exactly, under highly saline conditions, bacteria interact with

radionuclides, are still lacking. Such studies are needed to take into

account possible U transfer from radioactive waste disposal areas

to the open ocean through rivers and estuarine areas [15], i.e.

habitats that are characterized by a high microbial diversity [16].
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Here we present a multidisciplinary approach on the speciation

of uranium sequestered by the marine bacterium Idiomarina

ioihiensis MAH1, under laboratory and seawater conditions. The

strain MAH1 has been biochemically and physiologically charac-

terized, and showed an ability to precipitate a wide variety of

minerals including phosphates (e.g. struvite, NH4MgPO4N
6H2O)[17], carbonates (e.g. Ca-Mg kutnahorite, CaMg(CO3)2)

[17], and sulfates (barite, BaSO4) in sea water [18]. The

characterization of U solid phases associated with the cells of

MAH1 using two electrolyte conditions was performed by means

of X-ray Absorption Spectroscopy (XAS), Time-Resolved Laser-

Induced Fluorescence Spectroscopy (TRLFS), and Transmission

Electron Microscopy (TEM). Our aim was to understand the

mechanisms by which planktonic marine bacteria interact with

uranium in marine environments. The role of these microorgan-

isms in the fate and transport of this radionuclide should be taken

into consideration, along with the presence of minerals. The

results presented here reveal the potential of marine bacteria for

remediating of uranium-containing wastes and for the extraction

of uranium from the sea when ground mining would become

economically unattractive. In this study we also demonstrated that

radionuclide-microbe interactions are best studied under natural

habitat conditions.

Materials and Methods

Bacterial Growth
The strain MAH1 was isolated from a surface seawater sample

of the Alboran Sea, located on the most western corner of the

Mediterranean Sea, between the coast of Spain (in the north) and

Morocco and Algeria (in the south) [17]. This sea has a strategic

position as it connects the Atlantic Ocean to the Mediterranean

Sea, and through it passes an intensive maritime traffic. The

sampling work was carried out in public seawater and no specific

permissions were required for this location. This strain was

deposited in the Spanish Type Culture Collection (CECT) (www.

cect.org), under reference CECT 5996. The cells were cultured

and maintained in marine broth medium (MB)(Difco) [17]; its

composition was the following (g/L): NaCl, 19.45; MgCl2, 8.8;

peptone, 5; Na2SO3, 3.24; CaCl2, 1.8; yeast extract, 1; KCl, 0.55;

NaHCO3, 0.16; ferric citrate, 0.1; KBr, 0.08; SrCl2, 0.03; H3BO3,

0.02; Na2HPO4, 8; Na2SiO3, 4; NaF, 2.4; NH4NO3, 1.6. For the

preparation of solid media Bacto agar (2 g/L) was added. The

bacterial cells were pre-cultured in the above mentioned medium.

The bacterial growth was monitored by measuring optical density

at 620 nm.

Cells were grown to late exponential-phase under shaking at

30uC, were harvested by centrifugation at 15.0006g for 20 min at

4uC, and washed three times with 0.1 M NaClO4 or with Alboran

seawater (hereafter referred to as seawater) to remove the

interfering ingredients of the growth medium. The cell density

used for the uranium/bacterial interaction experiments was 0.4 g

dry biomass per liter.

Chemical Composition of Seawater Solution
Seawater collected from the surface of the Alboran Sea was

previously filtered with a 0.2 mm porous membrane immediately

after sampling to eliminate particulate material. The chemical

composition (in ppm) of seawater used in this study is: Na+, 10768;

K+, 399; Ca2+, 412; Mg2+, 1291; Cl2, 19353; SO4
22, 2712;

HCO3
2, 141; NH4

+, 0.03; NO3
2, 0.29. The speciation of U(VI) in

seawater at pH 7.2 and temperature of 25uC was determined

using Visual Minteq 3.0 software [19].

Uranium Solution Preparation
1 M stock solution of UO2(NO3)2 6H2O was prepared by

dissolving the appropriate quantity of the metal salt in 0.1 M

NaClO4. The stock solution was sterilized by filtration through

0.22 mm nitrocellulose filters and was stored at 4uC. Working

solutions were prepared by dilution of the stock solution using

0.1 M NaClO4 (pH 2, 3, 4.3, and 7) or seawater solutions. The

pH was adjusted by addition of small volumes of acid (HCl) or

base (NaOH).

Time-Resolved Laser-Induced Fluorescence Spectroscopy
(TRLFS)

For TRLFS measurements, cells of I. loihiensis MAH1 were

incubated for 48 h in 0.1 M NaClO4 at pH 2, 3, and 4.3, each in

the presence of 5?1024 M U(VI), as well as at pH 7, in the

presence of 1?1024 M U(VI). Parallel cell samples were incubated

similarly using seawater (pH 7.2) with following concentrations of

U(VI): 1N1024 M, 5N1025 M, and 1N1025 M. After incubation, the

cells were washed and suspended in the corresponding back-

ground solution (seawater or NaClO4). One half of the obtained

cell suspension was directly used for spectroscopic measurements.

