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Detecting failure of climate predictions
Michael C. Runge1*, Julienne C. Stroeve2,3, Andrew P. Barrett2 and Eve McDonald-Madden4

Thepractical consequencesofclimatechangechallengesociety
to formulate responses that are more suited to achieving
long-term objectives, even if those responses have to be made
in the face of uncertainty1,2. Such a decision-analytic focus uses
the products of climate science as probabilistic predictions
about the e�ects of management policies3. Here we present
methods to detect when climate predictions are failing to
capture the system dynamics. For a single model, we measure
goodness of fit based on the empirical distribution function,
and define failure when the distribution of observed values
significantly diverges from the modelled distribution. For a
set of models, the same statistic can be used to provide
relativeweights for the individualmodels, andwedefine failure
when there is no linear weighting of the ensemble models
that produces a satisfactory match to the observations. Early
detection of failure of a set of predictions is important for
improving model predictions and the decisions based on them.
We show that thesemethodswould have detected a range shift
in northern pintail 20 years before it was actually discovered,
and are increasingly giving more weight to those climate
models that forecast a September ice-free Arctic by 2055.

Recognizing the decision context of climate change issues identi-
fies a meaningful role for empirical science, and shifts the debate
to pragmatic solutions1,2,4. The central role of traditional climate
science in decision-making processes is to provide probabilistic
predictions about outcomes of interest under various management
strategies3. These predictions are, of course, made with uncertainty.
The explicit articulation of this uncertainty is healthy, because it
allows both risk analysis and adaptive management4. With risk
analysis, individuals and society can examine the consequences of
taking (or not taking) any action and being wrong, and so search for
solutions that appropriately weigh the various risks. With adaptive
management, management actions can be adjusted in response to
new information that reduces uncertainty; indeed, the anticipation
of this learning may influence initial actions. Both risk analysis and
adaptivemanagement require the articulation of uncertainty as a set
of alternative predictions about the future. For climate forecasting,
the set of coupled general circulation models (GCMs) and the var-
ious forcing scenarios provide the basis for alternative predictions
about the outcomes of many potential management actions5.

The ability to learn andmake goodmanagement decisionswithin
an adaptive framework will depend on whether the true system
dynamics are contained within, bounded by, or close to the set of
models that capture current uncertainty. Two types of surprise could
undermine this ability: first, the truth might not be bounded by
the model set, because of a failure to anticipate some important
elements of the system; or second, the system might change in
unanticipated ways that lead the true dynamics outside behaviour
predicted by the model set. Both of these unanticipated outcomes
can be considered ‘unknown unknowns’ or ‘black swans’6. Adaptive

management includes an internal layer of learning (‘single-loop
learning’7) that allows discernment among the existing predictions
as information accrues, and adaptation of future management
actions to that new understanding. In addition, a second layer
of learning is needed, which examines whether the system is
responding as might be expected given the model set available,
or if, instead, unpredicted responses are occurring. In the latter
case, ‘double-loop learning’8 is triggered, in which the model set
itself is re-examined, in an effort to develop new hypotheses that
explain the surprising results. For example, satellite observations
of Arctic sea-ice extent declined faster than forecast by the World
Climate Research Programme Coupled Model Intercomparison
Project Phase 3 (CMIP3) models, leading to hypotheses for the
discrepancy and efforts to improve subsequent models9. The first
step in double-loop learning is the detection of the failure of the
model set. Early detection of failure of a set of predictions can
trigger the process of diagnosis and the process of generating
new predictions, quickly turning ‘unknown unknowns’ into ‘known
unknowns’ and leading to better ongoing management and policy
interventions through adaptive management.

In this paper, we develop methods for detecting the failure of
a single model and the failure of a model set. We illustrate these
methods in two contexts: detecting a shift in breeding distribution
for northern pintails (Anas acuta)10; and detecting a failure of
climate models to predict the loss of Arctic sea ice9.

