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Their final critique is that we did not 
comment on deficiencies in greenhouse 
gas accounting rules that were exposed by 
our analysis. This would be a fair point if 
the object of the article was to explore the 
strengths and weakness of relevant accounting 
frameworks. However, it was not — it was to 
illustrate the relevance of the different types of 
policy institutions to forest-related LCA.

The real issue of substance in their 
Correspondence is the assertion that our 
analysis is deficient because we assume the 
effects of policy institutions on emissions 
rather than empirically analysing them. The 
point of difference is best illustrated with a 
hypothetical case involving a cessation of 
forest harvesting, which displaces production 
to a sector covered by a capped emissions 
trading scheme (ETS).

Our position is that, in a CLCA 
concerned only with net emission outcomes, 
it is sufficient to assume the ETS functions 
as intended, meaning the change in forest 
management should have no effect on the 
net emissions under the scheme. After 
harvesting stops, and production and 
emissions in the capped sector increase, 
the operation of the ETS should ensure the 
emission increase is fully offset by reductions 
elsewhere. Cowie et al. argue this is wrong 
because the effects on emissions should be 
based on empirical analysis.

The difference in perspectives is, in 
our view, a product of different method 
preferences. Cowie et al. favour attributional 
life-cycle assessment (ALCA), which assigns 
emissions to relevant products and systems 
using data on average physical flows of 
materials and energy1–7. Because ALCA is 
backward looking — as it provides a historical 
estimate of average emissions from a process 

or technology — it is inappropriate to assume 
effects without empirical evidence. An ALCA 
on our hypothetical case would also exclude 
the effects of the ETS because the focus would 
be on how to apportion emissions to the 
wood and non-wood production systems.

We believe CLCAs are preferable for 
public policy-making8–10. In CLCA, the 
objective is to assess how emissions are likely 
to change in response to a decision; here, the 
change in emissions triggered by the change 
in forest management practices1,3,8–12.

CLCA’s future orientation means that 
assumptions must be made about a number 
of variables, including policy institutions. 
Historical data are relevant only to the extent 
that they provide a reasonable basis for 
projecting the change in emissions from the 
relevant management decision.

Consistent with this, a CLCA on the 
hypothetical change in forest management 
would have to consider the ETS because it 
is designed to shape emissions outcomes 
by changing incentives at the margin1,8,9. It 
should ensure that the increase in emissions 
within the boundaries of the scheme are fully 
offset. When Cowie et al. say that, according 
to our approach, “any renewable option 
could be disregarded as non-beneficial,” 
they allude to this point. Only, it is not that 
the alternative renewable options are ‘non-
beneficial’, it is that the policy institution is 
the driver of the emission outcome.

Of course, alternative assumptions could 
plausibly be made about the effects of the 
ETS but they would still be assumptions. 
Cowie and colleagues’ argument that it is 
inappropriate to simply assume the effects 
of policy institutions in a CLCA is the 
equivalent of telling an economic forecaster 
they cannot make assumptions about 

how economic policy might change in the 
future. An inevitable aspect of all activities 
involving forward-looking projections is that 
assumptions must be made about what the 
future holds.� ❐
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COMMENTARY:

El Niño and a record CO2 rise
Richard A. Betts, Chris D. Jones, Jeff R. Knight, Ralph F. Keeling and John J. Kennedy

The recent El Niño event has elevated the rise in CO2 concentration this year. Here, using emissions, sea 
surface temperature data and a climate model, we forecast that the CO2 concentration at Mauna Loa will 
for the first time remain above 400 ppm all year, and hence for our lifetimes.

The long-term rise in atmospheric 
CO2 concentration, approximately 
2.1 ppm yr−1 over the past decade, is 

caused by anthropogenic emissions arising 
from fossil fuel burning, deforestation and 
cement production1,2. The annual growth 

rate, however, varies considerably as a 
result of climate variability affecting the 
relative strength of land and ocean carbon 
sources and sinks. The annual growth 
rate measured at Mauna Loa, Hawaii3,4 
is correlated with the El Niño–Southern 

Oscillation (ENSO), with more rapid 
growth associated with El Niño events5–9 
through drying of tropical land regions 
and forest fires. To test the predictive 
value of this relationship, we present a 
forecast, made in October 2015, of the CO2 
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concentrations throughout 2016 based 
on the relationship, and verify against 
observations available so far. We predict 
the monthly mean CO2 concentration 
at Mauna Loa to remain above 400 ppm 
even in its annual minimum in September, 
which would not have been expected 
without the 2015–2016 El Niño. 