The cells of the remaining suspension were harvested by

centrifugation, dried under vacuum and subsequently powdered,

according to the XAS sample preparation. About 3 mL of solution

or 10 mg of the powdered cell samples were used for the TRLFS

measurements. Samples were placed in a quartz micro cuvette. To

avoid inhomogeneous liquid samples caused by cell sedimentation

all suspensions were stirred during the measurements.

U(VI) luminescence was excited using a Nd YAG laser system

(Spectra Physics, Santa Clara, CA, USA) [20] with an excitation

wavelength of 410 nm and a low intensity of 300 mJ to avoid

sample damage. All measurements were performed at room

temperature at the Institute of Resource Ecology, Helmholtz

Centre Dresden-Rossendorf, Dresden, Germany. Luminescence

spectra were recorded between 454 and 589 nm. The central

wavelength of the spectrograph was set to 520 nm and the gate

width of the ICCD camera was 1 ms, in case of the solid samples

incubated at pH 3 and 4.3, and 5 ms for all other samples

(complete detection system: HORIBA Jobin Yvon GmbH,

Darmstadt, Germany). For time-resolved measurements a digital

delay generator (DG535, Stanford Research Systems, Sunnyvale,

CA, USA) was used. Before each series of measurements the

background signal was recorded 2 ms after the laser pulse and

afterwards automatically subtracted from each spectrum.

The spectrograph was calibrated using a mercury lamp with

known emission lines. Luminescence was excited by 50 to 80 laser

pulses, depending on the amount of uranium in the sample.

Subsequently, 101 U(VI) luminescence spectra (each calculated by

averaging three single measurements) were recorded after defined

delay times. The obtained luminescence data were processed by

using Origin 7.5 software (OriginLab Corporation, Northampton,

MA, USA) including the PeakFit module 4.0.

X-Ray Absorption Spectroscopy Analysis
Samples for XAS studies were prepared as previously described

[6]. In the case of seawater samples, the U concentrations assayed,

1N1024 and 2.5 1024 M, were higher than those of the TRLFS

studies due to the low sensitivity of this technique to low metal

concentrations. After contact with the uranium solution, cells were

harvested and washed with either 0.1 M NaClO4 or seawater,

depending on the experiment. The pellets were dried in an oven at

30uC for 24 h and subsequently powdered.

Interactions of Uranium with Marine Bacteria

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e91305

www.cect.org
www.cect.org


Uranium LIII–edge X-ray absorption spectra were collected at

the Rossendorf Beamline at the European Synchrotron Radiation

Facility (ESRF), Grenoble (France) [21] using a Si(111) double-

crystal monochromator, and Pt-coated mirrors for focusing and

rejection of higher harmonics. Data were collected in fluorescence

mode using a 13-element Ge detector (Canberra, Oxford, UK).

The energy was calibrated by measuring the yttrium (Y) K-edge

transmission spectrum of an Y foil and defining the first inflection

point as 17038 eV. The biological/uranyl samples were measured

as dry samples. The Extended X-ray Absorption Fine Structure

(EXAFS) oscillations were isolated from the raw, averaged data by

removal of the pre-edge background, and approximated by a first-

order polynomial, followed by m0-removal via spline fitting

techniques and normalization using a Victoreen function. Dead-

time correction was applied. The ionization energy for the U LIII

electron niveau, E0, was arbitrarily defined as 17185 eV for all

averaged spectra. The EXAFS spectra were analyzed according to

standard procedures using the program EXAFSPAK [22]. The

theoretical phase and amplitude functions used in data analysis

were calculated with FEFF8 [23] using two different models: i)

crystal structure of meta-autunite, Ca(UO2)2(PO4)2.6H2O [24] for

the seawater samples, and ii) a model that contains fragments of

two molecules, meta-autunite and uranyl triacetate [6] for the

NaClO4 samples. FEFF is an automated program for ab initio

multiple scattering calculations of EXAFS, X-ray Absorption

Near-Edge Structure (XANES) and various other spectra for

clusters of atoms. All fits included the four-legged multiple

scattering (MS) path of the uranyl group, U-Oax-U-Oax. The

coordination number (N) of this MS path was linked to N of the

single-scattering (SS) path U-Oax. The radial distance (R) and

Debye-Waller factor (s2) of the MS path were linked at twice the

R and s2 of the SS path U-Oax, respectively [25]. During the

fitting procedure, N of the U-Oax SS path was held constant at

two. The amplitude reduction factor (S02) was held constant at 1.0

for the FEFF8 calculation and EXAFS fits. The shift in threshold

energy, DE0, was varied as a global parameter in the fits.