The role of models in a decision context is to make predictions
about system response through time and as a function of
management actions. These predictions are usually probabilistic11,
to represent uncertainty arising from a number of sources,
including environmental variation, incomplete knowledge of system
dynamics, sampling error, and incomplete control of management
actions12. Thus, a model can be viewed as a hypothesis about the
distribution of the response variable of interest. We would like
our probabilistic predictions to be well calibrated and sharp13: over
time, the observations should be compatible with the modelled
distribution14. For example, in forecasting rainfall, we would like
the observed frequency of wet and dry years to match the
predicted (hindcast or forecast) frequencies generated by GCM
simulations. The empirical distribution function (EDF) tests, a
class of goodness-of-fit tests, examine the agreement between
two continuous distributions using a statistic that measures the
distance (Dn) between the empirical cumulative distribution from
the real system (Fn(x), where n is the accumulated sample size)
and the cumulative distribution based on the prediction from
the model (F(x)) (ref. 15). One of the advantages of the EDF
tests is that the prediction can take any form of distribution. The
Kolmogorov–Smirnov (K–S) test is one of many EDF tests, and uses
the distance metric below.

Dn=max
x
|Fn (x)−F (x)| (1)

1USGS Patuxent Wildlife Research Center, Laurel, Maryland 20708, USA. 2National Snow and Ice Data Center, University of Colorado, Boulder,
Colorado 80309, USA. 3University College London, London WC1E 6BT, UK. 4School of Geography, Planning, and Environmental Management, University of
Queensland, St Lucia, Queensland 4072, Australia. *e-mail: mrunge@usgs.gov

NATURE CLIMATE CHANGE | VOL 6 | SEPTEMBER 2016 | www.nature.com/natureclimatechange 861

© Macmillan Publishers Limited . All rights reserved

http://dx.doi.org/10.1038/nclimate3041
mailto:mrunge@usgs.gov
www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3041

1960 1965

1965

1975

1975

1985

1985

1995

1995

1970 1980 1990 2000 2005

2005

2010 2015

2015

50

55

La
tit

ud
e

K−
S 

st
at

is
tic

M
od

el
 w

ei
gh

t
60a

b

c

1960 1970 1980 1990 2000 2010

1965 1975 1985 1995 2005 20151960 1970 1980 1990 2000 2010

0.2
0.4
0.6
0.8

Year

Year

Year

0.0

0.5

1.0

Figure 1 | Analysis of trends in distribution of northern pintails, 1961–2015.
a, Latitude of the centroid of the northern pintail (A. acuta) breeding
distribution. Model 1 (dashed red line) is the average for the period
1961–1974 (solid red line). Model 2 (blue line) is the five-year moving
average at 1985; the solid blue line shows the 5-year moving average for the
period 1965–1985. b, K–S fit statistics for Model 1 (red), Model 2 (dashed
blue line), and the best-weighted model (black), using a ten-year moving
window of the data. The nominal critical value (α=0.05) is shown as a
dashed line. The circle at 1985 shows the first point at which the K–S
statistic for Model 1 exceeded the critical value. c, Weights on Models 1
(red) and 2 (blue) that provide the best fit to a ten-year moving window of
observations, as measured by the K–S statistic.

The northern pintail is a waterfowl species that is important
for recreational hunting in North America16. Pintails depend on
ephemeral prairie wetlands for breeding and their dynamics are
strongly influenced by climatic conditions17. The annual distribu-
tion of this species, as measured by the latitude of its centroid, is
an indicator of the habitat conditions, with individuals breeding
farther north in drier years. As reproductive rate is also associated
with habitat condition, the latitude of the breeding population is
used as a predictor in setting hunting regulations18. Between 1961
and 1974 the mean latitude of the breeding distribution was 53.569
(s.d.= 1.549) (Fig. 1a, red line). Data collected from the mid-
eighties onwards shows a northerly shift in the pintail distribution,
but given the variability in the data it is difficult to discern if or when
this shift occurred and whether concerns should be raised about the
harvest rates set using Model 1. The K–S statistic shows that the
observations were compatible with Model 1 (Fig. 1b, red line) until
1985 (red circle). After 1985, the distance between the observations
and the predictions under Model 1 suggests a significant change in
the pintail distribution. In this way, an EDF statistic can be used to
identify when a single model is no longer plausible.