The annual mean Mauna Loa CO2 
concentration for 2015 was 400.9 ppm 
(ref. 3), making 2015 the first year with 
an annual mean above 400 ppm. The 
annual growth rate between 2014 and 
2015 was 2.27 ppm. The largest annual 
mean growth rate on record is 2.9 ppm yr−1 
in 1997–1998 (Fig. 1a), the period of 
a large El Niño event (Fig. 1b), during 
which the November–January sea surface 
temperature (SST) anomaly in the Niño 
3.4 region (5° N–5° S, 170° W–120° W) of 
the equatorial Pacific was 2.38 ± 0.30 °C 
(ref. 10). 

Historically there have been markedly 
large annual CO2 growth rates in El Niño 
years (Fig. 1), probably due to warming 
and drying of tropical land areas resulting 
in reduced carbon uptake by vegetation 
growth, increased carbon release by fire 
and drought-induced tree mortality. In 
1997, dry conditions in Indonesia and 
Malaysia allowed human-ignited fires 
to escape control and ignite carbon-rich 
peatlands, which continued to burn 
for some months. An estimated 0.81 to 
2.57 GtC were emitted to the atmosphere 
as a result11, equivalent to 13–40% of global 
annual mean carbon emissions from fossil 
fuels at that time and hence a substantial 
contribution to the anomalously large CO2 
growth rate that year12. During La Niña 
events, when the equatorial Pacific is colder 
than average, the annual CO2 growth rate 
is slower. 

The recent El Niño, now in its declining 
phase, was comparable with the 1997–1998 
event in some respects. Although maximum 
SSTs were cooler in the eastern tropical 
Pacific, the Niño 3.4 index was 2.6 ± 0.30 °C 
over November 2015 to January 2016 (larger 
than November 1997 to January 1998) 
and most tropical land regions were again 
anomalously dry. Once again, drought 
conditions allowed human-caused fires in 
Indonesia to burn large areas. Estimates 
for 2015 suggest that the total greenhouse 
gas emissions from these fires is equivalent 
to 0.4 GtC, with large uncertainty — less 
than those in 199713, but still larger than for 
non-El Niño years. 

A multiple linear regression (Equation 1; 
Fig. 2) has previously been used8,9 to 
reconstruct the annual CO2 growth rate 
(ΔCO2) on the basis of anthropogenic 
emissions (ε) and the SST anomaly (N) in 

the relevant region of the Pacific over the 
preceding April to March.

	 ΔCO2 = α1 + α2N + α3ε� (1)

This provides an opportunity to test the 
predictability of atmospheric CO2 using 
understanding and forecast capability 
from two components of the Earth system, 
the carbon cycle and the oceans. The 
CO2 concentration for a calendar year 
can be predicted from observed SSTs, 
and the forecast period can potentially be 
extended further into the future as SSTs 
are predictable several months in advance 
using coupled ocean–atmosphere climate 
models. To test this, we present a prediction 
of the annual CO2 growth rate and annual 
maximum and minimum concentrations 
for 2016. We use observed SSTs between 
1st April and 30th September 201510 
and simulated SSTs from the GloSea5 
global seasonal forecasting system for 
1st October 2015 to 31st March 201614. 
We apply the resulting annual mean 
Niño 3.4 SST anomaly of 2.02 ± 0.23 °C 
in Equation 1 to forecast the annual mean 

rise in CO2 in 2016, and hence the average 
CO2 concentration for the year. The use 
of previously forecast SSTs for the last 
6 months provides a test of predictability 
of the CO2 concentration further ahead of 
time and throughout a whole calendar year. 
We also forecast the annual maximum and 
minimum monthly CO2 concentration, by 
assuming that the seasonal cycle is of the 
same shape and amplitude as the previous 
five years and applying this to the predicted 
annual mean.