HRTEM and Energy Dispersive X-ray (EDX) analyses
Cells incubated with uranium dissolved in 0.1 M NaClO4

(uranium concentration 5?1024 M; pH 2, 3 and 4.3) and in

seawater (uranium concentration 5?1024 M; pH 7.2) were har-

vested and cells were fixed in 4% glutaraldehyde in 0.2 M

cacodylate buffer with 0.4 M sucrose and 0.1% NaCl (in order to

reach an osmolarity of 1205 mOsm similar to the MB medium) for

2 hours at 4uC and then washed three times in the same

cacodylate buffer. The cell pellets were then dehydrated with

ethanol and embedded in Spurr resin. Next, the samples were

thin-sectioned (0.25 mm) using a diamond knife on a Reichert

Ultracut S ultramicrotome, and the sections were supported on

copper grids and coated with carbon. Samples were examined

with a high-resolution Philips CM 200 transmission electron

microscope at an acceleration voltage of 200 kV. EDX analysis

was also performed at 200 kV using a spot size of 70 Å and a live

counting time of 100 s. For selected-area electron diffraction we

used a Philips CM 200 transmission electron microscope set in the

diffraction mode with a camera length of 1,000 mm and an

exposure time between 15 and 20 seconds.

Results

Speciation of Uranium in NaClO4 and Seawater Solutions
The chemical speciation of U(VI) in the presence of NaClO4 or

seawater (in the absence of bacterial cells) was determined using

Visual Minteq 3.0 software [19]. In the NaClO4 system, the

dominant species at 5?1024 M U concentration and in the pH

range of 2–4.3 is the UO2
2+ ions (Figure S1). At pH 7, U

speciation is controlled by (UO2)3(OH)5
+ (55%) and (UO2)4(OH)7

+

(45%)(Figure S1). In contrast, in seawater with U concentrations

ranging from 5?1024 M to 1025 M, speciation of U(VI) is

dominated by Ca2UO2(CO3)3 (aq) and CaUO2(CO3)3
22 (Figure

S2). The results obtained are in agreement with those obtained by

Konstantinou and Pashalidis [26] who reported that in surface

seawater uranium-carbonate species such as UO2(CO3)2
22 and

UO2(CO3)3
42 are the dominant uranium(VI) species in solution.

XAS Characterization of U(VI) Coordination by I. liohiensis
MAH1 Cells in Seawater

XANES spectra (Figure S3) of the uranium complexes formed

with cells from strain MAH1 in seawater at U concentrations of

1?1024 and 2.5?1024 M contained a XANES peak at 17,188 eV

which has previously been attributed to uranium in the 6+
oxidation state [25].

The uranium LIII-edge EXAFS spectra and their corresponding

Fourier transforms (FT) for the uranium species formed at the two

U concentrations by the I. loihiensis MAH1 cells are plotted in

Figure 1. The FT represents a pseudo-radial distribution function

of the uranium near-neighbor environment.

The FTs of the EXAFS spectra of the two samples show

significant peaks (Figure 1) and the corresponding quantitative fit

results are summarized in Table 1 (distances are phase shift

corrected). The adsorbed U(VI) has the common linear trans-

dioxo structure: two axial oxygen atoms at a radial distance of

1.76–1.7760.02 Å. A four- to five-fold coordination of uranium

(N,4.4–4.9 and R = 2.27–2.2860.02 Å) to ligands provided by

the bacterial cells was observed on the EXAFS spectra of the two

samples. The low Debye-Waller factors obtained (0.0065–

0.0073 Å2), indicated the absence of a disorder in U-Oeq1

distances contributing to the EXAFS signal. Adding an oxygen

shell at a distance of R = 2.87–2.9060.02 Å significantly improved

the fit for all samples. However, this shell is not related to direct

bonding but has been previously interpreted as scattering

contributions from neighboring ligand shells known as ‘‘short

contacts’’ in crystallography [10–12].

The fourth FT peak observed at R+D,3 Å (radial distance

R = 3.57–3.6060.02 Å), is the result of a back-scattering from

phosphorus atoms. This distance is typical for a mono-dentate

coordination of U(VI) by phosphate [10–12]. By plotting the

uranium LIII-edge EXAFS spectra of the sample along with the

reference meta-autunite we could confirm that uranyl phosphates

constitute the main uranium-containing precipitates formed on the

bacterial surfaces.

XAS Characterization of U(VI) Coordination by I. liohiensis
MAH1 Cells in NaClO4 System

As in the case of the seawater samples, XANES analysis of the

NaClO4 samples (U 5?1024 M, pH values 2, 3 and 4.3) (Figure S3)

indicated that the main oxidation state of uranium associated with

the bacterial cells was U(VI).

The uranium LIII-edge EXAFS spectra of the three samples

were fitted in R-space and the results of the data analysis are

summarized in the Table 2 (distances are phase shift corrected).

The fit of the different spectra were performed using the model

described in Merroun et al. [6] and containing two molecules (m-

autunite and uranyl triacetate). This model has been used for the

fit of EXAFS spectra of different U(VI)-treated biological samples

[6].