Often, a decision-maker will entertain several different expla-
nations of cause and effect in a system, that is, several alternative
models. These models may represent a comprehensive set, in the
sense that the truth is believed to be one of the models, but more
commonly, the hope is merely that the set of models somehow
bounds the truth. What would it mean for a model ensemble to
bound the truth? We propose this means there is weighted combi-
nation of the models in the set that makes predictions consistent
with the observations. If that is not the case, then the observations
are falling outside anything predicted by the ensemble, which would
indicate the need for careful evaluation of the model set. The EDF
statistic for the best-weighted model, then, is a measure of the
plausibility of the model set.

There are a number of ways that models could be weighted
to form an intermediate model. One possibility is to form a
linear-weighted average of the cumulative distribution functions
for each model. Another way is to average the moments of the
individual distributions. In either case, the best-fitting weighted
model minimizes the EDF statistic. In the examples that follow,
we have used the second weighting method, because we were
particularly interested in bounding the first two moments, but the
first weighting method may be appropriate in other contexts.

In 1985, when the observed pintail data indicated a divergence
from the 1961–1974 model (Model 1), a possible response would
have been to propose a second model with a fixed mean of 55.374
(the 5-yr moving average in 1985) and standard deviation of 1.549
(Fig. 1a, dashed blue line). This second model was not plausible
between 1970 and 1985 (as judged against a K–S test with nominal
α=0.05), but became plausible in 1985 and has remained so since
(Fig. 1b, blue line). The weights in the best-fitting weighted model
show the change in system dynamics (Fig. 1c): between 1971 and
1980, Model 1 received all of the weight; by 1988, all of the weight
had shifted to Model 2; and since 1998, the weights have fluctuated.
In the period 1988–1998, having all of the weight on Model 2 raises
the question of whether the true dynamics have moved outside the
model set and Model 2 is just the best approximation available.
Nevertheless, the best-fittingweightedmodel remains plausible over
the entire time series, suggesting that the two-model ensemble set
bounds the true range dynamics of the northern pintail at present
and would have performed well for setting harvest rates (Fig. 1b,
black line). Use of the Anderson–Darling statistic (another in the
class of EDF tests15) instead of the K–S statistic produces quite
similar results, with two minor differences: first, the failure of
Model 1 alone is detected in 1984 instead of 1985; and second, for
one year in 1993, the test warns that the model set may be failing.
(See Supplementary Information for a comparison of the power of
these two tests.)

The rapid loss of Arctic sea ice over the past two decades has
been one of the most visible and marked effects of global climate
change19 and has led to significant concern about many aspects of
the Arctic environment, including, for example, the status of polar
bears20,21. Sea-ice extent and volume have been declining at a rate
that was faster than forecast by the CMIP3 models9. More recent
models (CMIP5) match the trends in the observed record better22
(Fig. 2a), but the question remains whether they are capturing the
Arctic sea-ice dynamics well enough to support decision-making.
The K–S statistics for the individual CMIP5 models (historical
andRepresentative Concentration Pathway (RCP)8.5 emissions) are
relatively stable from the early 1980s to the mid-1990s, but show
substantial shifts beginning about 1995 (Fig. 2b), with one model
that had previously fitted the observed time series well (CESM1)
falling out of favour, and several others beginning to show a better
fit (HadGEM2-CC, IPSL-CM5A-MR, MRI). Throughout this time
period, a linear weighting of the CMIP5 models can be found that
produces a satisfactory fit to the observations, suggesting that the
model set is still bounding the behaviour of the system (Fig. 2b, black
line). Nevertheless, the sharp changes in the individual K–S statistics
serve as an early indicator that theArctic system is changing in away
that is not captured by any one of the current CMIP5models. If that
trend continues, the K–S statistic for the best-fit weighted model
may begin to indicate a failure of the entire model set, triggering
the need for new model development. This suggests that, for the
moment, the current set of models can be used by decision-makers
concerned about Arctic sea ice, but a watchful eye is needed to
be sure that the model set still bounds the observations over the
coming years.