First time above 400 ppm all year
Using the regression, we forecast 
an annual mean CO2 growth rate of 
3.15 ± 0.53 ppm yr−1 between 2015 and 2016 
(Fig. 1a). This will be the highest annual 
growth rate on record, and implies an annual 
mean CO2 concentration at Mauna Loa 
of 404.45 ± 0.53 ppm. For comparison, 
persistence of the last decade’s mean growth 
rate of 2.1 ± 0.1 ppm yr−1 from the 2015 
value of 400.9 ppm would have suggested 
a concentration of 402.9–403.1 ppm. The 
processes related to the El Niño are therefore 
estimated to contribute approximately 
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Figure 1 | Identifying, testing and forecasting the relationship between Niño 3.4 SST anomalies and 
Mauna Loa CO2 growth rates. a, Anthropogenic CO2 emissions (thick black line); CO2 growth rate 
from observations (thin black line), reconstructed from regression against emissions and Niño 3.4 
anomaly before 2015 (blue line) and forecast for 2016 using the forecast annual mean SST as of 
October 2015 (orange line and bar) and observed annual mean SST as of April 2016 (green bar). 
b, Annual (April to March) mean SST anomalies in the Niño 3.4 region from the HadSST3 ensemble of 
homogenized observations (grey shading) and its median (black line), with the forecast final annual 
mean from HadSST3 observations from 1st April to 31st October combined with GloSea5 forecast 
SSTs for 1st November 2015 to 30th March 2016 (orange bar). See Supplementary Information for 
more details.
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an additional 1 ppm to this year’s CO2 
growth rate.

A point of interest is the passing of 
400 ppm in the Mauna Loa record. Although 
there is nothing physically significant 
about this concentration, it has recently 
become an iconic milestone in popular 
discourse regarding the ongoing rise in 
atmospheric CO2 (for example, ref. 15). 
In the last two years, CO2 has fluctuated 
around 400 ppm through the annual cycle, 
which has amplitude of approximately 
6–7 ppm at Mauna Loa. 2014 was the first 
year that monthly CO2 concentrations rose 
above 400 ppm, and in 2015 the annual 
mean concentration has passed 400 ppm 
for the first time, but the monthly mean 
concentration fell back below 400 ppm 
for three months at the end of the boreal 
summer, reaching a monthly mean of 
397.50 ppm in September. Adding the 
recent mean growth rate of 2.1 ppm yr−1 to 
this value would suggest a 2016 September 
concentration of 399.60 ppm. However, 
on the basis of the observed and forecast 
Niño 3.4 SSTs as of November 2015, we 
predict a Mauna Loa CO2 concentration 
in September 2016 of 401.48 ± 0.53 ppm 
(Fig. 3). 

Could daily CO2 concentrations fall 
below 400 ppm? In 2015, the lowest daily 
value at Mauna Loa was 396.23 ppm 
(see Supplementary Information), that 
is 1.27 ppm below the September mean. 
Assuming stationarity in the distribution 

of daily values around the monthly mean, 
the lowest daily CO2 concentration at 
Mauna Loa could be between 399.45 and 
401.05 ppm. Therefore the daily values 
will be most likely to stay above 400 ppm, 
although values slightly below remain a 
small possibility.

At higher northern latitudes, the seasonal 
cycle of CO2 is of larger amplitude due to 
a stronger influence of the nearby large 
land masses and their seasonal vegetation 
cover. Therefore CO2 concentrations below 
400 ppm are expected in late summer 
this year and a few subsequent years (see 
Supplementary Information). However, as 
the global and local mean concentrations 
continue to rise, even these locations will 
soon pass the 400 ppm threshold. 

Our forecast, valid from October 2015, 
is verifiable by comparison with the two 
independent routine measurements of 
CO2 concentrations at Mauna Loa3,4. The 
forecast will be considered a success if 
the 2016 annual mean CO2 concentration 
is measured as between 403.92 and 
404.98 ppm. It is important to note that 
growth rate anomalies of 0.6 ppm yr−1 above 
the emissions-based rate still occurred 
in a year with small positive Niño 3.4 
anomaly and even in a year with a small 
negative anomaly (Fig. 2). Therefore the 
2015–2016 growth rate would need to be 
greater than 2.7 ppm yr−1 in order for the 
forecast to be convincingly distinguishable 
from what could be expected from the 

trend plus variability unrelated to ENSO. 
Concentrations of 403.6 ppm or below could 
have been expected without knowledge of 
the El Niño. Concentrations higher than 
the upper end of our uncertainty range may 
indicate unexpected non-linearities in the 
relationship. Indeed, as the forecast relies 
on extrapolating an empirical relationship 
outside of its calibration range, this 
comparison could provide important new 
data in developing understanding. 

Our method predicted an 
annual maximum monthly mean 
of 407.57 ± 0.53 ppm in May; and 
406.70 ± 0.53 ppm for April. The observed 
CO2 concentration for April was 407.57 ppm 
so the method slightly underestimated the 
concentration for that month, although this 
was not the case in the first three months 
of the year (Fig. 3b). The concentration in 
April 2015 was 403.45 ppm, but although 
the 4.12 ppm increase over the 12 months 
to April 2016 is a clear indicator of a large 
annual growth rate this year, it may not 
be representative of the precise annual 
mean value. Data available at the time 
of going to press indicate that the mean 
concentration in May 2016 is similar to that 
in April.