Interactions of Uranium with Marine Bacteria
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The different fit results are shown in Figure 2. The derived

structural parameters are identical for the two samples treated with

U at pH 2 and 3, as already suggested by the similarity of the

spectra, and different to those of the sample treated at pH 4.3.

The FTs of the EXAFS spectra of the uranium-bacterial cell

complexes show four to five significant peaks. In all samples, fitting

demonstrated that U(VI) has two Oax at a distance of 1.76 to

1.77 Å. The samples incubated at pH 2 and 3, show the presence

of a four-fold uranium coordination (N,4 and R = 2.33–

2.3560.02 Å).

In the case of the sample treated at pH 4.3, the Oeq shell is split

into two components, with the first component (U-Oeq1) at a

distance of 2.34 Å and the second component (U-Oeq2) at a

somewhat longer distance (2.51 Å). These two shells could not be

represented as separate peaks in the FT. The U-Oeq1 bond

distance is within the range of previously reported values for the

phosphate oxygen atom bound to uranyl [10]–[12]. The longer

equatorial oxygen bond length of 2.5160.02 Å is similar to

previously reported values for the carboxyl oxygen atom bound to

uranyl (2.45 to 2.51 Å) [27]. The EXAFS spectrum of the sample

Figure 1. Uranium LIII-edge k3–weighted EXAFS spectra (left) and the corresponding Fourier transforms (FT) (right) of the uranium
complexes formed by I. loihiensis MAH1 cells at U concentrations of 1024 and 2.5 1024 M in seawater, and reference compound (m-
autunite).
doi:10.1371/journal.pone.0091305.g001

Table 1. Structural parameters of the U(VI) complexes formed by I. loihiensis MAH1 using seawater as the background electrolyte.

Sample Shell Na R(Å)b s2 (Å2)c DE (eV)

2.5?1024 M U-Oax 2d 1.77 0.0035 215.0

U-Oeq1 4.4(6) 2.28 0.0065

U- Oeq2 1.0(1) 2.87 0.0038d

U-P 5.5(5) 3.60 0.0059

U- Oeq1-P (MS) 11.0e 3.72e 0.0059e

U-U 1.3(2) 5.26 0.0085

1024 M U-Oax 2d 1.76 0.0051 216.5

U-Oeq1 4.9(6) 2.27 0.0073

U- Oeq2 1.3(2) 2.90 0.0038d

U-P 3.6(4) 3.57 0.0059

U- Oeq1-P (MS) 7.2e 3.67e 0.0059e

U-U 1.4(2) 5.17 0.0085

aErrors in coordination numbers are 625%, and standard deviations, as estimated by EXAFSPAK are given in parentheses.
bErrors in distance are 60.02 Å.
cDebye-Waller factor.
dValue fixed for calculation.
eCoordination number linked twice and Debye-Waller factor once to the N and s2 of the U-P path.
doi:10.1371/journal.pone.0091305.t001
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at pH 4.3 is similar to that of U(VI) complexes formed by the S-

layer proteins of Bacillus sphaericus JG-A12, where U(VI) is

coordinated to phosphate groups in a monodendate binding

mode and to carboxyl groups in a bidendate binding fashion [6].

In all samples a peak at a bond distance between 3.58 and

3.60 Å was fitted, which corresponds to the contribution of

phosphate groups in the coordination of U(VI) in a monodendate

binding mode.

Table 2. Structural parameters of the uranium complexes formed by I. loihiensis MAH1 cells in 5?10-4 M using NaClO4 as the
background electrolyte.

Sample Shell Na R(Å)b s2 (Å2)c DE (eV)

pH 2 U-Oax 2d 1.76 0.0023 212.0

U-Oeq1 4.0(6) 2.33 0.0092

U- Oeq2 1.5(2) 2.90 0.0038d

U-P 2.2(2) 3.58 0.004

U- Oeq1-P (MS) 4.4e 3.69e 0.004e

pH 3 U-Oax 2d 1.77 0.0026 212.0

U-Oeq1 3.2(6) 2.35 0.008

U- Oeq2 1.2(2) 2.87 0.0038d

U-P 1.7(2) 3.59 0.004

U- Oeq1-P (MS) 3.4e 3.70e 0.004e

pH 4.3 U-Oax 2d 1.77 0.0029 27.1

U-Oeq1 2.3(6) 2.34 0.004

U- Oeq2 1.7(2) 2.51 0.004e

U-C 0.9(1) 2.89 0.0038

U-P 1.3(2) 3.60 0.004

U- Oeq1-P (MS) 2.6e 3.70e 0.004e

aErrors in coordination numbers are 625%, and standard deviations, as estimated by EXAFSPAK are given in parentheses.
bErrors in distance are 60.02 Å.
cDebye-Waller factor.
dValue fixed for calculation.
eCoordination number linked twice and Debye-Waller factor once to the N and s2 of the U-P path.
doi:10.1371/journal.pone.0091305.t002