As discussed above, the best-fit linear weighting of the CMIP5
models changed over time (Fig. 2c), particularly after 1995, when
the observed September sea-ice extent began to drop relative to the
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Figure 2 | Analysis of trends in the extent of sea ice in the Arctic,
1953–2015. a, September Arctic sea-ice extent22 (million km2). The thin
lines show LOESS means from 11 CMIP5 models (RCP8.5). The thick red
line shows the observed record. b, K–S fit statistics for the individual CMIP5
models and the best-weighted model (thick black line), using a 30-year
moving window of the data. The critical value (nominal α=0.05) is shown
as a dashed line. c, Weights on the individual CMIP5 models that provide
the best fit to a 30-year moving window of observations, as measured by
the K–S statistic.

multi-model ensemble of predictions. We can use these changing
best-fit models over time to provide forecasts of the sea-ice extent in
the future (Fig. 3), with the forecast changing as the model weights
are updated with each year’s observation. These results indicate that
since 2000, the forecast September 2055 sea-ice extent under the
RCP8.5 emission scenario has dropped; the most recent forecast
(based on data through 2015) is 0.77 million km2 (90% prediction
interval: 0.10–1.45), very close to what is considered an ‘ice-free’
Arctic. This, in turn, has increased the probability that the sea-ice
extent will be below 1.0 million km2 from 44% using the model
weights in 2000 to 71% using the model weights in 2015 (Fig. 3).

The model weights, the EDF statistics for the individual models,
and the EDF statistic for the best-fitting weighted model provide a
way to track system change and evaluate the multi-model ensemble.
A shift in model weights over time may be an indicator that the
dynamics of the system are changing (or that if the system dynamics
are in fact stationary, such stationarity is not captured by the
models in the ensemble). If the EDF statistic for the best-fitting
weighted model remains plausible, then the multi-model ensemble
is bounding the behaviour of the system. In contrast, if the EDF
statistic for even the best-fitting weighted model is not plausible,
then the ensemble is not functioning; a double-loop adaptation
should be triggered, and the model set should be examined to try to
explain the emerging surprises. In the case of northern pintails, this
would have brought awareness to the change in system dynamics
in 1985, twenty years before the effect was in fact identified and
incorporated into management of hunting regulations. In the case
of Arctic sea-ice extent, although themodel set bounds the observed
system behaviour at present, rapid shifts in the plausibility of
individual models are an early warning that the current model set
might be starting to fail.
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Figure 3 | Forecast extent of sea ice in the Arctic in 2055 as a function of
the weights on the 11 CMIP5 models over the course of the observed
record, and assuming the RCP8.5 forcing scenario. The boxplots show the
5%, 25%, 50%, 75% and 95% quantiles of the weighted model. The
dashed line (at 1.0 million km2) is frequently cited as the threshold for an
‘ice-free’ Arctic. The black line shows the probability that the sea-ice extent
will be less than 1.0 million km2 in 2055, based on the best-fit
weighted model.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Data and models. For northern pintails, the data are the observed latitude
of the breeding population in North America, 1961–2015, taken from the
Waterfowl Breeding Population and Habitat Survey. Two models, both normally
distributed, were compared: Model 1 predicted a constant mean and variance
(based on the mean and variance of the observed latitude, 1961–1974); Model 2
used the five-year moving average at 1985 as the mean, and the same variance as
Model 1. Both Models 1 and 2 use a fixed long-term mean, rather than a more
complicated time-series model because harvest regulations for northern
pintails are set assuming a fixed long-term mean for the latitude of the
breeding population.