The observed annual mean Niño 3.4 
anomaly of 1.85 ± 0.20 °C (range: 1.61–2.09) 
was smaller than the combined hindcast and 
forecast of 2.02 ± 0.23 °C (range: 1.81–2.26) 
but with a good overlap of the range. Using 
this in Equation 1 provides an updated 
growth rate forecast of 3.08 ppm yr−1 (Fig.1a, 
green bar), 0.1 ppm yr−1 smaller than our 
original forecast, suggesting an annual mean 
CO2 concentration of 404.39 ± 0.53 ppm 
with maximum and minimum values also 
0.1 ppm lower than the original forecast. 
This update, obtained with hindsight, 
therefore results in only a comparatively 
small change.

Natural versus anthropogenic effects
An important point is that the record annual 
rise in annual mean CO2 concentration is 
expected despite the estimate of a small 
fall in documented global CO2 emissions 
in 2015 compared to 201416. The 2016 
growth rate is forecast to be larger than 
recent years because of the effect of the 
current El Niño. It is also forecast to be 
larger than that following the previous large 
El Niño in 1997–1998, mainly because 
anthropogenic emissions have themselves 
risen since that time — 10.3 GtC in 2015, 
compared to 8.2 GtC in 1997. The El Niño 
contribution itself may not be entirely 
free of anthropogenic influence — with 
additional emissions from forest fires, set 
as part of forest clearance17. Indonesian 
fires, attributable to human action, could 
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Figure 2 | CO2 growth rate (minus anthropogenic emissions component) versus Niño 3.4 anomaly9. Red 
crosses show El Niño years and blue crosses show years affected by the Mount Pinatubo eruption, which 
led to a temporary global cooling.
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contribute approximately 0.2 ppm of the 
El Niño-related additional 1 ppm CO2 rise. 
Therefore there may be scope to reduce the 
anomalously high growth rate in El Niño 
years, by around 20%, by eliminating the 
use of fire for forest clearance in this region. 
Quantifying this direct anthropogenic 
contribution to the El Niño-related emissions 
with confidence would be challenging, but 
we suggest it would be an important avenue 
for future research with clear implications 
for understanding a potential contribution to 
climate change mitigation.

With the current El Niño in decline and 
many models predicting a switch to La Niña 
conditions, the CO2 growth rate can be 
expected to fall again next year. The record 
CO2 growth rate this year will therefore be 
short-lived, and is too small in itself to induce 
a noticeable effect on climate. Nevertheless, 
it illustrates the two-way interactions 
between climate change and the carbon 
cycle, and the potential for feedbacks on 
anthropogenic climate change if this involves 
changes in temperature and precipitation 
affecting ecosystems. Loss of tropical forests 
plays a role in some Earth system model 
projections of enhanced CO2 rise18

,
 although 

diverging model results currently leads 
to low confidence in specific changes in 
ENSO behaviour under climate change19. 
If the relationship between ENSO and CO2 
growth rate is robust enough to inform 
good forecasts of CO2 concentrations, the 
ability to reproduce this may provide a useful 
benchmark for evaluating the emergent 
behaviour of Earth system models20.

With the growth rate expected to reduce 
again after the El Niño, could the annual 
minimum CO2 concentration fall back below 
400 ppm again next year or further in the 
future? This is exceptionally unlikely. In the 
instrumental record that covers the last half-
century, annual growth rate has always been 
positive as a result of ongoing anthropogenic 
emissions, and the amplitude of the seasonal 
cycle has not varied substantially. Both the 
annual mean and September minimum CO2 
concentrations have therefore increased 
year on year. This was the case even in 
years with large La Niña events or major 
volcanic eruptions that temporarily caused 
cooling and greater net uptake of CO2 by 
the biosphere, resulting in smaller, but still 
positive growth (Fig. 1a). For example, in the 
large La Niña in 1999–2000, the growth rate 
remained above 1ppm yr−1. Unless a very 
large volcanic eruption injects substantial 
quantities of aerosol into the stratosphere, we 
would expect concentrations continue to rise 
further above 400 ppm in the next few years.