Figure 2. Uranium LIII-edge k3–weighted EXAFS spectra (left) and the corresponding Fourier transforms (FT) (right) of the uranium
complexes formed by Idiomarina loihiensis MAH1 cells at U concentration of 5 1024 M in NaClO4, with pH values 2, 3, and 4.3; and
reference compounds (U-fructose(6) phosphate [28], uranyl triacetate [6], and surface layer proteins of the Bacillus sphaericus strain
JG-A12, complexed with U at pH 4.3 [6]).
doi:10.1371/journal.pone.0091305.g002
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Time-Resolved Laser-Induced Fluorescence Spectroscopy
Analysis

Time-resolved laser-induced fluorescence spectroscopy is a

technique that allows one to determine the U(VI) speciation, even

in highly complex biological systems. The luminescence spectra

recorded from I. loihiensis MAH1 cells, incubated with 5?1024 M

U(VI) at pH 2, pH 3, pH 4.3, and pH 7 (1024 M of U) in 0.1 M

NaClO4 solution, are shown in Figure 3. The corresponding

luminescence emission maxima are summarized in Table 3.

The luminescence properties of the cell sample incubated at

pH 2 are characteristic of U(VI) complexes formed at phosphate

groups of organic molecules such as sugar phosphates including

fructose phosphates [28], phosphorylated nucleosides (e.g. ATP)

[29], or lipopolysaccharides of the gram-negative bacterium E. coli

[30]. At this pH, TEM analysis indicated that it is likely that these

macromolecules were liberated by cell lysis induced by exposure to

such low pH values. This is in agreement with other U(VI)-

microbe complexation studies at corresponding pH conditions

reporting that phosphate groups are the main U binding sites [29],

[31–32]. Similar spectroscopic results were also obtained for the

solid samples incubated at pH 3 and pH 4.3 (Figure 3, Table 3),

indicating that uranyl phosphate complexes were formed at these

pH conditions as well. However, in both samples an additional

luminescence peak around 465 nm was observed, which could not

be assigned to uranyl phosphate complexes. Luminescence peaks

at similar wavelength were described for uranyl carboxylate

complexes formed at the surface of bacterial [33] or algal cells

[34], as well as with purified cellular compounds, e.g. peptidogly-

can [35]. While this complexation behaviour of U(VI) might be

expected at pH 4.3 because carboxylic groups of bacterial cell

walls start to deprotonate around this pH and thus acquire the

ability to bind (heavy) metals [36], the formation of uranyl

carboxylate complexes at pH 3 is rather unusual to be considered

for microbe/uranium interactions. Nonetheless, some carboxyl

acids exhibited a pKa close to 2 [37] suggesting that strain-specific

cell surface compounds may still provide active U(VI) binding sites

at extreme acidic conditions i.e. as low as pH 2. Time-resolved

analyses of the samples revealed a tetra-exponential decay of the

U(VI) luminescence, indicating a mixture of at least four different

fluorescent uranium species, respectively (Table S1).

The four luminescence lifetimes of the solid samples (pH 2, 3

and 4.3) are highly comparable to each other with average values

of about 1 ms, 5.6 ms, 26 ms and 98 ms (Table S1). Fitting

procedures at different delay times showed no shift of the

luminescence emission maxima, indicating a high structural

similarity of the formed complexes.

In contrast to the acidic samples, we detected at pH 7 only one

uranium species with a luminescence lifetime of 4162 ms (Table

S1). Moreover, we observed a bathochromic shift, i.e. shift to a

longer wavelength, of the U(VI) spectrum (Figure 3). The main

luminescence peaks were located at 502 nm, 522.6 nm, and

545.9 nm and are very similar to those reported for various

inorganic uranyl phosphate and uranyl carboxylate compounds

and minerals (Table 4).

Figure 3. Luminescence spectra of the U(VI) complexes formed by the marine bacterium I. loihiensis MAH1 in NaClO4 background
solution. Samples were measured in form of dried powder and directly within the background solution.
doi:10.1371/journal.pone.0091305.g003
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The spectra of the liquid samples showed different luminescence

properties compared to the solid samples. At pH 3, the emission

maxima of the liquid samples were shifted more than 1 nm to

higher wavelength values. This shift was most likely caused by

highly luminescent hydrolytic species, especially (UO2)2(OH)2
2+,

which are formed in the solution. At pH 4.3, the influence of these

hydrolytic species on the luminescence spectrum is even more

pronounced (Figure 3) and their luminescence mask the lumines-

cence of U(VI) complexes formed by the cells. As a result,

analysing liquid samples by TRLF has some disadvantages, since a

clear U speciation cannot be achieved owing to interferences. On

the contrary, performing these analyses in solid samples show no

interferences.

In order to recreate conditions similar to the natural habitat of

strain MAH1, we additionally investigated the speciation of the

U(VI) complexes formed by this bacterium using seawater as the

background solution. In this approach the cells were treated with

1024 M, 5N1025 M, and 1025 M U(IV). It is known that

luminescence of the uranyl ion in aqueous solution is quenched

by halide ions, which are present in large concentrations in

seawater. Indeed, we found that the luminescence of the uranium

is completely quenched in seawater (data not shown). A

corresponding quenching effect of more than 50% was also

observed during the measurements of the U(VI)/bacteria in

seawater samples.