The sea-ice data measure the extent of sea ice in September (million km2). The
observational record is based on a combination of passive microwave sea-ice
concentrations from the NASA Team sea-ice algorithm23 and earlier satellite,
aircraft and ship observations available from the Had1SST data set24 that were
merged to create a consistent time series25. Hindcast and forecast September sea-ice
extent was extracted from 11 CMIP5 models (CCSM4, six ensemble members;
CESM1-cam5, 3; EC-EARTH, 12; GFDL-CM3, 1; HadGEM2-AO, 1;
HadGEM2-CC, 1; HadGEM2-ES, 4; IPSL-CM5A-LR, 4; IPSL-CM5A-MR, 1;
MIROC5, 2; MRI-CGCM3, 1), using the RCP8.5 forcing scenario. The CMIP5
models use observed greenhouse gas concentrations through 2005 and forecast
concentrations thereafter. The subset of 11 was chosen from the full set of CMIP5
models on the basis of their ability to capture basic features of the Arctic climate, as
reflected in observed ice thickness distributions26.

The CMIP5 model results are replicate simulations taking into account
temporal variation, parametric uncertainty, and uncertainty in starting conditions;
each replicate is a possible future trajectory. These results, however, are not in
themselves probabilistic forecasts of sea-ice extent. To develop probabilistic
forecasts of sea-ice extent, we used the replicate CMIP5 results to estimate
time-specific means and variances. For each of the CMIP5 models, a year-specific
mean was estimated with LOESS smoothing (λ=2, 25-yr window for α), and a
corresponding year-specific variance was estimated with LOESS smoothing of the
variance of the residuals. The year-specific forecast was a normal distribution with
the corresponding mean and variance. This method for developing probabilistic
forecasts from the CMIP5 model results, including the assumption of a normal
distribution, is one possible approach and seems to work well for the sea-ice metric;
other approaches and distributions have been explored3 and may be more
appropriate for other metrics.

Individual model fit. To assess the fit of each model to the data, a moving window
was used (ten years for the pintail data, 30 years for the sea-ice data). Within the
moving window, the observations were expressed as a normalized residual from the
corresponding year-specific predicted distribution. An empirical cumulative
distribution function was formed from the set of residuals within the window and
compared against the cumulative distribution function for a standard normal
distribution to calculate the K–S statistic (equation (1)) or Anderson–Darling

statistic, with an appropriate critical value15. In a decision context, the choice of the
critical value is an important value judgment that reflects the relative importance of
Type 1 and Type 2 errors, and the nominal critical value needs to be adjusted to
account for multiple comparisons as well as the estimation of parameters27. These
topics are investigated in detail in the Supplementary Information. Throughout the
main body of the paper, we have used the critical value associated with a nominal
Type 1 error rate (α) of 0.05.

Weighted models.Weighted models were formed from the component models
with linear weighting of the first two moments. For example, to combine the
11 sea-ice models, a set of 11 weights (summing to 1) were used to weight the
11 means and the 11 standard deviations. A set of weights were evaluated by
calculating the K–S statistic for the weighted model in the preceding window
associated with a particular point in time. The best-fit weighted model at each
point in time was found by searching for the set of weights that minimized the K–S
statistic: for the pintail example using multivariate constrained optimization,
specifically, sequential quadratic programming28; for the sea-ice example using
multivariate unconstrained optimization, specifically, a gradient-based
quasi-Newton method29 with a cubic line search procedure28.

The sea-ice forecast based on a weighted model (Fig. 3) used the year-specific
means and variances from the 11 CMIP5 models, weighted by the best-fit set of
weights. Each of the 11 models has a forecast for the sea-ice extent in September
2055; these forecasts were weighted by the sets of weights at each point in the
observational record. The quantiles were found by assuming that the weighted
forecast was normally distributed.
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