In the longer term, a reduction in CO2 
concentration would require substantial 
and sustained cuts in anthropogenic 
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Figure 3 | Observed and forecast CO2 concentrations at Mauna Loa. a, Monthly mean CO2 concentrations, 
observed from 1957 to 2015 (black line) and hindcast/forecast for 2015 and 2016 (orange line). b, As in a 
but since 2010, also with observed and hindcast/forecast annual mean concentrations (black and orange 
stars and central solid lines) and the linear extrapolation of trends in annual maximum and minimum 
monthly values from previous years (dashed black lines) to indicate expected changes in the absence of 
El Niño. The width of the orange shading shows the uncertainty in hindcast/forecast CO2 concentration, 
given as two standard devations from the mean.

emissions to near zero. Even the lowest 
emissions/concentrations scenario assessed 
in the IPCC Fifth Assessment Report 
projects CO2 concentrations to remain above 
400 ppm until 2150. This scenario, RCP2.621, 
is considered amongst the lowest credible 
emissions scenario, and relies on assumed 
development of ‘negative emissions’ methods 
whose potential is considered limited22. 
Indeed some argue that RCP2.6 is now 
beyond reach without radical changes in 

global society23. Hence our forecast supports 
the suggestion24 that the Mauna Loa record 
will never again show CO2 concentrations 
below the symbolic 400 ppm within 
our lifetimes.� ❐
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COMMENTARY:

Earth’s surface water change 
over the past 30 years
Gennadii Donchyts, Fedor Baart, Hessel Winsemius, Noel Gorelick, Jaap Kwadijk and Nick van de Giesen

Earth’s surface gained 115,000 km2 of water and 173,000 km2 of land over the past 30 years, including 
20,135 km2 of water and 33,700 km2 of land in coastal areas. Here, we analyse the gains and losses 
through the Deltares Aqua Monitor — an open tool that detects land and water changes around the globe. 

Changes from land to water and 
vice versa are extremely relevant 
as witnessed by many recent news 

items: the President of Kiribati declared 
that his people would need to move to new 
grounds to prevent them from dying from 
the effects of sea-level rise on the atoll1; the 
impoundment of the Three Gorges Dam 
in China is causing massive inundations, 
forcing about 1.3 million people to resettle2; 
new islands along the coast of Dubai are 
created to provide new secluded areas 
for leisure and residence for the wealthy; 
and finally, the Mississippi Delta is losing 
thousands of hectares of land per year due 
to soil subsidence and lack of sediments3, 
further aggravated by sea-level rise.

The causality of appearing or 
disappearing water surfaces may strongly 
depend on the case‑specific context. 
Although atolls, such as Kiribati, are under 
severe threat, the exact effects of sea-level 
rise on coastal erosion, globally, may 
strongly depend on biophysical interactions 
as well, particularly in coastal marshes4, 

as atolls may increase accretion rates as 
sea-level rise progresses5. The impoundment 
of the Three Gorges Dam has resulted in a 
reduction in sediment concentrations in the 
downstream Yangtze River of about 70%. 
Unexpectedly, this reduction has not led 
to a retreat of the downstream submerged 
Yangtze River Delta so far6, contrasting 
what happens in the Mississippi Delta.

These examples demonstrate that 
conversions — and the stories and reasons 
behind them — can vary widely and are 
often the result of compounding causes. 
Therefore, general conclusions cannot 
be drawn from a limited sample of case 
studies. Instead, planetary-scale monitoring 
is needed to understand (and disentangle) 
the causes of detected changes and their 
attribution to natural variability, climate 
change or man-made change. Until now, 
such monitoring and estimates of land–
water conversions were not feasible.

The massive growth in satellite data has 
resulted in a severe demand in storage, 
computation and smart analytics to enable 

analysis of planetary-scale data. Until 
recently, such analyses were performed 
by highly specialized scientists and 
engineers, and on a case-by-case basis. 
New cloud platforms for large satellite 
data analysis, such as Google Earth Engine 
(http://earthengine.google.com), rapidly 
remove thresholds to use planetary-scale 
data7,8. These platforms provide access 
to a plethora of satellite information in 
three ways: (1) storage of satellite data in 
the cloud; (2) provision of computational 
resources; and (3) availability of analytical 
tools to process data into a clear 
end product.

The Deltares Aqua Monitor (http://
aqua-monitor.deltares.nl) is the first global-
scale tool that shows at 30-m resolution 
where water is converted to land and vice 
versa. With assistance from Google Earth 
Engine, it analyses satellite imagery from 
multiple Landsat missions, which observed 
Earth for more than three decades on the 
fly. The Aqua Monitor provides a much 
needed9, fully planetary-scale view on 
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