The U(VI) luminescence properties of the dried bacteria in

seawater samples at different U concentrations are highly

comparable to each other (Figure 4, Table 4). Compared to the

samples described above, the emission maxima are consistently

located at higher wavelengths. Moreover, an additional bath-

ochromic shift was observed with increasing U(VI) concentrations.

However, the luminescence peaks of the liquid sample at 1025 M

U(VI) are less distinct and merge with each other which hinders

proper peak localization (Figure 4). The poor signal is caused by

the low uranium concentration combined with the quenching

effects of the high halide concentration of the seawater.

The U(VI) main emission maxima of the cell samples incubated

in seawater are comparable to those of the sample incubated in

0.1 M NaClO4 at pH 7. Thus, they are similar to those reported

for various inorganic uranyl phosphate and uranyl carboxylate

compounds and minerals (Table 4), and also to those of U

precipitates produced by decomposed cells of Bacillus sphaericus

[31]. This indicates that the strain MAH1 precipitates U(VI) as

uranyl phosphate mineral phases. In contrast to the sample

incubated in sodium perchlorate solution where only one uranium

species was found, the best fit of the U(VI) luminescence decay was

obtained in seawater samples using a tri-exponential decay

function. However, we again did not observe any significant shifts

of the luminescence emission maxima. The obtained luminescence

lifetimes of the U(VI) complexes obtained from the bacteria solid

samples and the bacteria liquid samples are very comparable.

According to the literature, the shorter lifetimes may be assigned

to uranyl phosphate mineral phases, whereas the longer lifetime

could also result from a low amount of the more stable uranyl

carbonate mineral phases.

TEM/EDX Analysis
TEM micrographs of thin sections of MAH 1 cells exposed to

5N1024 M U(VI) at pH values of 3 and 4.3 are shown in Figure 5.

At these pH values, the U is localized mainly in the cytoplasm and

Table 3. Luminescence emission maxima of the U(VI) complexes formed by I. loihiensis MAH1 cells in NaClO4 and selected uranyl
model complexes.

Sample Luminescence emission maxima (nm)a,b Lifetime(s) (ms)

NaClO4 samples

I. loihiensis - pH 2 (solid) 497.5 518.1 540.9

I. loihiensis - pH 3 (solid) 465.4 497.7 518.2 540.6

I. loihiensis - pH 4.3 (solid) 465.2 498.2 518.3 540.8 Table S1

I. loihiensis - pH 7 (solid) 502 522.6 545.9

I. loihiensis - pH 3 (liquid) 499.4 519.8 541.4

I. loihiensis - pH 4.3 (liquid) 499.9 517.8 538.9

Reference samples

Organic uranyl phosphate complexes

UO2-fructose(6)phosphate [28] 497.1 519.0 543.3 0.1360.05

UO2-AMP [29] 497 519 542 n.d.

R-O-PO3-UO2 [30] 498.1 519.6 542.9 1.260.4

Organic uranyl carboxylate complexes

(R-COO)2-UO2 [35] 466.0 498.1 518 539 0.760.1

R-COO-UO2
+ [35] 7.361.4

UO2
2+ and hydrolytic species

UO2
2+ (pH 1.5) 489.5 511 534.3 1.9260.12

UO2OH+ [48] 497.3 518.4 541.3 32.862.0

(UO2)3(OH)5
+ [49] 496 514 535 2363

(UO2)2(OH)2
2+ [48] 498.3 519.7 543.4 9.560.3

aMain luminescence emission bands were pointed out by bold letters.
bError of emission bands is 60.5 nm.
doi:10.1371/journal.pone.0091305.t003
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at the cell surface. In addition, U accumulation within the EPS

was shown for the sample at pH 4.3. The EDX spectra of the

accumulated U displayed X ray emission peaks corresponding to

U and P (Figure S4). No results were obtained at pH 2 due to the

loss of cell integrity at this pH value. In seawater and at a uranium

concentration of 5N1024 M, TEM analyses demonstrated that the

accumulated uranium was located mainly at the cell wall (Figure 6).

Discussion

Although fundamental chemical and physical characteristics of

marine environments have been established [38], the microbial

processes in these environments are now being investigated using

cell biology and genomics [39]. In particular, information about

the interaction mechanisms of marine microorganisms with

actinides such as uranium is sparse. Microorganisms from marine

ecosystems may, similar to terrestrial microorganisms, sequester

uranium through mechanisms such as biosorption [6], biominer-

alization [10], intracellular accumulation [40], and biotransfor-

mations [5]. Here, we studied the interactions of U with the

MAH1 strain of I. loihiensis, under seawater conditions and under

acidic conditions using NaClO4 as a background electrolyte.

U/Bacterial Interactions under Seawater Conditions
In seawater, under environmentally relevant conditions, MAH1

cells precipitated U(VI) as uranyl phosphates with a structure

similar to that of meta-autunite. In the absence of U(VI) and under

seawater conditions, we previously reported [17] that this marine

bacterium has a capacity to biomineralize phosphate and

carbonate compounds. In that study we also showed that I.

loihiensis MAH1 cells are able to precipitate struvite (NH4MgPO4N
6 H2O) crystals that appear encased by small Ca-Mg kuntharonite

(CaMg(CO3)2) spheres and dumbbells and that the proportion of

the phosphate and carbonate phases produced by this bacterium

amounted to circa 80% and 20%, respectively.

Regarding the meta-autunite biomineralization potential of

strain MAH1, it is likely that microbial cell surfaces provide sites

for the formation of U phosphates. Phosphate groups responsible

for the U binding are originated from cell membranes and/or

EPS. Previous studies postulated that formation of nucleation sites

on the cell surface is important for initiation of metal precipitation,

and that membrane phospholipids may function as sites for uranyl

phosphate crystallization [41–42]. Our High-Resolution Trans-

mission Electron Microscopy analyses are consistent with this

process (Figure 6), showing the cell surface localization of the

accumulated U. However, we have no information on how

bacteria participate, actively or passively, in the precipitation of U

phosphates. Two possible mechanisms are considered: 1) bacteria

are playing an indirect passive role in the biomineralization of

U(VI) phosphates providing necessary binding sites for this

radionuclide (through availability of EPS and/or direct attach-

ment to cell walls), increasing its concentration locally, 2) alkaline

phosphatase activity could be involved in the degradation of

dissolved organic phosphates (DOP) of seawater helping precip-

itation of U phosphates. However, we have no evidence of any

active mechanism for the U precipitation since we used U

solutions without any nutrients to support the metabolic activity of

the cells.

Figure 4. Luminescence spectra of the U(VI) complexes formed by the marine bacterium I. loihiensis MAH1 at neutral pH in 0.1 M
NaClO4 and in seawater background solution. Samples were measured in either dried powder form or directly within the background solution
(see text).
doi:10.1371/journal.pone.0091305.g004
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To our knowledge this is the first study that demonstrates the

ability of marine bacteria to form, in seawater, U(VI) phosphate

phases with a structure similar to that of meta-autunite. The in-situ

biomineralization of U phosphates by biofilm-forming microor-

ganisms in natural terrestrial environments has been described

recently by Krawczyk-Baersch et al. [43] using EF-TEM/EELS.

Figure 5. Transmission electron micrographs of thin sections of U-treated I. loihiensis MAH1 cells (U at 5N1024 M; in 0.1 M NaClO4) at
pH 3 (A), and pH 4.3 (B, C, D).
doi:10.1371/journal.pone.0091305.g005

Table 4. Luminescence emission maxima of the U(VI) complexes formed by I. loihiensis MAH1 cells in seawater and selected uranyl
model complexes.

Sample Luminescence emission maxima (nm)a,b Lifetime(s) (ms)

Seawater samples

I. loihiensis - [UO2
2+] = 1N1025 M (solid) 502.2 522 544.6

I. loihiensis - [UO2
2+] = 5N1025 M (solid) 502.5 522.6 544.7

I. loihiensis - [UO2
2+] = 1N1024 M (solid) 503.6 524.2 546.3 Table S1

I. loihiensis - [UO2
2+] = 1N1025 M (liquid) 503.8 523 543.1

I. loihiensis - [UO2
2+] = 5N1025 M (liquid) 502.7 523.4 545.2

I. loihiensis - [UO2
2+] = 1N1024 M (liquid) 502.8 523.4 545.9

Reference samples

Inorganic phosphates

UO2PO4
2 [50] 502.2 524 548 n.d.

(UO2)x(PO4)y [51] 503 523.7 546.9 n.d.

Uranyl carbonate minerals

Ca2[UO2(CO3)3] 10 H2O [52] 465.4 502.7 524.5 545.5 14565

Ca2(UO2)(CO3)3 11 H2O [52] 466.9 502.7 524.1 545.9 313610

Ca2[UO2(CO3)3] in solute [53] 465 504 524 0.0460.01

Uranyl phosphate minerals

Autunite [54] 504 524.2 548 5.1560.28

Meta-autunite [54] 501.8 522.9 546.9 0.7460.1

Mg[UO2PO4]2 10 H2O [54] 501.1 522.1 545.7 2.2560.2

aMain luminescence emission bands were pointed out by bold letters.
bError of emission bands is 60.5 nm.
doi:10.1371/journal.pone.0091305.t004
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The U biomineralization via phosphates is considered to be an

efficient process of U immobilization in marine environments, and

U phosphates precipitated by microbes are considered insoluble

and stable, thus providing a long-term sink for uranium [44].

Interaction of the Strain MAH1 with U(VI) in 0.1 M NaClO4

at Acidic conditions
The speciation of U(VI) in solution at 5N1024 M (at a pH of 2, 3

and 4.3) in 0.1 M NaClO4 is dominated by uranyl ion (UO2
2+)

known as a highly soluble, mobile and toxic U species. Upon

addition of bacterial biomass to the U solution, EXAFS and

TRLFS analyses (Figure 2 and Figure 3, respectively) revealed that

biosorption is the main interaction process involved. This is a pH-

dependent process mediated by cell surface phosphate and

carboxyl groups.

EXAFS analysis indicated that at pH 2 and 3, the U(VI) is

coordinated by organic phosphate groups in a monodendate

binding mode where the local coordination of U(VI) in the

corresponding complexes resembles much that of those of U(VI)

complexed by fructose-6P [28]. However, at pH 4.3 the cells

additionally sequester U(VI) through carboxyl groups in a

bidendate binding fashion. These carboxyl groups are probably

located within the peptidoglycan layer.

The molecular scale investigation on the pH-dependent U

sorption by bacteria and their cell wall components has been well

documented. For instance, Kelly et al. [45] showed that both

phosphate and carboxyl groups participate in the binding of U(VI)

by the cell walls of Bacillus subtilis, where an increase of carboxyl

and a decrease of phosphoryl coordination was noted with

increasing pH from 1.7 up to 4.8. Another type of pH-dependent

U(VI) coordination on bacteria (e.g. Stenotrophomonas sp.) isolated

from uncontaminated and heavy metal-contaminated environ-

ments was reported by us previously [46] at acidic conditions. In

these studies, organic phosphate groups were the main binding

sites for U(VI) at pH 2 and 3. At pH 4.5, the cells precipitated

U(VI) as uranium phosphates mineral phases with structures

similar to that of autunite/meta-autunite.

Figure 6. Transmission electron micrograph of a thin section of U-treated I. loihiensis MAH1 cells (U at 5N1024 M; in seawater) (A).
Energy Dispersive X-ray spectrum of U accumulates indicated by black arrow (B). Uranium is accumulated mainly at the cell surface. No
intracellular uptake of this radionuclide was observed.
doi:10.1371/journal.pone.0091305.g006

Interactions of Uranium with Marine Bacteria

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e91305



We postulate that the phosphate groups involved in the

coordination of U(VI) by I. loihiensis MAH1 cells at three acidic

pH values are likely derived from phospholipids of the cytoplasmic

membrane and from lipopolysaccharides of the outer membrane.

This hypothesis is supported by TEM analysis which showed that

U(VI) accumulated by strain MAH1 is located mainly at the cell

wall and within the EPS of this bacterium. We have found some

intracellular accumulates which could be due to the loss of cell

membrane integrity as a consequence of the low pH values used. It

was previously shown by us that the cell viability of this strain is

reduced to about 5 to 10% at pH values lower than 4.3 [47].

Conclusions

The results of the present study show clearly that the speciation

of uranium associated with I. loihiensis strain MAH1 depends

mainly on the pH, although also the uranium concentration and

the presence of a background electrolyte are important factors. In

the sodium perchlorate (NaClO4) system and under acidic

conditions, the cells form U-phosphate and/or U-carboxylate

complexes. In contrast, at neutral conditions, U-phosphate phases

are precipitated by MAH1 cells in both seawater and sodium

perchlorate solutions, although U(VI) luminescence lifetime

analyses demonstrated that the U(VI) speciation in seawater

follows a more intricate process. Taken together, we suggest that,

in order to understand the microbial effects on the mobility and

transport of radionuclides in marine environments, the experi-

mental set-up should mimic the natural conditions as close as

possible. With this study we demonstrate for the first time that

marine bacteria have the ability to form, in seawater, U(VI)

phosphate phases with a structure that resembles meta-autunite.

Supporting Information

Figure S1 Uranium speciation in 0.1 M NaClO4, U

concentration of 5?1024 M, 256C.

(TIF)

Figure S2 Uranium speciation in seawater at U concen-
trations of 5?1024 M (A), 2.5?1024 M (B), 1?1024 M (C),

5?1025 M (D), 1025 M (E), pH 7.2, 256C.
(TIF)

Figure S3 Normalized uranium LIII-edge XANES spec-
tra of 0.04 M U(IV) in 1 M HClO4, 0.04 M U(VI) in 1 M
HClO4, uranium complexes formed by the cells of the
strain MAH1 at different experimental conditions:
5?1024 M U in 0.1 M NaClO4, (A) pH 2; (B) pH 3; (C)
pH 4,3; and (D) 2.5?1024 M U in seawater; (E) 1024 U in
seawater. The spectra were normalized to equal intensity at

17230 eV.

(TIF)

Figure S4 EDX spectrum of accumulate U located in the
interior of the U-treated cells (5?1024 M U in 0.1 M
NaClO4, pH 4.3).
(TIF)

Table S1 Luminescence lifetimes calculated from room
temperature TRLF spectroscopic measurements of the
U(VI) complexes formed by I. loihiensis MAH1 at
different experimental conditions.
(DOC)
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